Hydrostatic Equilibrium Worksheet

(to follow the astronomy demonstration video at https://www.youtube.com/watch?v=oRpS2Udx55w)

1) The pressure P at various depths h of a fluid in a graduated cylinder is described by $P=P_0+\rho gh$ where g is the acceleration of gravity. Thus the differential pressure, the amount above atmospheric pressure P₀ due to the fluid, is described by $P-P_0=\rho gh$. Indicate which labeled curve or line correctly describes how the differential pressure P-P₀ increases with depth h for a graduated cylinder filled with ...

- 2) Two tall graduated cylinders are shown below. The cylinder on the left contains pure water ρ_{water} = 1.0 g/cm³. The cylinder on the right is half full of Karo syrup ρ_{karo} = 1.33 g/cm³, water is added, and then the two are partially mixed creating a density gradient from top to bottom.
- a) For the cylinder on the left, the pressure is P_{α} at the depth indicated.
 - -- Indicate with a labeled arrow (if possible) where the pressure $2P_{\alpha}$?
 - -- Indicate with a labeled arrow (if possible) where the density ρ is 1.25 g/cm³.
- b) For the cylinder on the right, the pressure is P_B at the depth indicated.
 - -- Indicate with a labeled arrow (if possible) where the pressure 2P_B?
 - -- Indicate with a labeled arrow (if possible) where the density ρ is 1.25 g/cm³.

