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We develop the quasi-particle picture for Schwarzhchild and far from ex-
tremal black holes. We show that the thermalization equations of the black
hole is recovered from the model of branes and anti-branes. This can also
be viewed as a field theory explanation of the relationship between area and
entropy for these black holes. As a by product the annihilation rate of branes
and anti-branes is computed.
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1 Introduction

The properties of certain near extremal black holes are encoded in the ther-
modynamics of large N gauge theories [1, 2]. Recently it was shown that the
properties of the large N gauge theories at finite temperature in the large ‘t
Hooft effective coupling regime can be captured by a simple quasi-particle
description [3, 4]. In this description each quasi-particle has an energy of
order the temperature and thus the number of quasi-particles is the entropy
of the gauge theory. Further the lifetime of the quasi-particles is of order the
inverse temperature. For the case where only one type of brane is considered,
the horizon size follows from the double peaked nature of the spectral density
of the scalars fields [5].

Apart from describing the equilibrium properties of the system the quasi-
particle description captures the approach to equilibrium too. It was shown
that in general the membrane paradigm description of a black hole gives the
equation [3]

dM

dt
∼

A

G
T 2 (1)

describing the response to perturbation and the approach to equilibrium of
the black hole. The quasi-particle description of the near extremal black
holes gave

dE

dt
∼ NqpT

2 (2)

where Nqp is the number of quasi-particles. This lead to the identification
(in these cases dE = dM )of the number of quasi particles with the area of
the horizon in Planck units, giving a simple explanation of why the entropy
is proportional to the area in Planck units. This approach was generalized
to a variety of examples including the rotating BTZ black hole.

More recently following the work in [6], it has been shown that a large
class of black hole (far from extremal) [7, 8, 9, 10, 11, 12, 13] can be described
using near extremal black holes, with opposite charges. Since the quasi-
particle description gave a simple explanation to some of the properties of
the near extremal black hole it seems that maybe the quasi-particle picture
can explain some properties of the far from extremal black hole (including
Schwarzhchild black holes). In this note we start to develop this quasi-particle
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picture.

2 Single charged black brane

We first want to look at the case where there are some brane and some anti-
branes of the same type. The black brane properties are described by[14, 15]

Mbh =
ωd+1

2κ2
Lpµd(d+ 1 + d sinh2 γ)

Sbh =
2π

κ2
ωd+1L

pµd+1 cosh γ

Qbh =
1

2
√
2κ

ωd+1L
pµd sinh 2γ

TBH =
d

4πµcoshγ
(3)

In [11] these black holes are modeled by the properties of the brane anti-
brane system at finite temperature. The field theory on the brane is described
by the thermodynamical relation

S = aEλ
√

Mp,0

λ =
d+ 1

d
−

N

2
D = p+ d+ 3

a = 2
1

d
+2πω

−

1

d

d+1d
−

d+1

d λ−λL−

p

dκ
2

d

Mp,0 = LpτpN (4)

where τp is the tension of the brane , N is the number of branes and E is the
energy of the excitations. Similarly the theory on the anti brane is described
by the same relationship with Mp,0 replaced by Mp̄,0, and E replaced by Ē.
It was argued that for stability E = Ē, and we will continue to assume this.
Maximizing the total entropy of the brane and anti-branes subject to this
constraint and at a fixed total mass and charge gave the relationship

Etotal = 2E = 4λ
√

Mp,0Mp̄,0. (5)
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If we define µ and γ such that they are related to the mass and charge of
the black hole as in (3) then we find [11]

Mp,0 =
ωd+1

2κ2
Lpµdd

4
e2γ

Mp̄,0 =
ωd+1

2κ2
Lpµdd

4
e−2γ

Etot = λ
ωd+1

2κ2
Lpµdd (6)

The theories while having the same energy have different temperatures,
T and T̄ respectively, satisfying

2

TBH
=

1

T
+

1

T̄
. (7)

Following the analysis in [3], the rate at which the black hole emits energy
as seen by observers at the stretched horizon, ignoring charged emission (So
from now on the charge Q is fixed), is given by,

dMBH

dt
∼

A

G
T 2

BH ∼ SBHT
2

BH (8)

If we are also interested in perturbation that keep the charge constant, then
dM = TBHdSBH , and one has

dSBH

dt
∼

A

G
TBH = SBHTBH (9)

Equations (8) and (9) describe how the black hole thermalizes.

Since we claimed that the black hole described in equation (3), can be
modeled by field theory living on branes and anti-branes we should be able
to reproduce equations (8) and (9), using the out of equilibrium properties
of the near extremal branes.

According to the quasi particle description of near extremal branes [5,
3, 4] the thermodynamics can be approximated by free quasi particles. The
number of quasi particles is the entropy, the energy of each quasi particle is
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around the temperature and the life time of the quasi particles is set by the
inverse temperature of the field theory.

Now when we have a system of branes and anti-branes we have assumed
that at the stability point the theories on them are decoupled from each
other except for the constraint that the excitation energy be the same. This
is the assumption underlying the derivation of the entropy of the far from
extremal black holes. This means that the spectral density of the theories is
the same as if the other theory does not exist. From the width of the peaks
in the spectral density, or from the scaling of the quasi normal modes in the
background of the near extremal branes, one can read off the life time of the
quasi particle and is thus proportional to the inverse temperature[4].

Thus we can write (remembering that the number of quasi-particles is
proportional to the entropy),

dS

dt
∼ ST

dS̄

dt
∼ S̄T̄ (10)

where the proportionality constant is the same in both theories. What we
mean by theses equations is that the quasi particle decay and their number
changes. Off course in equilibrium quasi particles are also created in ex-
actly the same rate, but one can focus on their decay and compare to the
corresponding properties of the black hole.

Thus the total entropy Stot = S + S̄ satisfies

dStot

dt
∼ ST + S̄T̄ (11)

However

ST + S̄T̄ = (S + S̄)
2T T̄

T + T̄
= StotTBH (12)

where in the last equality we have used that

S̄T̄ = ST ∼ E (13)

We thus see that the equation (11) reproduces equation (9).
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While the life time of the quasi particle is the same as in the near extremal
case, the relationship between the change in the number of quasi particles
and the change in excitation energy is not the same since pairs of branes and
anti branes can be created or annihilated. So while we know the rate of quasi
particle decay this does not tell us the rate in which the total mass of the
black hole changes. Now in the gravity picture we imagine that the black hole
would slowly decay (if there was no incoming flux at the stretched horizon
to balance off the decay) and just become a slightly less massive black hole
hence the use of (at constant charge Q)

dMBH = TBHdSBH . (14)

On the field theory side the brane anti brane system is only a black hole
if the energy and the number of brane and anti branes obey the correct
relationship (5). If we now allow changes in both the excitation energy
and number of branes, are we guaranteed to obey (14). In particular how
restrictive does the fluctuations in energy and brane number need to be.

To try and answer this question let us look at a general change in the
energy and brane number in the field theory, using equations (4) and (5), we
can write

dS =
∂S

∂E
dE +

∂S

∂Mp,0

dMp,0 =
1

T
dE +

1

T̄
dMp,0 (15)

and similarly

dS̄ =
1

T̄
dĒ +

1

T
dMp̄,0. (16)

Now if we look for perturbation that leaves the charge constant then
dMp̄,0 = dMp,0 = dM , so we can write two equations for the time dependence
of the quantities above

dS

dt
=

1

T

dE

dt
+

1

T̄

dM

dt
dS̄

dt
=

1

T̄

dĒ

dt
+

1

T

dM

dt
(17)

If we want to require that the change in the field theory correspond to in-
finitesimal changes in a black hole configuration then one should have (using
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equation (17))
1

T

dE

dt
+

1

T̄

dĒ

dt
=

1

TBH

dEtot

dt
. (18)

Which is less restrictive then one would have thought, since it does not couple
dM to dE.

Now while we have E = Ē for stability one does not have to assume
that dE

dt
= dĒ

dt
, since for each there is also a corresponding inflow of energy

at equilibrium1. This inflow comes form the annihilation of the branes and
anti-branes which is converted into excitation energy just as energy excitation
creates brane anti brane pairs. Since at equilibrium the number of branes
and anti branes stays the same and the energy E is constant this means that

dE

dt
+

dĒ

dt
= 2

dM

dt
. (19)

We seem to have more equations then unknown.

Solving equations (17), (18) and (19) and we find

dE

dt
=

dĒ

dt
=

dM

dt
∼ ETBH (20)

From which we can find

2
dE + dM

dt
=

dMBH

dt
= TBH

dStot

dt
∼ StotT

2

BH , (21)

in agreement with equation (8).

Having a solution to an over constrained system suggest that the extra
condition (19) which reflects the requirement of stability of the system is
somehow already incorporated in the description. This suggest that the
requirement that the energy on brane and anti branes be the same from
which the black hole configuration arose is indeed related to stability [11].

It is worth presenting the decay rate for the branes in another form

dM

dt
∼

1

a

(MM̄ )
3d−2

4d

√
M +

√
M̄

(22)

1Even though this might be true in a particular example as above
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which gives the decay rate as a function of the number of branes and anti
branes alone.

3 Multi charged BH

We now look at a more general case involving many types of branes and
anti-branes. The mass and entropy are given by [16, 17],

Mbh =
b

2
µD−3(

n
∑

i=1

cosh γi + 2λ)

b =
ωD−2

2κ2
(D − 3)Vp , λ =

D − 2

D − 3
−

n

2

Sbh = cµD−2Πn
i=1 cosh γi

c =
4πb

D − 3
.

TBH =
d

4πµΠn
i=1 cosh γi

(23)

The field theory on the branes anti-branes configuration can be summa-
rized by [11],

Mf =
n
∑

i

(Mpi,0 +Mp̄i,0) + Etot

Sf = ã(
Etot

2n
)λΠN

i=1(
√

Mpi,0 +
√

Mp̄i,0).

ã = c(bλ)−λb−n/2 (24)

Where each of the 2n configuration of branes and anti-branes has the same
energy of excitations, but different temperatures. The different temperatures
are related to the black hole temperature by

2n

TBH
=

2n
∑

i=1

1

Ti
(25)
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Maximizing the entropy for fixed charge and mass gives the relationship

Etot = 4λ
√

Mpi,0Mp̄i,0, (26)

for all i.

In terms of µ and γ one has,

Mpi,0 =
b

4
µD−3e2γi

Mp̄i,0 =
b

4
µD−3e−2γi

Etot = bλµD−3 (27)

We now want to recover (9) and (8) from a quasi-particle description.

As before we assume each of the 2n field theories is described by quasi-
particles with energy of order the temperature and life time of order the
inverse temperature.

dSi

dt
∼ SiTi i = 1 · · ·2n (28)

The time derivative of the total entropy is then

dStot

dt
∼

∑

i

SiTi ∼ StotTBH (29)

where in the last equality we have used equation (25) and that all the SiTi

are equal for all i, due to the equality of the energy of excitation on all 2n

brane configurations.

We now want to compute the individual rates of the branes decay and
reproduce equation (8). When the number of quasi particles changes this
can come about by either a change in the energy or a change in the number
of branes. But each of the 2n field theories live on some of the same branes
thus they affect each other. While they can not affect the life time of the
quasi-particles they can affect the distribution of the available energy between
branes and excitations. To be concrete let us look at the example of n = 2
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3.1 The n = 2 case

In this case we have for the entropy

Stot = aEλ(
√

M1

√

M̄2 +
√

M1

√

M2 +
√

M̄1

√

M2 +
√

M̄1

√

M̄2) (30)

and we can write it as

Stot = S1 + S2 + S3 + S4, (31)

respectively. The equations for the rate of change are

Ṡ1 =
1

T1

Ė1 +
1

2T4

Ṁ1 +
1

2T2

˙̄M 2

Ṡ2 =
1

T2

Ė2 +
1

2T3

Ṁ1 +
1

2T1

Ṁ2

Ṡ3 =
1

T3

Ė3 +
1

2T2

˙̄M 1 +
1

2T4

Ṁ2

Ṡ4 =
1

T4

Ė4 +
1

2T1

˙̄M 1 +
1

2T3

˙̄M 2 (32)

Where we have taken into account the effect of the field theories on each
other by equating the decay rate of Mi on each field theory that live on these
branes. Now we have eight unknown but only four equations. Four more
equation are given by the equality of the rate of energy decay to brane decay,
charge conservation, and the analog of equation (18) i.e

∑

i

(
Ėi

Ti

) =
1

TBH

Ėtot (33)

These together give eight equations which can be solved to give the indi-
vidual decay rates.

The charge conservation equation plus (33) and the structure of (32) give

dStot =
1

TBH
(dEtot + 2dM1 + 2dM2) (34)

ensuring equation (8).
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