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Abstract

 In this study, the Water Quality Index (WQI) was calculated for drinking water samples collected from 
an area of Mardan district. A total of 30 water samples were collected from water distribution systems at the 
end user end. The samples were analyzed for 21 parameters namely, C, pH, EC, Do, TDS, NTU, TH, Ca, Mg, 
Na, K, SO4, NO3, Mn, Cu, Fe, Zn, Pb, Ni, Cd and Cr. Standard methods were used for the analysis of the 
physicochemical parameters while heavy and trace metals analyzed using Atomic Absorption Spectrometer. 
For the calculation of Water Quality Index, all parameters were subjected to screening using principal 
component analysis, thus reducing the original number of parameters to a final list of ten.  The final list of 
parameters was used to calculate and map WQI. Moreover, two methods of kriging Ordinary Kriging and 
Empirical Beysian Kriging were compared for their performance in modelling the spatial distribution of the 
selected parameters in the study area. It was found that EBK performance was more appropriate as compared 
to other spatial variability models for the majority of the variables. 

Keywords:  Water quality, Water quality index, Effective weights, Empirical bayesian kriging, Ordinary 
kriging, Principal component analysis.

1.  Introduction       
    
 Water is a vital natural resource, besides 
its impending scarcity owing to unplanned 
exploitat ion in third world countries 
contamination and pollution of water sources 
remain a primary concern (Azizullah, 2011). A 
large majority of the world population remain at 
risk of water-borne diseases (WHO, 2010). 
Contamination of drinking water and its 
potential health risks in different areas of 
Pakistan are extensively reported in scientific 
literature (Khan et al., 2013; Muhammad, 2010; 
Shah & Danishwar, 2003, Memon, 2011, Khan 
et al., 2013). The main causes of water 
contamination are heavy metals, agrochemicals 
and biological agents (Azizullah et al., 2011; 
Nabeela et al., 2014, Ayaz et al., 2011)  Water 
quality assessments are necessary to identify 
water contamination related issues and, 
therefore, help in the prevention of water-borne 
diseases and planning remedial measures. One 
way of presenting water quality data is the 
Water Quality Index (WQI), which takes into 
account the combined effect of all the water 
quality parameters and categorizes water 
quality samples into categories of suitability 
that are understandable to the general public 

and policymakers.  WQI is  commonly 
calculated for drinking water sources, both 
groundwater and surface water (Abdel-Satar 
et.al. 2017; Bhuiyan et al., 2016; Chaurasia et 
al., 2018; Ewaid & Abed, 2017; Kumar et. al. 
2015; Ponsadailakshmi et. al. 2018; Yousefi et 
al., 2017). It can be calculated keeping in view 
the different uses of the water such as drinking 
and irrigation purposes as well (Mora-Orozco 
et.al. 2017; Misaghi et. al. 2017). The method of 
WQI calculations may  vary and a number of 
different methods are available in the literature 
(Romanto & Wardiatno, 2015, Córdoba, 2010). 
A wide variety of studies have demonstrated the 
in tegra t ion  of  WQI wi th  geographic 
information systems to produce easy to 
understand,  legible maps of water suitability 
for different purposes (Khosravi et al., 2017; 
Şener et. al. 2017, Shahid et al. 2017, Li et al., 
2019). 

 Spatial interpolation methods such as 
kriging may come in handy for mapping the 
distribution of environmental variables (Renard 
et. al.  2005; Webster & Oliver, 2007). The 
capacity of the method has been demonstrated 
by other workers using different environmental 
variables (Robinson & Metternicht, 2006; Wu,
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2006, Khan et al., 2019). The effectiveness of 
the  various Kriging methods in mapping the 
spatial distribution of water quality parameters 
in comparison with other methods of 
interpolation has been discussed earlier in 
several studies (Arslan, 2012; Johnson et. al. 
2018; Liang et. al. 2018; Mir et. al. 2017; 
Murphy et. al. 2010; Narany et. al. 2014; Tiwari 
et. al. 2017). 

 Multivariate statistical techniques such as 
principal components analysis (PCA), Factor 
Analysis (FA) and Cluster Analysis (CA) 
remain the mainstay of studies conducted on 
drinking water contaminations. Authors 
commonly use the methods to find patterns in 
water quality data in an attempt to conduct 
source apportionment of water contaminants 
(Ahmed et al., 2019; Mohammad et. al. 2011; 
Liu et. al. 2003; Masoud, 2014; Paz-Ferreiro et. 
al. 2010; Singh et al. 2004; Viswanath et. al.  
2015, Gul et. al. 2015; Muhammad et al., 2010). 
Recently, keeping in view the ability of PCA to 
reduce the dimensionality of a dataset, it has 
been used to reduce the burden of the 
parameters for WQI calculations (Tripathi & 
Singal, 2019). PCA and other multivariate 
methods in integration with geostatistical 
techniques and water quality indices have been 
u s e d  s u c c e s s f u l l y  f o r  m a p p i n g  a n d 
characterization of water quality (Bodrud-Doza 
et al., 2016; McLeod et.al.  2017; Tao, et al. 
2016, Sahoo et. al. 2015, Liu et al. 2011) .

 The study area lies to the south of Mardan 
City, mainly consisting of rural areas and towns 
(Fig.1.). Mardan district is the second largest 
district of Khyber-Pakhtunkhwa province. 
According to the 2017 census conducted by the 
Government of Pakistan, the total population of 
the district was 2.373 million. A large fraction 
of the population (1,933,736) in the district 
resides in rural areas (Anonymous, 2017). The 
water contamination problem in the district has 
been highlighted previously by researchers, 
reporting high levels of Nitrates contamination 
in the drinking water sources (Ali & Nafees, 
2015). Ali, et. al. (2009), investigated the 
concentration of heavy metals in tap and hand 
pump water of Mardan city, they found that the 
concentrations of Pb, Cr, Cd and Ni exceed the 
permissible l imits.  Furthermore, they 
suggested that the high concentrations of the 

metals may be due to high corrosivity and 
aggressive nature of the water.

 The main aim of this study is to ascertain 
the drinking water quality status of the study 
area based on Water Quality Index (WQI) and 
find the major contributing factor to WQI 
calculations. The study also aims to compare 
the prediction performance of Ordinary 
Kriging and Empirical Bayesian Kriging for 
water quality parameters. 

2. Materials and methods

2.1.  Sampling and laboratory analysis

 A total of thirty drinking water samples 
were  col lected randomly from water 
distribution systems of the study area, mainly 
from taps and hand pumps. The sampling 
locations along with sample codes are shown in 
Figure. 1. The samples were collected without 
flushing the water, in order to collect the 
representative samples of water in the 
distribution system. Samples for physical and 
chemical parameters were collected in 1-litre 
polyethene bottles while for heavy metals 
analysis samples were preserved using HNO3 
in separate 500 ml bottles. A total of 21 
parameters namely, temperature, pH, EC, TDS, 
DO, Turbidity, Ca, Mg, Na, K, NO3, SO4, Total 
Hardness (TH), Fe, Cu, Zn, Mn, Cr, Pb, Cd and 
N i  we re  a sce r t a ined  fo r  t h i s  s t udy. 
Concentrations of Temperature pH, EC, 
Turbidity, DO and TDS were analyzed on the 
spot using portable meters. Standard methods 
were followed for the analysis of major ions and 
heavy metals in the drinking water samples in 
the laboratory by means of Perkin Elmer 
Atomic Absorption Spectrophotometer 
(Perkin-Elmer AAS).

2.2. Water quality index 

 Water Quality Index reflects the combined 
influence of the water quality parameters. 
Water Quality index calculation was carried out 
in the following steps (Sahu & Sikdar, 2008; 
Yidana & Yidana, 2010). First, the Relative 
Weights of each selected parameter was 
calculated using the following equation:
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Map of the Study area showing sample locations.Fig. 1. 

Where Wi is the relative weight of each 
parameter, wi is the assigned weight of each 
parameter and n is the number of parameters. 
Each parameter was assigned a weight (wi) 
ranging from 1 to 5 based on its importance in 
affecting the water quality for domestic and 
health purposes, whereby 1 is assigned to 
parameters with least potential effect 5 to 
parameters whose concentrations beyond a 
certain range are considered critical for health 
i.e. Cr and Cd.  Then a quality rating for each 
parameter was assigned by dividing its actual 
concentration in the water sample by its 
guidelines values recommended by the World 
Health Organization (WHO, 2004) and 
multiplying it by 100.

where qi is the quality rating, Ci is the actual 
concentration of the parameter in each water 
sample, Si is the guideline value of the 
parameter in mg/l (WHO, 2004). Calculation of 
the sub-index value (SI) is the next step in WQI 
calculation.

Where SIi is the sub-index for the ith parameter, 
qi is the quality rating of the parameter (Eq.2) 

and Wi is the relative weight (Eq.1). The water 
quality index is given by Eq.4.

Based on WQI, water samples can be divided in 
to four categories namely Excellent Water 
(<50), Good Water (50-100), Poor Water (100-
200), Very Poor Water (200-300) and 
Unsuitable for Drinking (>300) (Sahu & 
Sikdar, 2008; Yidana & Yidana, 2010).

 Further, the effective weight of each 
parameter was calculated by dividing its sub-
index value SI, by the overall water quality 
index value (WQI) and the result multiplied by 
100.

where Ewi, is the effective weight for the ith 
parameter, SI is its sub-index value and WQI is 
the overall WQI value. The effective weights 
for each parameter were defined in order to 
identify the parameter with the most influence 
on the water quality index calculation (Şener, 
et. al., 2017).
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2.2.  Selection of parameters

 Tripathi and Singal (2019), used a method 
of parameter selection based on Principal 
Component Analysis for Water Quality Index 
calculation adopted for this study. Their method 
can be summarized as:

1) Principal Component Analysis. 
2) The selection of drinking water quality 

parameters based on the contribution 
(>0.35, positive or negative) of the 
parameters in the selected components.

3) Further screening of the parameters based 
on a correlation matrix. Parameters with 
the least correlation are retained for 
further analysis. 

The Kaiser-Meyer-Olkin (KMO) test was 
conducted to ascertain the suitability of the 
dataset for conducting PCA analysis. The KMO 
test is an indicator of sampling adequacy for 
each variable utilized in the analysis and for the 
overall model. It is preferable to have a Mean 
Sampling Adequacy (MSA) closer to 1, 
whereas an MSA value less than 0.5 is generally 
considered unsuitable for carrying out PCA 
(Kaiser, 1958). The KMO test returned an MSA 
value of 0.513 for the dataset utilized in this 
study. The Bartlett test of sphericity returned a 
significance value of 2.2e-16 thus indicating 
that the correlation matrix is not an identity 
matrix and therefore, the data is suitable for 
carrying out PCA (Bartlett, 1950). 

 The main aim of the Principal Component 
Analysis (PCA) is to reduce the dimensionality 
of a multivariate data set. The method reduces 
the data into fewer components that explain 
most of the information contained in the data. It 
is recommended that the data shall be 
normalized before the application of the PCA 
technique (Reimann, et. al., 2008). Hence, the 
original dataset in this study was subjected to 
log transformation before the application of the 
PCA technique. Components were selected 
based on their eigenvalues and cumulative 
variances. For the purpose of this study, the first 
six components with eigenvalue (λ) > 1.0 
(Fig.3) were selected for further analysis as 
suggested by Kaiser (1958). The selected 
components explain about 79.48% of the 
cumulative variance as shown in the scree plot 

(Fig.4). The applications of PCA depend on a-
prioiri knowledge and its usage implies both 
heuristics and statistical techniques (Jackson, 
1993). Given the importance of pH and DO in 
water quality index calculations the method 
was applied to the screening of all parameters 
except these two. Drinking water quality 
parameters exhibiting high contributions (> 
0.35, negative or positive) among the selected 
six components (Table 1), were shortlisted for 
further screening (Tripathi and Singal, 2019). 
This resulted in the reduction of the total 
number of parameters from 21 to 11. The 11 
shortlisted parameters were EC, TDS, NTU, 
TH, Mg, SO4, Cu, Mn, Cr, Zn and Cd.  These 
parameters were then subjected to correlation 
analysis using Pearson correlation (Table. 2). 
Correlation analysis estimates the relationship 
between two variables based on their 
covariance. The correlation coefficients in a 
correlation matrix vary between -1 and +1 ( Liu, 
et. al., 2003, Reimann, et.al., 2008). The least 
correlated parameters were shortlisted while 
parameters showing significantly higher 
correlations (> 0.7) were excluded from the 
analysis. The above-mentioned criteria resulted 
in the further exclusion of parameters such as 
EC, TDS and Cu, thus leaving a final set of ten 
parameters behind i.e. pH, DO, NTU, TH, Mg, 
SO4, Mn, Cr, Zn and Cd.

2.3.  Geostatistical analysis

 K r ig ing  i s  a  popu la r  s t a t i s t i c a l 
interpolation method which estimates values of 
a random field at an unobserved location using 
samples. Kriging results are based on the spatial 
autocorrelation of variables, instead of using 
distance as the sole determinant. The method is 
based on George Matheson's “The Theory of 
Regionalized Variables” and was named after 
Diane Krige (Hengl, 2008). The spatial 
variation in this method is quantified by a semi-
v a r i o g r a m  m o d e l .  T h e  e m p i r i c a l 
semivariogram is then fitted using spatial 
variabil i ty models such as spherical , 
exponential, circular and, gaussian etc.  
Ordinary Kriging (OK), Simple Kriging (SK), 
Universal Kriging (UK), Indicator Kriging, 
Probability Kriging, Disjunctive Kriging and 
Empirical Bayesian Kriging (EBK) are 
different types of Kriging methods in use. 
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Flowchart summarizing the methodology used for parameter selection in this study.Fig. 2. 

Eigenvalues (λ) of the Components derived in this study. The first six components with 
λ > 1 (red dotted line in the graph) were selected for further analysis.

Fig. 3. 
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Table 1. Factor Loadings for Water Quality Parameters

 In this study, Ordinary Kriging (OK) and 
Empirical Bayesian Kriging (EBK) methods 
w e r e  e v a l u a t e d  f o r  p e r f o r m a n c e  i n 
interpolating water quality parameters. In OK 
the predictions are based on:

 In Eq.6.  , is the constant stationary 
function and   (s) is the spatially correlated part 
of the variation (Barnett, 2004, Hengl, 2008). 

 The spatial variability models evaluated 
in this study include Circular, Spherical, 
Exponential, Gaussian, K Bessel, J Bessel and 
Stable.
 The Empirical Bayesian Kriging (EBK) 
differs from other kriging methods in that, it 

simulates new values for input locations based 
on a semivariogram estimated from the data. 
Then a new semivariogram is developed from 
the simulated data, the weight for the 
semivariogram is calculated using Bayes rules 
(Krivoruchko, 2012).

 Geostatistical analysis were carried out in 
ArcGIS software version 10.2. 

2.4.  Exploratory data analysis

 Application of geostatistical techniques to 
environmental variables requires a normal 
distribution of the data (Webster & Oliver, 
2007). Exploratory data analysis is the 
precursor to any geostatistical analysis. It is 
carried out in order to familiarize with one's
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data and detect patterns of regularity. In other 
words, the exploratory analysis gives the 
experimental or empirical distribution and 
behaviour of the data regardless of its location 
(Kitanidis, 1997). Histograms, Normal QQ 
plots, Ogives and Boxplots are the visual aids 
for exploring the experimental or empirical 
distribution of data. In this study Histograms 
were used for exploratory analysis of the data. 
Histograms show the frequency distribution of 
the given data. It helps in the assessment of the 
location, spread and shape of the data (Peck, 
et.al., 2008). Another important characteristic 
of the data is its symmetry. Skewness 
coefficient provides a measure of the symmetry 
of the data. The skewness coefficient of 
symmetric distribution is zero. If the data 
contains many values slightly smaller than the 
mean and few values much larger than the mean 
the data is considered positively skewed, on the 
contrary, if the data contains many values 
slightly larger than the mean and few values 
much smaller than the mean then the skewness 
coefficient is negative (Kitandis, 1997). For 
strong positive skewness values (> 1) log 
transformation is suggested while for data sets 
exhibiting skewness coefficients values < 1 
square root transformation is considered 
appropriate (Webster & Oliver, 2007, Cressie, 
1992).

2.5.  Model performance evaluation

 The evaluation of the models was based 
on Mean Error (ME), Root Mean Square Error 
( R M S E ) ,  R o o t  M e a n  S q u a r e  E r r o r 
Standardized (RMSES), Mean Squared Error 
(MSE) and Average Standard Error (ASE) 
(Cressie, 1992). These metrics are expressed in 
Equations 7-11, given below:

 The most commonly used statistic for the 
comparison of the performance of the 
interpolation methods is RMSE. RMSE is a 
measure of the difference between locations 
that are known and locations that have been 
interpolated or digitized, it is useful while 
comparing different models. The smaller its 
values the better the model results. ME is the 
average difference between observed values 
and values predicted by the model, it is an 
indicator of the bias in model predictions and 
shall ideally be 0, the lower its value the lower is 
the bias in model predictions. It is suggested 
that the value of MSE shall be closer to 0 and 
that of RMSSE shall be closer to 1, a value 
greater than 1 represents underestimation in the 
model prediction while a value less than 1 may 
represent that the model is overestimating the 
variability in predictions (Johnston, 2001, 
Cressie, 1992). 

 R Studio version 3.4.3 was used for 
statistical analysis and data visualization in the 
study (R Studio Team, 2015). 

Scree plot of the first ten components showing the variance explained by 
the individual components. The first six components explain about 79.48 
% of the variance for the original dataset.

Fig. 4. 
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Biplot showing individuals and variables.Fig. 5. 

Table 2. Pearson Correlation Matrix of the shortlisted drinking water quality parameters.

3. Results and discussion

 The total number of parameters included 
in this study was 21 for 30 drinking water 
samples, which were effectively reduced to 10 
using PCA for inclusion in water quality index 
and effective weights calculations. The 
descriptive statistics of the selected water 
quality parameters are shown in table 4, the 
discussion of the whole range of parameters is 
out of the scope of the current manuscript. The 
spatial distribution of the selected parameters 
was mapped employing suitable interpolation 
methods using ArcGIS 10.2 Geostatistical 
Analyst. The interpolated surfaces were then 
utilized as an input for final WQI map, using 

Raster Calculator. 

 Two methods of spatial interpolation 
namely, Ordinary Kriging and Empirical 
Bayesian Kriging were both compared to assess 
their performance in modelling prediction 
surfaces for pH, DO, NTU, TH, Mg, SO4, Mn, 
Cr, Zn and Cd. During exploratory data analysis 
the skewness, kurtosis and outliers were also 
ascertained for all the parameters (Table 4). 
Outliers were detected in the case of NTU, Cr, 
and Zn. All parameters show different degrees 
of asymmetry, therefore attempts were made to 
achieve approximate normali ty using 
appropriate transformation methods.  Data with 
skewness coefficients between -0.5 and 0.5 are 
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considered approximately normal, whereas, 
data with skewness coefficients > 1 and < -1 are 
considered highly skewed. Generally, it is 
believed that for parameters with strong 
positive skewness (> 1) coefficient log-normal 
transformation shall be applied while 
parameters with skewness values between 0.5 
and 1, square root transformation method shall 
be used to achieve the objective of approximate 
normality . As shown in Table 4. pH, DO and 
Sulphates (skewness < 1) were subjected to 
square root transformation.  NTU, Mn, Cr and 
Cd show strong positive skewness (> 1). 
T h o u g h  i n  s u c h  a  c a s e  l o g - n o r m a l 
transformation is a preferred method, it was not 
helpful in all the cases, except Cd. In the case of 
NTU the removal of outlier value (127.5) and 
subsequent transformation using the square 
root method, helped in normalizing the data 
(skewness 0.0306). The removal of outlier 

value (0.856) for Cr helped in the reduction of 
n o n - n o r m a l i t y  o f  t h e  d a t a  a n d  n o 
transformation was needed thereafter. For Mn, 
the approximate normality was achieved only 
with the help of Boxcox transformation. Zn has 
a skewness coefficient of 0.351352 and 
satisfies the condition of approximate 
normality and therefore no transformation was 
required. 

 On the other hand, Mg and TH express 
moderate negative skewness -0.6506 and -
0.6873 and high kurtosis values 2.5862 and 
2.6506 respectively. In both cases, data was 
reflected first and then subjected to log-normal 
transformation. The non-normal distribution of 
the variables is depicted using normal 
histograms in Fig 6. A comparison of skewness 
coefficients before and after the application of 
transformation methods is shown in Table 3.
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Fig. 6. Showing the non-normal distribution of the water quality parameters included in this study.

The model prediction performance statistics for 
the water quality parameters are summarized in 
table 5. A review of the literature shows that the 
usage of these error metrics in model selection 
has differed among researchers. Though RMSE 
is the most widely used criterion for the 
selection of optimal model (Shahid et al., 2017, 
Gundogdu & Guney, 2007; Sakizadeh, 2019) 
other authors have used ME as the sole criterion 
for the purpose (Audu & Usman, 2015). 
Though it is recommended that other error 
metrics such as RMSES which is an indicator of 
overestimation or underestimation in model 
prediction results shall also be taken into 
account. For a model to be considered 
appropriate the RMSE and ASE values shall be 
closer enough (ESRI, 2019). In this study, a 
combination of the above criterion was utilized 
for the selection of an appropriate model for 
spatial variability of the selected parameters. 
For pH, the Stable model shows the lowest ME 
and RMSE values in comparison to all other 
models. However, the RMSES value for EBK is 
closer to 1, while the rest of the models have 
RMSES values significantly higher than 1 
indicating a possible underestimation in the 
prediction of variability. Further, the ASE is 
closer in value to the RMSE, this and the above-
mentioned criteria suggests that the EBK model 
predictions for pH are appropriate. Models 

performance in terms of RMSE did not show 
much variation in this study for Dissolved 
Oxygen (DO) and were closely related. The 
EBK model performance was preferred over 
other models based on the fact that it had the 
least ME and RMSES, the RMSES was closer 
to 1, also RMSE and ASE were closer as 
compared to other models. Among the OK 
models, the performance of J Bessel showed 
promising results for DO, in terms of ME and 
RMSE. Error metrics for modelling results of 
Turbidity using EBK show an overall better 
performance as compared to other models, The 
RMSES values for all OK models for NTU 
show an overestimation in spatial variability 
predictions except J Bessel. With an RMSES 
value slightly higher than 1 the results may be 
underestimated by a fraction as compared to the 
EBK, yet the overall performance of J bessel for 
Turbidity is better when it comes to the 
comparison with other OK models. In the case 
of TH, EBK show lowest ME and RMSE values 
in comparison to the OK models. OK models 
have recorded RMSES values significantly 
lower than 1, suggesting overestimation in 
results. On the contrary, RMSES value for EBK 
model is slightly higher and may suggest 
underestimation in the model results to a certain 
degree. Further, the closer values of RMSE and 
ASE suggest that EBK has performed better
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better and model results are more appropriate as 
compared to other models used in this study. 
Mg presents a case similar to that observed in 
the evaluation of model performance for TH, 
EBK in both cases outperformed all OK 
models.  Similarly, error metrics for SO4 also 
indicate EBK as the optimal model for spatial 
distribution modelling. In case of Mn, EBK has 
the highest RMSE as compared to other 
models, yet OK models show a high degree of 
underestimation in prediction results in terms 
of RMSES and least bias in terms of ME as 
compared to it. Validation results for Cr are of 
special interest, as the Exponential model has 
the lowest ME and J Bessel model has the 
lowest RMSE. EBK has the highest ME and 
RMSE in comparison to all other models, in 
contrast, it shows the lowest RMSES values. 
The RMSE and ASE values for all the models 

are far apart from each other for all the models 
evaluated. The exponential model was selected 
based on its lowest ME and the fact that its 
RMSE and ASE are relatively closer to each 
other as compared to the other models under 
evaluation. For Zn, the overall performance of 
the EBK model was considered satisfactory. 
Once again in the case of Cd, RMSE for all the 
models are closely associated, with EBK 
showing slightly higher RMSE than other 
models. However, other models were not 
considered optimal owing to the high RMSES 
values. Also, RMSE and ASE for EBK are 
closer in value thus representing good 
performance for prediction of the spatial 
variability of the parameter. The prediction 
surfaces for the water quality parameters are 
shown in figure 7 and 8. 

Fig. 7. Prediction maps of Do, NTU, pH and TH.
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Fig. 8. Prediction maps for Mn. Mg, Zn, SO4, Cd and Cr.
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 In this study, the water samples from 
water distribution system were evaluated for 
drinking water quality using the Water Quality 
Index. The Water Quality Index was calculated 
using a total of ten parameters shortlisted from 
an array of 21 parameters as described earlier 
using PCA. pH, NTU, DO, TH, Mg, SO4, Mn, 
Cr, Zn and Cd were taken into account for the 
calculation of Water Quality Index. In order to 
calculate the WQi for each sampling site the 
parameters were assigned a weight value based 
on its relative importance in impacting water 
quality and it's bearing on human health. 
Weight values vary between 1 and 5, suggesting 
the least impact and highest impact on water 
quality respectively (Yidana & Yidana, 2010, 
Varol & Davraz, 2015). Cd, Cr and Mn were 
assigned the highest weight value of 5, 
considering their importance in drinking water 
quality assessments. Trace metals in water may 
come from both geogenic and anthropogenic 
sources, their accumulation in water beyond a 
certain limit may cause various health 
problems. Cr concentration above a limit of 
0.05 mg/l in water is considered hazardous to 
public health. Similarly, Cd and Mn may cause 
several health-related issues if present in 
concentrations above the recommended limits 
proposed by WHO (2008). The main sources of 
Cd in drinking water is the zinc impurities in 
galvanized pipes and solders commonly used 

for water distribution. Mn is abundantly found 
in nature and primarily contributes to the 
drinking water sources from geogenic sources. 
Higher concentrations of Mn in drinking water 
is linked with neurological disorders. WHO 
maintains a guideline value of 0.4 mg/l for Mn. 
pH and Do were assigned wi value of 4, SO4 
was assigned a value of 3 and the lowest value 
of 2 was assigned to TH, Mg and Zn. TH and 
Mg do not have any health-based guidelines 
values, and its concentration in water is not 
considered as a health concern. The primary 
impact of Zn in water quality is its impact on 
water potability and consumer acceptability 
(Cotruvo, 2017; WHO, 2010). Relative 
Weights (Wi) were calculated for each 
parameter using Eq (1), the results for Wi 
calculations along with assigned weights and 
guideline values for each parameter are given in 
table 6. The WQI was then calculated using Eq 
(2) and Eq.(3) and (4) and the results are shown 
in Figure 9. Figure 10 shows the spatial 
distribution of WQI in the study area. The WQI 
values for the study areas range from 438.23 to 
3151.24 with a mean value of 547.51, which 
shows that all the samples analyzed in this study 
have waters classified as “unsuitable for 
drinking purposes” i.e. WQI > 300. 

 The effective weight (Ewi) for each 
parameter was calculated using Eq (5) to
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ascertain the distinct influence of water quality 
parameters on the overall WQI. The results of 
effect ive weight  calculat ions and i ts 
comparison to the relative weights of each 
parameter are shown in table 7. Cd has the 
highest mean effective weight (91.045 %) 
followed by Cr (3.8611 %), thus suggesting a 
major influence of these parameters on overall 
WQI calculations. Cd and Cr along with Mn 
also have the highest relative weights of 14.28 
% each, assigned by WQi calculations. 
Conversely, the effective weight calculated for 
Mn (0.2640 %) is far lower than Cd and Cr, 
which may be due to the lower concentration of 
Mn in water samples (Şener et al., 2017b). 
Other parameters also have similar relative 

weights whereas, their effective weights differ 
from each other showing different degrees of 
influence on overall WQI, such as pH and DO 
with a relative weight of 11.48 % show different 
mean effective weights of 1.1466 % and 
0.2866% respectively. Likewise, NTU and SO4 
have the same relative weights assigned to them 
by WQI but NTU has a higher effective weight 
of 1.3763% as compared to a value of 0.1558% 
calculated for SO4. The lowest relative weight 
of 5.7142% was calculated for TH, Mg and Zn, 
all these parameters show lower values of 
effective weights as well. Overall Zn has the 
lowest effective weight as compared to other 
parameters. In summary, Cd contributed the 
most to WQI as compared to other parameters.

Fig. 9.  Water Quality Index values calculated for sample locations in this study.

Fig. 10. Water Quality Index (WQI) map of the study area.
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4. Conclusions

 It has been observed that PCA is an 
effective method in minimizing the burden of 
pa ramete r s  fo r  Wate r  Qua l i ty  Index 
calculations. WQI show that all samples fall in 
the unsuitable for drinking category. 
Consequently, remedial measures shall be 
implemented before any use. Based on 
Effective weight calculations Cd is the major 
influencer of WQI calculations as compared to 
other parameters. The rest of the parameters in 
combination contribute only 9 % of the total to 
WQI. Empirical Bayesian Kriging was 
compared to Ordinary Kriging in this study. It 
was concluded that EBK prediction of spatial 
variability for the majority of the variables 
except Cr were fitting than spatial variability 
models tested for the OK method. For Cr 
Exponential model using OK method produced 
appropiate results.
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