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mum, is given by

dn/87'= (8 cosh™V3/35/4) (1—7)~%. (C8)
We have here also that the normalized activation energy
and the normalized width are functions only of 7, the
normalized stress; Uxn/E, and dy/87! are plotted in
I'igs. 12 and 13, respectively.

(3) Fisher. The formula for the activation energy Up
derived by Fisher can be written

Up= (u*/ab)f(R), (C9)
where
f(R)=cos'R—R(1—R?)?}, (C10)
and
R=1—"Uy/ubd. (C11)
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In general R~1, and we can write
JR~=B20-R) B,

and, therefore,

(C12)

Up/Ee~2/r. (C13)

This last equation is exactly what is obtained at Jow
stresses using the triangle force and taking p=7% [cf.
Eq. (4.8)]. In Fisher’s model the activation half-width
(corresponding to x,) is dr, the half-width of line to be
unpinned. This can be written as

dp/07 = (uf/ab)T (Uo/ub)(2— Uo/ub) P=~3/7. (C14)

This is the same result [cf. Eq. (4.6)] obtained at low
stresses for 6x, in the triangle force approximation with

p=t.

JOURNAL OF APPLIED PHYSICS

VOLUME 35, NUMBER 1

JANUARY 1964

Crystal Interfaces™

N. H. FLETCHER
Department of Physics, The University of New England, Armidale, N. S. W., Australia
(Received 11 July 1963; in final form 21 August 1963)

An expression for the energy of an interface of general form between two crystals of arbitrary structures
and relative orientations is derived in a form suitable for a variational calculation. This variational approach
is applied to a one-dimensional interface between two two-dimensional crystals of differing lattice con-
stants. In general there is a minimum in the interfacial energy when the lattice distances in the two crystals
are in the ratio of small integers. Particular cases in which the surface potential is either sinusoidal or
parabolic are discussed and detailed curves of interfacial energy as a function of lattice misfit are calculated.

INTRODUCTION

OR many problems in crystal physics a detailed
knowledge of the energy of the interface between
two crystalline phases is of great importance. Consider-
ation of the most general type of interface is very
complicated because of the variety of crystal structures
and relative orientations.! It is possible, however, to go
some way in the formulation of a general theory of
interfacial energy, though resort must be had either to
numerical methods or to the consideration of specially
simple cases if explicit results are required.

The energy of crystal interfaces has been discussed
recently by van der Merwe,? extending earlier work by
the same author.® His approach was to consider first the
elastic stresses at the boundary of two two-dimensional
crystals meeting at a one-dimensional boundary, for

* This work is supported by the Australian C.S.I.R.O., and by
the Atmospheric Science Program of the U. S. National Science
Foundation under Grant G19677.

1S, Amelinckx and W. Dekeyser in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press, Inc., New York,
1959), Vol. 8, p. 327.

 J. H. van der Merwe, J. Appl. Phys. 34, 117, 123 (1963).
(lsg.)H. van der Merwe, Proc. Phys. Soc. (London) A63, 616
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the case of small misfits, and then to extend the analysis
to three-dimensional crystals by considering the array
of dislocations at the interface. The mathematical
model used appears to give elegant and accurate results
but, as we shall see later, their range of applicability
is confined to quite small misfits between the two
lattices.

In many physical problems involving molecular
solids the range of lattice parameters may be great
and it is of interest to have estimates of interfacial
energies over wide misfit ranges and particularly for
simple lattice parameter ratios like 2:1 which one
might expect to correspond to minima in the misfit
energy.

It is the purpose of this paper to discuss the inter-
facial energy for some simple cases using a mathe-
matical treatment, rather different from that of van der
Merwe, which is better able to treat cases where the
misfit between the two crystal lattices is large.

GENERAL INTERFACES

Consider a plane, low-index face of a simple crystal
upon which a single atom or molecule of another
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substance is adsorbed at zero absolute temperature.
The potential energy of this molecule at a point r can
be expressed as a two-dimensional Fourier series

|4 (r):Z Vkeik.ra (1)
k

where the vectors k belong to the reciprocal lattice of
the surface.

Now suppose that instead of a single adsorbed
molecule, a semi-infinite crystal with a plane low-index
face is brought into contact with the crystalline sub-
strate. Ignoring for the moment any possible elastic
distortions of the two structures near the interface, the
total interface energy from the point of view of the
overgrowing crystal can be written.

Ey=20 2. Ve ™, @

0 k

where the ry are the undisturbed molecular positions at
the interface. Equation (2) represents an approximation

"in that possible displacements normal to the surface
have been neglected in defining the Fourier coefficients
Vy in (1). This can be remedied by a slight change in
the definition, which is not important. More importantly
however we have neglected the effect of possible
molecular orientation constraints in the crystal. This
may easily give 'y values very different from those
found with a single molecule, free to rotate, and must be
taken account of in determining the Vy.

The physical situation is now, however, quite
symmetrical between the substrate and the overgrowth
so that the interface energy from the viewpoint of the
substrate molecules is

E=5 % Vile' ®

ro’ k’

where ro’ are the molecular positions in the substrate
and K’ are the reciprocal surface lattice vectors of the
overgrowth. The total interface energy is clearly
3(E1+ E,) since all interactions are counted twice if (2)
and (3) are summed.

In the most general interface problem we have two
crystals of differing structure and with arbitrary
relative orientations at the interface. For our treatment
it is necessary to impose some restriction on the relative
orientations and lattice parameters of the two crystals
so that there exists, in the interface, a two-dimensional
superlattice of atomic positions common, except for a
possible small translation, to the substrate and the
overgrowth. For two crystals of arbitrary structure
and orientation such a superlattice can be generated as
follows. The interface plane of each crystal has a simple
two-dimensional lattice, and, by a simple translation,
a lattice point of one lattice can be brought into
coincidence with a point of the other. In general there
are no other coincident lattice points but, in a large
enough area of interface, there are always pairs of
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lattice points arbitrarily close to coincidence. Two pairs
of points can then be brought to coincidence by a very
small rotation or a very small change in the lattice
parameters of one crystal, or both, and by continuity
the effect on the interface energy can be made arbi-
trarily small. The vectors joining the two pairs of
coinciding lattice points to the origin are now vectors of
the superlattice and the adjustment which brought
these pairs of points to coincidence has at the same
time created coincidences at all other points of the
superlattice.

This artifice excludes no physically important possi-
bilities. For a one-dimensional interface, for example, it
merely requires that the lattice parameters of the two
crystals be in rational rather than irrational ratio.
Mathematically however it reduces the number of
possible cases from a nondenumerable to a denumerable
infinity and allows the use of Fourier series instead of
Fourier integrals.

The possibility of elastic strain of the two lattices
may now be admitted, since in this way it may be
possible to lower the misfit energy. Whatever these
strains they must be periodic in the superlattice, so that
they can be expressed as the sum of two Fourier series
in terms of K| the reciprocal vectors of the superlattice.
One of these series represents displacements in the
direction of the corresponding K and the other takes
account of displacement perpendicular to it but still
in the plane of the interface.

Since stresses across the interface must vanish, the
elastic distortions must be in inverse ratio to some
elastic modulus N of the crystal on either side of the
interface, and of opposite sign. Thus a molecule of the
overlay initially at position r is displaced to

1 1
r=ro+- 3 Dge®ro4- 3 Dyleiro, (1)
AKX A K

where A is the appropriate elastic modulus of the
overlay and Dg, D¢’ are displacement vectors, respec-
tively parallel and perpendicular to K. Note that the
term K=01is to be included in the summation as corre-
sponding to uniform displacement without distortion.
In an exactly similar way we have, for the substrate,

1 1
= ro'—— Z Dxe“"“"—— Z Dx'eix'ml. (5)
X

Nk N

Now in Egs. (2) and (3) not only have the molecular
coordinates been displaced, but also those of the
potential, and these have additive effects. Thus (2)
becomes

1 1
E1= Z Z Vk eXpik' [r0+ <—+——>
T k AN

x§<DK+DK'>e@‘K~m], (6)
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X }; (DK—!—DK’)e"K""':I. (7)

while (3) becomes

Es=%.% V' expik’s

g’ Kk’

Inboth (6) and (7) the summations over rq and ry’ may
conveniently extend over one cell of the superlattice
with appropriate fractional contributions from mole-
cules on edges or corners. Both E; and E; can then be
divided by the area .S of this cell so that the interface
misfit energy per unit area is

E,= (E1+E,)/2S. ®)

Since, however, the crystals are distorted at the
interface there is an elastic strain energy which must
be included in the total interface energy. If both
substrate and overlay are semi-infinite slabs then it is
shown in standard texts on elasticity* that periodic
elastic stresses and strains fall off exponentially away
from the free surface in the same way as the displace-
ments, that is,

Dk (z)=Dx(0) exp(—Kz), ©)
where z is distance from the interface and K is the
magnitude of K.

Thus, if x is measured parallel to K, the strain energy
in the semi-infinite overlay due to the mode Dx is
obtained by integrating half the product of stress and
strain throughout the volume involved, which yields,
per unit area of interface,

2r/K

/ / A 1K2Dy? cos?Kx

-exp(—2Kz)dxdz= g—sz, (10)
A

so that the total elastic strain energy per unit area is
i1 1
Ee=—<—+——) S KDe+De). ()
8\ N/ k

The complete expression for the interfacial energy is
thus

E=En+E, (12)
1 2rsm
E=— Z > Va (os[ I:(m—l—l)b—l—/l > D, sin
2Mb m=1 n
1
— Z > V. cos
_/\a m=1 n

where we have wrilten A for [(1/X)-+(1/N) .

2mn 2wsm TA
{ ;3 [(m+ $a—A3Y D,sin v ]}-}——Z sD2,
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which can be written in detail using (6), (7), (8), and
(11).

This expression (12) gives the interfacial energy in a
form suitable for a variational calculation. It is clear
that for the equilibrium state of the interface the energy
E is a minimum under variation of the parameters
Dy, and this may be made a basis for the evaluation
of E by either a numerical or a quasianalytical process.

ONE-DIMENSIONAL INTERFACES

The variational expression (12) is sufficiently general
to allow the calculation of the energy of any interface
once the surface potentials are known. This is, however,
a rather laborious calculation for a general case and best
performed by numerical methods.

To illustrate the use of this variational approach and
show the sort of detailed information which can be
drawn from it we apply it to consideration of the simple
case of the energy of the one-dimensional interface
between two iwo-dimensional crystals of differing
lattice parameters. For mathematical simplicity we
further suppose that the crystals consist of atoms of one
type or of symmetrical molecules so that the surface
potential can be expanded in a cosine series. Inclusion
of antisymmetric terms would not be expected to
modify the results in general form, though they would,
of course, introduce quantitative changes.

Let the substrate have lattice spacing @ and the
overlay b, along the direction of the interface, and
suppose that

(13)

where NV and M are integers with no common factor.
Equation (13) then defines the superlattice, and the
various lattice and reciprocal lattice vectors are simply
the numbers

ro=(m+3)b; 1= (m+3)a;
k=2mn/a; kK =2zn/b; K=2rs/Na,

where m, n, and s are integers. The half-integral dis-
placements in 7o and 7o’ correspond to the physical
situation in which the potential minima are midway
between the atoms, as in a close-packed structure.

In this two-dimensional problem clearly only the
parallel displacements Dk occur, and the total interface
energy per unit length can be written

Na=Mb,

(14)

ll

(15)

/ 4Naq =

4 I. 5. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hill Book Company, Inc., New York, 1956), p. 342.
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Because (15) is a variational expression, an upper
bound can be found to the energy by making an arbi-
trary choice of the variational parameters D,. Useful
information can be obtained in this way by the choice

Dy=Nae/A=Mbe/A; D,=0, s>1,  (16)

corresponding to a misit interface with no elastic
strain, which gives
35 Vo Lo v
= — cos{—[ (m Nae
2Mb m=1 n [

1

ZZV cos{——~[(m+2)a Mbe]} an

27\’a m=1 n

On summing over m as indicated, the only terms
remaining in the first summation are those for which

nb/a=nN/M=k, (18)

where % is an integer. Each such m term contributes
V. cosm(k+2Mke) to the sum. A similar result applies
for the second summation when

na/b=nM/N=F (19)

and, using (13), the contribution of each m term is
V' cosw(k+2Nke). Since N and M have no common
factor the resonance conditions (18) and (19) exclude

E=E'—
a

xA
+——-3 Z nV,'D, Z {cos[ 2xm(nM — s)/’V]—cos[21rm(nM+s)/N:]}-I-—— Z sD2.

2Nab =

The elastic distortion term involving D, is only able
to lower the energy E when one of the subsidiary
resonance conditions

(nNExs)/M=k
or (22)
(nM+£s)/N=F

is fulfilled, % being an integer. From the physics of the
problem, since the lattice consists of discrete atoms s is
restricted to be less than NV or M, respectively, in these
two expressions. Thus either

[EMEN|/nN<1 or |[kNEM|/nM<1, (23)

respectively. When the relevant one of (22) is satisfied
summation over 7 gives a nonzero result and

w4
E=FEd4——3 3 [nV.Djarani— 1V Dyxnenar |
za.b n ok
_|_~__._z 2 CIEM —nN|Dygsrnn)®

4/Va n k
+EN—nMDyv_n%], (24)
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all terms except those for which n=Mk or n=Nk.
Thus

1
E'=—3" Vi cosm(k+2Mke)
2b &

1
+—> Vi cosw(k+2Nke).

a,k

(20)

Simple minimization with respect to e then yields a
best value for £’

This result already provides useful information. For
most physical situations the Fourier components V,
and V,  of the surface potential decrease rapidly after
the first few terms. Equation (20), therefore, shows
that the interfacial energy has minima when either N
or M or both are small integers. We thus conclude that
the misfit energy has minima when the lattice constants
of the two crystals are in simple ratio.

The choice of variational parameters made in (16)
corresponds to an interface with no elastic strain. For a
more general result in the regions not too close to these
primary resonance minima we suppose that the displace-
ment amplitudes AD, are small so that trigonometric
functions depending on them can be approximated by
the first term in their series expansion. Then (15) can
be written, after some manipulation, in the approximate
form

>3 aV,.D, AZI {cos[ 2zxm(nN—s)/M ]—cos[ 2zxm(nN+s)/M ]}

(21)

the & summations being restricted so that (23) are
satisfied. This expression can now be minimized with
respect to the various D, giving

Dkt =TF (Vo/b)(nN/ | kM —nN|) (25)
with a similar result for D|xy_nar, and
wA n!
E=E——3" [— P
4ab v ~ Lb  |[EM—nN|
7
+-V,2 :l (26)
a |EN—nM|

From (26) it is clear that the double sum has energy
minima whenever [kM—nN| or |kN—nM| vanish.
These minima occur for the same M/N ratios as do
the minima in E’. It is no longer true, however, that
(26) represents an upper bound to the energy since (21)
was derived on the assumption that 4D, was small
compared to @ or b and this is clearly not satisfied near
a resonance, as seen from (25). The result (26) is,
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MISFIT  RATIO  b/a

Fic. 1. Various approximations and their summation in calcu-
lation of interface energy near a resonance minimum. @ E’ from
(20); ——— E from (33); —-—- E from (26) with resonant term
omitted; ———~ E due to resonant term in (26); best
approximation to total energy.

however, a valid approximation as an upper bound,
except close to major resonances, providing any D,
which are of large value are simply arbitrarily set equal
to zero.

Very near to a major resonance a different approach
must be adopted. Physically, near the fundamental
(1,1) resonance, we expect to be able to describe the
interface in terms of a dislocation model—large regions
of almost perfect fit separated by small regions, the
dislocations, in which the fit is very bad. A variational
model may be based on this picture for the more
general resonances which are considered here.

Suppose that the first of the conditions (22) is
satisfied with V and M large and s= s, a small integer,
corresponding to a condition near resonance. Referring
to (15), let us choose the D, in such a way that

2esm  asom
AY D,sin = +Nae (27)
8 M n
in the region —M/2sq<m<M/2s,, with similar

“sawtooth” behavior in neighboring regions. Clearly
(27) involves only terms with s a multiple of the
fundamental so. The assumption (27) leads to a behavior
in which the two lattices are coherent over most of the
interface, with dislocations spaced at equal distances
Mb/S().

Substituting (27) into (15), using (13) to simplify the
second summation, and comparing the result with (17)
we find

S()E”

Na

TA
+— Z S(]leot2,
4Na ¢

E=FEgp'+ (28)

where Ej’ is the value of E’ exactly at the resonance
considered and E" is the misfit energy of a single
dislocation. The last term takes account of the elastic
strain energy associated with the dislocations. Since
each dislocation involves misfit over only a spacing
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a/n or b/k, an upper bound to E” is given approxi-
mately by

E'"S—2Eg'a/n. (29)
Now to satisfy (27) we require
Do=Nae/A; Duy=(—1)"a/ndtr  (30)

so that the series in (28) diverges. However it is
legitimate to truncate this series so that

t<ME/2s0=nN/2| kM —nN | (31)

since the dislocation is not localized to less than a
distance b/k. An approximate value for this truncated
series for moderately large T is

T

Y F'=In(37/2)

t=1

(32)

so that we can write finally
| kM —nN
nN

E=Egp'+

a 3nN
X[ ln( >——2ER’:|. (33)
47nA 4| kM —nN|

This value of E is also an upper bound to the inter-
facial energy.

It can be seen from (33) that E reduces simply
to Ez’ as an upper bound at the resonance in agreement
with (20). For lattice ratios departing only slightly
from resonance (33) implies an approximately linear
increase of interfacial energy with the misfit,
kM —nN|/nN. This is to be expected since the number
of dislocations increases linearly with misfit and, for
large dislocation spacings, the interaction between the
dislocation strain fields is small.

With the aid of the approximate results and upper
bounds (20), (26), and (33), a reasonable approximation
to the interfacial energy at any degree of misfit can be
constructed. The expression (33), together with (20),
gives an upper limit to energy near a major resonance,
and a good approximation to the energy can be obtained
by adding the ‘“background” contribution from (26)
with the major resonance term omitted. In the wings
of the resonance minimum the complete expression
(26) is a better approximation to the energy. This
procedure is illustrated schematically in Fig. 1 for the
case of a moderately prominent resonance minimum.

SPECIFIC EXAMPLES

It is helpful now to consider the one-dimensional
case for two specific assumed potentials—sinusoidal and
parabolic—both of which have been discussed by other
authors.?® The sinusoidal potential is particularly
simple, having only one Fourier component, while the
parabolic potential is a physically reasonable example of
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a potential with a complete set of Fourier components.
In the course of the calculation we assume that the
lattice parameter ¢ is kept fixed while b is varied.

Some additional assumption must be made about the
elastic moduli A and N. They might conveniently be
assigned arbitrary values, but it is perhaps more
reasonable physically to relate them to the potentials
V and V’'. We make the assumptions that the inter-
actions between atoms of both crystals are similar so
that V,’=V,, and that the atoms of each crystal are
arranged on simple close-packed lattices with param-
eters @ and b, respectively. Consideration of small shear
distortions then shows that

N?=Nb=—4r’B Y n*V,, (34)

where B is a constant of order unity which we arbi-
trarily set equal to 2 for this calculation.
For the sinusoidal potential we let

Vi==15 (35)

so that
A= (a®48%)/8xV. (36)

The expression (20) for E’ is easily minimized with
e=7% giving

E'=—V/a,
E'=—V/2a,

E'=—"/2ka,

b=a;

a=kb.

b=ka;
(37

The approximations (26) and (33) are readily calcu-
lated and the full result is shown in Fig. 2. It can be
seen that the behavior of interfacial energy near the
fundamental (1,1) resonance is very similar to that
calculated by van der Merwe?? but that important
subsidiary minima occur at d=a/2 and b=2a. The
asymmetry between these two resonances is due to the
fact that & is varied, and with it the elastic constant
A, while ¢ is held fixed.

-0.2
7N
"V
B -0.4
§ V/V“\ /
\l/
: -0.8

04 06 08 10 1.2 14 16 1.8 20
MISFIT  RATIO  b/a

Fic. 2. Interface energy in units of ¥ /a for a sinusoidal potential
of amplitude V. The lattice spacing @ remains constant while  is
varied. Elastic coefficients vary with lattice spacing under the
assumption that the interaction potential V remains constant.
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F1c. 3. Interface energy in units of V/a for a parabolic potential,
the amplitude of whose first Fourier component is V. The lattice
spacing ¢ remains constant while 4 is varied. Elastic coefficients
vary with lattice spacing under the assumption that the inter-
action potential V remains constant. The subsidiary minima in
the interface energy occur for lattice spacings which are in the
ratio of two small integers.

In the case of a parabolic potential all Fourier
components exist and we can write

Vo=0; Vu=(—1)mV, n>1. (38)

The series (34) does not converge, but direct calculation
gives A
A= (a®4-*)/4n?V. (39)
The value of € required to minimize (20) is no longer
obvious but the choice e=% again appears to minimize
E’ and certainly yields a valid upper bound. With this
choice E’ can be evaluated in terms of a Riemann zeta
function,® giving

V (M+N) (M+N) v~
=3 (- D= —0411——— — (40)

2¢ N?M & NM e

from which it is clear that energy minima exist when-
ever both NV and M are small integers. The approxi-
mations (26) and (33) are again readily calculated and
the result is shown in Fig. 3.

Examination of this figure shows that the subsidiary
minima, which are missed by the analysis of van der
Merwe, form an important part of the complete
picture. The interface energy has a more complicated
behavior than for a sinusoidal potential because of
resonances involving higher Fourier components of the
potential. The resonance minima are broader than for
the sinusoidal case because of the smaller values of the
elastic parameters A and \'.

El

DISCUSSION

The variational approach which has been presented
allows energy calculations to be made for a wide variety
of interface problems. A particular virtue of the
approach is that it takes account automatically both

8 E. Jahnke and F. Emde, Tables of Functions (Dover Publi-
cations, Inc., New York, 1945), pp. 269-274.
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of crystal symmetry and of the detailed form of the
surface potential.

Application of the variational method to simple
one-dimensional problems shows that by its use many
finer details of interface behavior, such as the sub-
sidiary minima for parabolic potentials, are clearly
brought out. The present theory would also take account
of symmetry effects in calculation of the energy of the
interface between two three-dimensional crystals
rotated relative to one another about an axis normal to
the interface and give a set of cusped energy minima. A
related two-dimensional problem was in fact considered
some time ago from the. viewpoint of a dislocation
model by Read and Shockley® who discussed also the
cxistence of cusped energy minima at particular
orientations. These minima are of importance in the
theory of oriented crystal overgrowths.

From the form of (33) it can be seen that the width
of an individual resonance minimum is proportional to
the elastic parameter 4, that is, to (\X\")/AN. Thus
if one of the crystals has a very small shear modulus
the width of the peaks becomes very great and the
over-all interfacial energy is lowered.

6 W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).
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It is possible, with little complication, to exte
analysis to cover cases where the thickness of onex_ -.
both crystals is finite. This extension follows the
method of van der Merwe? and involves simply a
modification to the form of the elastic strain terms’in
(9) and (10). If the thickness of each crystal is greater
than a characteristic length of the superlattice then the
correction terms are negligible. For crystals of smaller
thickness the interfacial energy is reduced by the
correction terms. .

Finally it should be noted that in many problems
it is the free energy rather than simply the energy of the
interface which is important. This is always a consider-
ation in systems at a ¥ ite temperature, but for
“ordinary” materials well below their melting points
the correction is not usually large. In some highly
bonded molecular crystals of unusual structure how-
ever, such as ice, the configurational entropy term may
be of considerable importance if the other crystal of the
pair tends to impose molecular orientations at the
interface.” In such a case the entropy contribution to the
free energy must be added to the energy term which
has been the subject of the present calculation.

7 N. H. Fletcher, J. Chem. Phys. 30, 1476 (1959).

JOURNAL OF APPLIED PHYSICS

VOLUME 35,

NUMBER 1 JANUARY 1964

Mechanism of Gold Diffusion into Silicon

W. R. Wircox
Aerospace Corporation, El Segundo, California

AND

T. J. LACHAPELLE
Pacific Semiconductors, Incorporated, Lawndale, California
(Received 14 June 1963)

Gold was found to diffuse into silicon by a complex mechanism involving a vacancy-controlled interstitial-
substitutional equilibrium. This led to very complex diffusion concentration profiles. In analyzing the
problem, a new experimental value was found for the self-diffusion coefficient of silicon, 1.81X10*
exp(—1124-20 kcal/RT) cm?/sec, which compared very favorably with previous data on diffusion of bis-
muth, germanium, and tin in silicon. The interstitial gold-diffusion coefficient was found to he 2.4X10™*
exp(—8.942kcal/RT), the substitutional gold-diffusion coefficient to be 2.75X 1073 exp (—47410kcal/RT),
the equilibrium-interstitial gold solubility to be 5.95X10%* exp(—58=10 kcal/RT), and the equilibrium-
substitutional gold solubility (Collin’s data) below 1200°C to he 8.15X 102 exp(—40.6 kcal/RT).

I. INTRODUCTION

OLD conveniently furnishes recombination centers
in silicon.’=® Because of this, gold has been
deliberately diffused into silicon to make high-speed
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semiconductor devices. The diffusion of gold into silicon
was first studied in detail by Struthers using radio-
tracers.® The diffusion coefficients measured gave a good
Arrhenius plot from 800° to 1200°C to yield D=0.011
Xexp(—25 800/RT). More recent work, however, has
indicated that gold diffuses into silicon at a much slower
rate.”8 Limited evidence that the diffusion may be

(155]7. D. Struthers, J. Appl. Phys. 27, 1560 (1956); 28, 516
957). ‘
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