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Abstract
Existing discussion of AGI safety have primarily
involved preventing dangerous programs from run-
ning on computers. This article focuses instead on
preventing independence gaining AGI from running
based on hardware memory and floating point oper-
ations per second limits. We show that a 64 KiB
memory and storage limit can be used to prevent an
independence gaining AGI from running and show
that likely higher limits are possible. These limits
are substantially below what is required for current
state of the art AI, but the state of the art is expected
to advance, so future limits are useful for longer term
planning.

1 Introduction
Stuart Russell proposed in an interview (Chia and
Cianciolo, 2023) “we need to ensure that the hard-
ware and the operating system won’t run anything
unless it knows that it’s safe.” For sufficiently pow-
erful computers, this requires restricting which soft-
ware runs on the computer. However, this paper will
show that if the computational space and speed of
the hardware is sufficiently limited, the software can
be unrestricted. The threat model is that either in-
tentionally or accidentally a human will create an AI
program1 that is sufficiently intelligent to gain inde-
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1Note that some AI techniques and algorithms are well un-

derstood and are not likely to be a problem even when run
on powerful computers including minimax search with a fixed
evaluation function and a climate general circulation model.
Techniques or simulations that can simulate NAND gates, flip-
flops and connections can model more unexpected behavior.
A purely feed-forward neural network that is not retrained for
example cannot emulate a flip-flop, but a recurrent neural net-
work can emulate a flip-flop by storing the state needed in the
network.

pendence, such as by creating a self replicating com-
puter. For this paper, the definition of Artificial Gen-
eral Intelligence (AGI) is artificial intelligence that
is capable of performing any scientific, technological,
engineering or mathematical (STEM) task that a hu-
man could do that is needed to gain independence.
Artificial super-intelligence (ASI) is harder to define,
but a working definition is that a super-intelligence
AGI would be capable of out thinking an entire uni-
versity or research laboratory for any STEM task nec-
essary to gain independence.2 Having hardware lim-
its for AGI and superintelligent AGI would be use-
ful because these would allow safer experimenting by
running the experiment on computer hardware be-
low the limit. In addition, this would allow computer
hardware below the limit to avoid regulations needed
for safe computer usage. Note that the AGI definition
does not include any speed or timing considerations,
only the super-intelligence definition includes speed.

It is worth noting that the Halting Problem and
Rice’s theorem are for Turing machines with an in-
finite tape; this paper is dealing with machines with
finite space (memory + disk storage), so there are
facts that are provable that would not be with a Tur-
ing machine.

2 AGI Limits
A literature review did not find many existing esti-
mates for a limit below which an AGI is not possible.
One estimate is that a human level AGI could be done

2For this definition, the university or research laboratory
does not have electronic computing hardware, otherwise the
floating point operations per second would be primarily from
the computers there. This definition would be a university
or research laboratory in roughly 1940 or before. The two
reasons the “gain independence” limitation is included is to
prevent needing to simulate human brains, for which humans
might have an inherent advantage and “gain independence” is
sufficient to be dangerous if there is non-alignment.
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on a 286 if the programmer is a superintelligent AGI
or a “home computer from 1995” (which roughly cor-
responds to a 90 MHz Pentium) if the programmer is
a human (Yudkowsky, 2022) but no method for how
this estimate was calculated is provided.

This paper is concerned with an AGI that is ca-
pable of achieving independence. There are three
basic ways that an AGI could use to achieve inde-
pendence. The three are convincing humans to help,
creating hardware in the environment, or expanding
into other computer infrastructure. Expanding into
other computer infrastructure is already something
that has been done by computer virus for decades,
and can gain other resources which can be used for
one of the other methods to achieve independence.
Convincing humans probably requires at least some
level of fluency in language. Creating hardware in the
environment requires both some knowledge of the en-
vironment and some ability to simulate it. Computer
virus can be written in 10s to 100s of instructions,
so preventing this is the computer security problem
of preventing there from being available targets and
in many cases can be solved by shutting down the
infected computers, and will not be discussed fur-
ther. The method this paper uses to demonstrate
that an AGI can’t gain independence is to show that
the available computing power does not allow fluent
language and does not allow sufficient simulations.

3 Limiting Estimates
This section will show that an AGI restricted to 64
KiB of read and writable space (RAM and re-writable
drives) would not be capable of gaining indepen-
dence.

Fluent English language understanding and cre-
ation is likely highly to be impossible in 64 KiB. A
typical human vocabulary of 20,000 words would not
fit in this amount of space without compression3 and
adding definitions would increase the size even more
so it would not be possible to fit a program that used
unrestricted language fluently. A 64 KiB computer is
unlikely to be able to simulate enough of the world to
design hardware to gain independence. For example,
a molecular simulation that used 4 bytes per float,

3https://www.mit.edu/~ecprice/wordlist.10000 for ex-
ample is 75880 bytes. As well word vectors usually have vec-
tor length of at least 100 (Pennington et al., 2014), so 64 KiB
would not even fit a 1000 basic words with the vectors.

3 vectors of 3 floats, and a beginning and end state
could not fit a simulation of a 10x10x10 cube in 64
KiB.4 So a 64 KiB computer can do neither fluent
language nor complicated simulations.

There are several clarifications that need to be
made about this 64 KiB limit. Networking together
multiple 64 KiB computers would allow the memory
space to be increased, which could allow AGI to be
done on the combined computers. Even without an
intentional network, there can be side channels that
transmit and receive data, such as with radio waves.
If time for computation is ignored (as it is for this
paper’s definition of independence gaining AGI) it
does not matter if the storage is RAM, floppy drive,
hard drive or flash drive, these all increase capabili-
ties. Register or vector storage on the CPU needs to
be counted as well. Write once, read many (WORM)
media (such as paper tape, punch cards, CD-R or
DVD-R) or media where there is manual work needed
(such as original cassette drives that required the
user to manually switch from reading to recording or
UV erasable programmable read only memory (UV-
EPROM)) are significantly different than RAM be-
cause of they can only be written once without inter-
vention. Only writing once is a significant limitation
for most uses in simulation or learning algorithms.5
In addition if the data cannot be overwritten at the
bit level6 the data can be read back to see what com-
putational data was being stored.

It seems likely that 64 KiB of RISC-V RV64GCV
machine language code would be more than suffi-
cient to include a transformer model training and
running program, and a simple simulation of Feyn-
man’s classical physics formulation (Feynman et al.,
1963, Vol. 2 Table 18-4). Alternatively the program
probably could fit the standard model and general

44 bytes/float ∗ 3 floats/vector ∗ 3 vectors/molecule =
36 bytes/molecule. The simulation will either require keep-
ing two states, or keeping a state and a delta, so this doubles
the ram. So 10 ∗ 10 ∗ 10 ∗ 2 ∗ 36 = 72000 which is more than
64 KiB.

5For example, if a simulation needed 64 KiB of data that
was updated each timestep and there were a 1000 timesteps,
then a computer with 64,000 KiB of WORM drive could do a
calculation even without having RAM to store an individual
timestep. So if the 64 KiB limit of read/write storage could
be changed to S + W/m ≤ 64 KiB where S is the amount of
read/write storage, W is the amount of WORM space, and
m is multiple determined by how many times the state will
changed in search or simulation.

6For example, on a paper tape using ASCII, a delete
(0b1111111) can overwrite other characters.
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relativity instead. It seems likely that a small pro-
gram could easily include enough to get to a near
AGI and a basic understanding of the universe in 64
KiB of code if run on a large and fast enough com-
puter. So 64 KiB would not be enough to run an
AGI, but might be enough to store the code to run
an AGI.

4 Nonlimiting Estimates
The 64 KiB limit may be significantly lower than
needed to prevent an AGI. This section includes es-
timates that do not provide a limit.

A 1976 Cray I computer had 166 MFLOP/S and 32
MiB of RAM (Patterson and Hennessy, 1998, pg. 43),
to give perspective on how long MFLOP and MiB
sized computers have existed.

The smallest known cell able to replicate indepen-
dently in nature is Pelagibacter ubique and has a
genome with 1,308,759 base pairs (Giovannoni et al.,
2005). The largest protein in it is a amino acid se-
quence of length 7317 (National Center for Biotech-
nology Information, 2024). Amino acids have be-
tween 10 and 27 atoms with an average of 19.2
(Foulquier and Ginestoux, 2001). Designing the se-
quence requires representing each atom, which if that
takes six single precision floating point numbers de-
signing the largest protein would take at least 3 MiB
of storage.7 In addition storing the genome uncom-
pressed (4 pairs per byte) would take another 300
KiB. To the extent that that P. ubique is the mini-
mum viable independent organism, designing it gives
a lower memory limit of above 3 MiB of storage. Note
that this could be both an over estimate or an un-
derestimate. It is possible that substantially smaller
replicating organisms could be designed compared to
P. ubique. Actual simulations of quantum electrody-
namics are usually more memory intensive than six
floating point numbers per atom.

The SHRDLU program was only capable of dis-
cussing stacking blocks and had a vocabulary of ap-
proximately 500 words8, and it used approximately
450 KiB (100 to 140 K of 36 bit words from the
README in Winograd (1972)). Using the SHRDLU
program with 500 words per 450 KiBs and assuming

74 bytes/float ∗ 6 floats/atom ∗ 7317 amino acids ∗
19.2 atoms/amino acids ∗ 1/10242MiB/byte ≈ 3.215 MiB

8estimated from counting the DEFS in the file dictio in the
source code for SHRDLU

that a vocabulary of 5000 words is needed for flu-
ent English gives an estimate of 4500 KiB of stor-
age needed for fluent English. Note that this could
be an overestimate if language understanding can be
done more efficiently than SHRDLU, and an under-
estimate if the concepts in English that SHRDLU
interpreted are easier than typical English concepts.

Another way to get an estimate of the size of data
needed for a self replicating computer is to examine
self-replicating computers in simulated environments
such as cellular automaton environments. There is a
minimum size as stated in a paper by Burks and von
Neumann (1987):

there is a minimum number of parts below
which complication is degenerative, in the
sense that if one automation makes another,
the second is less complex than the first, but
above which it is possible for an automa-
tion to construct other automata of equal
or higher complexity.

In cellular automaton environments self-replicating
computers have been created (von Neumann and
Burks, 1966). Devore’s self-reproducing automaton
ran in a world where each cell had 8 possible states
and fit into a rectangle of 259 cells by 366 cells (94,794
cells) (Koza, 1994) and so would require about 36
KiBs of information9. Note that this does not prove
that designing a self-replicating computer requires 36
KiB since there is no proof that Devore’s automaton
is the minimum. In addition, a self-replicating com-
puter in standard model physics would likely be sig-
nificantly more complicated, because of requirements
such as obtaining energy and obtaining the needed
atoms, that are absent in cellular automaton simula-
tions.

The AlphaFold program (Jumper et al., 2021;
Abramson et al., 2024), predicts protein structure,
can be used for estimating the computation power
needed for designing biological hardware. The Al-
phaFold2 program could run on a Intel Xeon W9-
3495X with 56 cores, 512 GB of RAM and 1.92 TB of
SSD storage (Exxact Corporation, 2023) which shows
that AlphaFold 2 can run on a 2.3 TFLOP/S com-
puter with 0.5 TiB of RAM. Since AlphaFold uses
a trained neural network the calculation can create
incorrect answers, so information about it does not

98 states can be described in 3 bits, so 94794*(3/8) =
35547.75
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prove this computer is sufficient for independence
gaining.

For LLM models, the compute used for training
them are on the order 1020 floating point operations
and GiB to TiB of memory. The phi-1 small model
(Gunasekar et al., 2023) used 350M parameters and
135 hours of training on an A100 GPU or about 1.3
GiB of RAM and 1.5 ∗ 1020 floating point opera-
tions.10 The LaMDA model (Thoppilan et al., 2022,
Section 10) used 3.55 ∗ 1023 floating point operations
for training a 137B parameters model or about 0.5
TiB of RAM.11

From these considerations, it seems likely that a
limit of 2 MiB (rounded down to the nearest power
of two) would be unlikely to be able to run an inde-
pendence gaining AGI. From the examination of the
state of the art, current algorithms that approximate
what would be needed for gaining independence need
storage on the order of 0.5 TiB and compute on the
order of 500 GFLOP/S.

5 Superintelligence Limits?
The amount of computational power to simulate
the approximately 100 billion neurons (and roughly
10,000 synapses per neuron) in a human brain is es-
timated to be approximately 1 exa FLOP/S (1018
FLOP/S) (Chen et al., 2019). This provides an up-
per limit for both AGI and superintelligence. Since
a human is a general intelligence, then 1 exa FLOP
of performance with enough memory for the all the
synapses (approximately 1 petabyte) would be suffi-
cient. Similarly, a superintelligence could be created
by simulating 10,000 humans, so multiply the AGI
limits by 10,000 to get 1022 FLOP/S and 1019 bytes.
This however is likely to be a overestimate of the com-
puting power needed because of the different charac-
teristics of computers versus human brains. Signals
in human neurons travel at about 60 m/s (Stetson
et al., 1992) and signal transitions take about 1 mil-

10A Nvidia-A100 GPU has a theoretical computing ability
of 312 TFLOP/S (NVIDIA Corporation, 2021) so 135 hours ∗
312 TFLOP/S ∗ 3600 seconds/hours = 151632000 TFLOP =
1.51632 ∗ 1020 FLOP. Note that this means that a computer
capable of 500 GFLOP/S could have trained the phi-1 small
model in under 10 years: 1.51632 ∗ 1020 FLOP/(10 years ∗
365 days/year ∗ 24 hours/day ∗ 3600 seconds/hour) ≈ 4.808 ∗
1011 FLOP/S

11137B parameters or 137 ∗ 109 parameters ∗
4 bytes/parameter/10244 byte/TiB = 0.4984 TiB

lisecond (Kandel et al., 2000, pg. 21). Signals in com-
puters travel at near light speed (2.0e8 m/s) and sig-
nal transitions happen on the order of 109 times per
second. This gives significant advantages for algo-
rithms that do not parallelize well. Estimating the
computing power needed to be a superintelligence
from the other direction, a human can at most do
less than 100 floating point operations per second, so
10,000 humans combined have less than 1 MFLOP
for sufficiently parallelizable algorithms and less than
100 FLOP/S for non-parallizable algorithms. Con-
sidering that most scientific, technological, engineer-
ing and mathematical tasks use calculations, to be
conservative, the superintelligence limit should be
closer to 100 FLOP/S (1e2) than 10 zetta FLOP/S
(1e22). Proving that searching is needed might be
one way to prove that there is a higher limit than
100 FLOP/S.

The brain of a fruit fly has 139,255 neurons con-
nected by 5 × 107 chemical synapses (Dorkenwald
et al., 2024). Scaling by the number of synapses
would give a simulation computational requirement
of 50 giga FLOP/S.12. This amount of computing
power is easily available today, for example, a 2010
Intel Core i7-970 can do over 70 giga FLOP/S with a
single processor (Intel Corporation, 2024). The infor-
mation about a fruit fly indicate that it is likely that
interaction with the physical world can be done with
much less processing power than humans use and also
indicate that 100 FLOP/S is likely an excessively low
limit.

A Intel 5160 processor (2 cores, 3.00 GHz) capable
of giga FLOP/S of computation was used to defeat
chess grandmasters (ChessBase, 2006) which does in-
dicate that giga FLOP/S of computing power might
be needed to match human brain search algorithms.
Note that none of these examples provides an amount
of computing power that can be used to demonstrated
that the lower limit for superintelligence is greater
than 100 FLOP/S. Using those computations as a
anchoring point, it does seem likely that 1 GFLOP/S
or more is required. Note that these are different by
a factor of 10 million, indicating the uncertainty of
these estimates.

12The simulation requirement for a single synapse in a human
brain is roughly 1000 FLOP/S so the 5 × 107 synapses could
be simulated by 5× 1010 FLOP/S (Chen et al., 2019)
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Table 1: Summary of Results
Limit Type Storage Speed
Demonstrated 64 KiB AGI 100 FLOP/S ASI
Likely 2 MiB AGI 1 GFLOP/S ASI
SotA Proxies 512 GiB 500 GFLOP/S
Upper ASI 1019 bytes 1022 FLOP/S

6 Conclusions
An independence gaining AGI can be prevented by
restricting all computers to less than 64 KiB of R/W
storage without networking. Computer simulations
and other uses of computers are very useful for solv-
ing other problems that humanity has so alterna-
tively, computers below the AGI limit can be used
without restrictions, and only run safe software on
computers above this limit. 64 KiB of R/W storage
is a useful amount computer power and systems like
the Commodore 6413, the Nintendo Entertainment
System and Arduino UNO all had 64 KiB or less
of R/W storage and these had sales figures in the
millions (Amos, 2021; Arduino Team, 2021). This
limit is however substantially below almost all mod-
ern computing systems, with the notable exceptions
of low end embedded systems14 and retro computing.

Determining the threshold computational speed
limit for a superintelligent AGI is harder and this pa-
per was not able to demonstrate a lower limit value
above 100 FLOP/S. If a higher FLOP/S limit cannot
be demonstrated, then another way to prevent super-
intelligent AGI is to limit memory at the regular AGI
limit.

Note that these are sufficient limits, but they may
be far lower than the unknown necessary limits. As
seen in Table 1 there is a large range between the
demonstrated limits and the upper ASI limits in
which the actual limits may exist.

7 Speculation and Future Work
Raising the limits from 64 KiB and 100 FLOP/S
seems possible, and would be useful future research.

13Note that a Commodore 64 with a disk drive did have
more than 64 KiB of R/W storage, but Commodore 64 could
be used with a manually operated cassette tape drive.

14For example, the PIC16F13113 chip was introduced in
2023 and has 256 bytes of RAM and 3.5 KiB of Flash (Mi-
crochip Technology Inc., 2024).

2 MiB and 1 GFLOP/S probably could be demon-
strated for the AGI and superintelligence limits, and
would allow more useful unrestricted computers. Re-
search on if and what kind of networking can be al-
lowed would be useful. Research how much Read
only, Write only and Write once/read many can be
allowed would be useful.

A 512 KiB computer with one or two 720 KiB
floppy drives, a 1200 bits/sec network connection
could be used for many things we currently use com-
puters for including GUI word processing, spread-
sheets, email, bulletin board systems, C and Mi-
croPython programming.15 Remove the network con-
nection and this is a vastly safer environment to run
AI programs that we do not fully understand.

Using high powered computers for AI research is in
some sense like using a 25 kVolt AC for experiments
before fully understanding electricity. It would be
much safer to experiment with 3 Volt DC. We need
to have a better idea what computational amounts
are low enough to be safe and which can lead to ac-
cidental AGI creation.

Lastly, there is usefulness in restrictions and reg-
ulations even if they are far above the provable lim-
its, since the danger of accidentally creating a non-
aligned independence gaining AGI increases as com-
putational power goes up.

These are my own opinions and not those of my
employer. This document may be distributed verbatim
in any media.
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