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does not subsequently radiate. All possibilities probably
exist, from complete emission of the transferred energy
(subject to internal quenching of the solute molecules)
to complete nonradiative dissipation of this energy.
The behavior® of solid solutions in anthracene of
naphthacene, which emits, and acridine, which
quenches, illustrates the two extreme types of behavior.
The results shown in Table I indicate that in several
systems, where fun..<1, the solute acts partially as
an energy acceptor, partially as a quencher. This may
account for the fact that the scintillation efficiencies of
the best organic liquid and plastic solution scintillators
are only 50-709, of that of the best pure organic
crystal scintillator.!

The complexities of quenching processes are nicely
illustrated by the concentration quenching of fluore-
scent acene solutions in #-hexane.!! The concentration
quenching of solutions of benzene is consistent with
simple collisional quenching. In solutions of naph-
thalene and anthracene the concentration quenching
proceeds via an unstable excited complex, resulting
from the interaction of an excited and a nonexcited
molecule. The fluorescence efficiencies of the benzene
and anthracene solutions fall to 0 at high concentra-
tions, but that of the naphthalene solutions tends to a
value 759, of that at infinite dilution. This remarkable
effect is attributable to a contribution of the excited
naphthalene complex to the total fluorescence intensity.
Thus three simple related molecules display three
distinct types of quenching behaviour. Apart from
illustrating the pitfalls of attempting to generalize from
the particular, the unusual behavior of naphthalene at
high concentrations appears directly relevant to the

TaBLE 1. Energy transfer coefficient fumax for organic solution.

Excitation
wavelengths
Solution (mp) fmax Reference
p-terphenyl-toluene  250-265 0.48 Birks and Cameron®
p-terphenyl-toluene  220-235 0.7  Birks and Cameron®
p-terphenyl-toluene 254 ~1.0  Cohen and Weinrebb
anthracene-anisole 265 ~A0.76 Cohen and Weinrebb
TPB-polystyrene 240-270 0.5 Birks and Kuchela,®
and Birksd
DPO-polystyrene 254-265 ~0.7  Aviviand Weinreb®
DPO-styrene 254-265 ~0.4  Avivi and Weinrebe
(at 40 g/1)

PBD-anisole 230-285 ~0.94 Brown, Furst, and

(relative to PBD- (at 10 g/1) Kallmannf

dioxane)
fluoranthene-anisole  230-280 ~0.95 Brown, Furst, and

(relative to fluoran- (at 10 g/1) Kallmannf

thene-cyclohexane)
fluoranthene-anisole  240-310 ~0.66 Brown, Furst, and

(relative to fluoran- (at 20 g/1) Kallmannt

thene-cyclohexane)

& See reference 1.
b See reference 3.
¢ See reference 4.
d See reference 5.
€ See reference 6.
f See reference 7.
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studies of Kallmann, Furst, and Brown’:2 on the effect
of the addition of high concentrations of naphthalene
on the behavior of organic solutions, from which some
of their ideas are derived.

Other aspects of energy transfer—the radiative
process and the nonradiative migration and single-step
processes—have been recently discussed elsewhere.’
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Erratum: Vibrational Spectra of Primary
and Secondary Aliphatic Amines

[J. Chem. Phys. 30, 1259 (1959)]
James E. STEWART

Beckman Instruments, Inc., Fullerton, California

EQUATIONS (1) and (2) should read
2V ="ky(AR)*+kal (Ah1)*+ (Ahe)* ]+ ks (A5)?

+kel (Aar)®+(Acn)?] (1)
2V =k (AR)*+ (ARy) ]+ ka(AR?) +ks(AS)?

ke[ (Aa)?+ (Acr)?]. (2)

Erratum: Size Effect in Heterogeneous
Nucleation

[J. Chem. Phys. 29, 572 (1958) ]
N. H. FLETCHER
C.S.I.R.0., Radiophysics Laboratory, Sydney, Ausiralia

NUMERICAL error occurred in the calculation of
Fig. 5 of this paper, giving the effects of size and
surface parameter m (the cosine of the angle of contact
of ice upon the particle in water) upon nucleation
efficiency in freezing. The recalculated figure is shown
here, assuming a value of 20 erg cm™2 for the free
energy of the ice-water interface. On the basis of the
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Fi6. 5. Temperature T at which freezing occurs in 1 second on a
spherical particle of radius R suspended in water. Parameter is
m=cost.

assumptions made in the calculation, the threshold for
homogeneous nucleation is about —30°C for micron-
size drops, so that particles active only below this
temperature will not be unimportant in freezing
processes.
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HE literature on potential energy functions con-
tains a rather confusing multiplicity of empirical or
semiempirical forms and many criteria for judging
their worth.! Since fairly exact quantum-mechanical
calculation of potential curves has been practical only
for the simplest molecules, whenever accurate poten-
tials are needed the next best approaches are perhaps
those of Klein? and Rydberg? and of Dunham.*
Objections to the Klein-Rydberg method have been
based first on the supposition that its semiclassical
foundations rendered it invalid at low vibrational
quantum numbers, and secondly, on recognition of
approximate results due to its graphical nature.® The
latter shortcoming was eliminated by the analytical
treatment of Rees.® In the present work, Rees’ formu-
lation has been generalized and, except for cases where
only two vibrational constants are known or higher
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order constants are insignificant, considerably simpli-
fied for computation. Also, the first objection has been
removed by showing that the Klein-Rydberg potential
is identical to Dunham’s first approximation which is
accepted as accurate near the potential minimum.

A known progression of vibrational energy levels is
assumed to be adequately represented by a polynomial
in V=v+44, with the degree unrestricted except by
availability of experimental measurements. Notation
throughout for both vibrational and rotational data is
conventional” The Klein-Rydberg-Rees method with
modifications then vields the following simple formula
for the classical turning points 712 in terms of V:

r1.2(V)/r.=14+(2B,/w.+a./3B)V
“++(10kB,/3w,— 2B 2/ w2 — 201,/ 3w,
+kao/45 Bt/ 6B —4y./15B.) V*
4-{Bo/w 256F/45-22m/ 5420t/ o |— 20k B2/ 3052
F4B /b~ oo/ we 52k/45+0e/ 9B J+a./Be
<[3272/945—m/21—4v,/15B, ]+ ka 2/A5B 2
+ 5.’ /S4B 3+ 8o/ 15w, — 8ky./315 B Vit + o -
£ 2Bl W 14 (Sk/6) V(432 /40— 11m/10) V2
4 (177k3/112—81km/28+93n/T0) V3], (1)

where 7,=equilibrium internuclear separation, k=
WOe/ ey M=V w0, and #=wz,/w.. Coefficients are
available to V¥2 by making use of four vibrational
and three rotational ‘constants.” Equation (1) is very
easily applied because certain ratios of spectroscopic
constants occur repetitively and convergence is rapid,
more so for heavy than for light molecules. Terms in
V and V4, for example, have coefficients ~5X10~% and
41070, respectively, for Ng, X 12+, and ~2X10-2
and 6X1077 for OH, X I,. Equation (1) can also be
employed formally for nonintegral », and thus the
potential curve can be interpolated in a consistent
manner between observed energy levels. This repre-
sentation is not generally valid near the dissociation
limit however, in fact cannot safely be used outside
the range of energy levels from which the spectro-
scopic constants were derived.

The widely used Morse function can easily be ex-
panded in the form of Eq. (1). In short, this procedure
shows that if the vibrational energy is adequately de-
scribed by a two-constant formula, and if experimental
values of the rotational constants happen to agree with
those implied by the Morse potential,*® then that
function is identical with (1). In practice the latter
proviso is seldom satisfied exactly but sometimes to a
good approximation. Thus the Morse curve may oc-
casionally be very close to the ‘true” potential. Left-
hand turning points for Ny, X 'Z,*, derived from (1)
and from the Morse function (dissociation energy
wl/4wx,) are, respectively, 1.051(4) and 1.051(2) A
at =0, and 0.906 and 0.902 A at v=16. Similarly,
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