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Synopsis: The general principles governing the structure and energy
of crystal interfaces are reviewed, particular emphasis being laid
upon the coincidence lattice and O-lattice concepts, on models
involving dislocation grids and on variationa] calculations. Im-
portant common ground between these different approaches is
pointed out and the generally agreed features of the structure of
simple intercrystalline boundaries are summarized.

1 Introduction

Most practical applications of solid materials involve polycrystalline
aggregates, rather than large single crystals. In some cases the individual
grains in such an aggregate are chemically and crystallographically
similar, but often this is not so and the variety of combinations en-
countered is enormous. Many physical properties, like density or specific
heat, depend relatively little upon such structural details but others, like
certain mechanical properties, are critically affected by grain size, purity,
etc.

For this reason if no other it is important that we should have as good
an understanding as possible of the properties of intercrystalline boundaries
and one of the first steps to be taken is to study theoretically the very
simplest kinds of ‘boundary—those between two simple, pure and mutually
insoluble crystals. Only against such a background can more complex
situations usefully be discussed.

This paper aims to survey some of the general prlnClples which guide
such studies and to set out some of the main conclusions which have so
far been reached. The emphasis will be on structure and energy, since
these are the two most fundamental aspects involved. We shall not attempt
to survey any of the other properties of interfaces, since Amelinckx and
Dekeyser [1] have given an authoritative review of work before 1959 and
the collected papers of the present Conference will brmg the account up
to date.

2 General Principles

The structure achieved by a crystalhne interface is governed by the
general principle that adjustments will occur until the free energy of the
system is a minimum. This is indeed a powerful approach to the problem,

Manuscript received 6 December 1968.




2 INTERFACES

as we shall see later, but we must recognize at the outset that the minimum
attained is not generally absolute but rather a conditional minimym
subject to certain constraints placed upon the system as a whole. This
means that the sort of interface we may find in practice will generally
depend to some extent upon the nature and history of the larger system
of which it forms a part.

To be more explicit, suppose we cleave an ionic crystal at room tempera-
ture and then evaporate onto it a layer of pure metal. The metal atoms are
moderately free to take up their configuration of lowest free energy but,
at ordinary temperatures, the ionic substrate is immobile and cannot
adjust its configuration except for minor elastic strain. On the other hand,
suppose we examine the solidification of a eutectic alloy or of a pure metal;
as two crystallites grow together their relative orientations remain fixed
but the location and orientation of the grain boundary is a disposable
parameter, which may even change by solid-state diffusion after solidifica-
tion has occurred. We cannot, therefore, hope to develop models com-
pletely suitable for all occasions but must ask, in each case, the nature of
the relevant constraints. ’

3 The Coincidence Lattice

A most useful concept in the treatment of intercrystalline boundaries is
that of the coincidence lattice, the geometrical basis of which has been
discussed by Ranganathan [2], following a method put forward by Frank
in 1958.

The idea is simple. Suppose we have two crystals of given structure and
relative orientation and let their lattices interpenetrate to fill all space,
as illustrated for a two-dimensional case in Fig. 1. Then if we bring a
lattice point of one crystal into coincidence with a lattice point of the
other, as at O in Fig. 1, we will in general generate a whole three-
dimensional array of such coincidences which we may call the coincidence
lattice for the problem. A unit cell of this coincidence lattice is shown as
OABC in Fig. 1. (Strictly speaking, the set of cases for which a coincidence
lattice of finite size exists has measure zero relative to the set of possible
lattices and orientations. However, there always exists such a finite case
arbitrarily close to any given configuration so that, from continuity
arguments, we may always treat instead this finite case.)

The degree of matching between the two crystals can be measured by
the density ‘of coincidence lattice sites relative to lattice sites in the indi-
vidual lattices. The possibilities in the general case are NUIETOUs, but
systematic relations exist when the two crystal lattices are identical [2].
If ¥ is the reciprocal density of coincidence lattice sites, then Friedel [3]
has shown that 3 has only odd values for the cubic system, %=1 corres-
ponding to exact coincidence and %=3 to the simplest twin relationship
between the two crystals.

If the orientations of the two crystals are fixed but the position of the
boundary is determined by energy considerations, then it is clear that it
will lie along a closely packed plane of the coincidence lattice. If for some
reason the boundary is constrained so that it must make a small angle to
this plane, then one would expect the boundary to be stepped [4]. These
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factors should be most important for determining boundary direction
when X is small (say X <20), for then the most closely packed plane of
the coincidence lattice will contain a fairly large density of lattice points.
If T is large then other factors may become increasingly important. In
particular, since small values of X are bordered by very large values, we
might expect some sort of near-coincidence phenomenon in such a case,
and indeed, as we shall see later, this does occur [5].

O o o © o o o o

Fig. 1.—The coincidence lattice formed by interpenetration of two different crystals.
OABC . . . are points of this coincidence lattice. The linear transformation relating the
two lattices is shown at the right.

The coincidence lattice concept is also fruitful in discussion of the growth
of one crystal upon a substrate surface provided by another, as in the
formation of epitaxial films. Here the boundary direction is not a dispos-
able parameter, but only the orientation of the growing crystal. We can
immediately state that the orientation giving minimum interface energy,
and therefore the one which will be favoured in normal growth, will be
that which gives a maximum density of coincidence lattice sites in the
boundary.
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For a pair of arbitrary real crystals it is, of course, impossible to produce
a rigorous coincidence lattice of finite size, but we have already remarked
that, by a very small change in the parameters involved, this can generally
be accomplished. By continuity arguments then, the real situation will
differ very little from this adjusted model and we can make predictions
about preferred growth orientations and epitaxial relations. In the next
section we shall return to consider these deviations from-exact matching
in greater detail. ‘

Recently Bollman [6] has extended the comcept &f the coincidence
lattice to a mew sort of lattice relation between two interpenetrating
structures which he terms the O-lattice. For a wide class of pairs of
lattices having a common point like O in Fig. 1, we can regard each
point 1’ of one lattice as having been derived from a point r of the other
lattice by a linear transformation L referred to O as origin

' = Lr )]
Thus, in Fig. 1, L involves a relative rotation about O of tan~* (1/3) =
18° 25’ and an expansion of one lattice relative to the other by a-factor
V/(5/2) = 1.5811, while in Fig. 2 the rotation is tan™"! (9/16) = 26° S5
and there is no change in relative lattice dimension.

This relation between the two lattices is not unique, however, and it
is an important property of the points of the coincidence lattice that the
same result is obtained by applying the same transformation L about
any point of the coincidence lattice. It may, however, be possible to
transform one lattice into the other by applying L about points other
than those belonging to the coincidence lattice. This is not the case in
Fig. 1 but, in Fig. 2, points like O’ serve in this way, as is easily seen by
inspection. The totality of points having this property is called the O-
lattice; the coincidence lattice is a superlattice of the O-lattice.

Whilst the coincidence lattice is of simple Bravais form, it is important
to realize that the O-lattice may degenerate into some sort of continuufm.
For example, if Fig. 2 represents a (100) plane of two cubic crystals
which have been rotated about a common [100] axis, then the O-lattice
consists of a set of parallel lines running in the [100] direction (normal
to the plane of the diagram) through the set of points O and O'.

The important thing about the O-lattice is that, as shown by Bollman [6],
there is a direct correspondence between the pattern of the O-lattice in a
given plane and the fringes of the moiré pattern produced by superposing
the atomic position maps of the two crystals in that plane. The O-lattice
therefore defines regions of good fit between the two crystals and hence
regions of minimum elastic strain. Its geometry thus tells us a good deal
about the structure of the interface and this can be derived by elegant
formal manipulations without going into details of atomic displacements.

4 Dislocation Models

Burgers [7] and Bragg [8] seem to have been the first to suggest that small
angle grain boundaries can be considered as arrays of dislocations and the
familiar picture of a simple tilt boundary is shown in Fig. 3. If 6 is the
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angle of relative tilt and b the Burgers vector of the dislocations, then
their spacing D is given, for small 6, by

D =1/ @
this relation has been verified, for example, by direct counting of dis-

locations, made visible by etching, in germanium crystals [9], so that the
model rests on a firm physical basis.

Fig. 2.—The coincidence lattice points OABC . . . are supplemented by other special
points like O’ to form the O-lattice. The two possible linear transformations relating
the lattices are shown at the right.

Description of a more general grain boundary in terms of a dislocation
model is necessarily more complex. Frank [10] has derived a relation for
the total dislocation content of an arbitrary grain boundary between
two similar crystals in the form

B =2(u x v)sin (§/2) ~ 6(u x v) 3
where v is any arbitrary unit vector lying in the plane of the boundary,
u is a unit vector parallel to the axis of relative rotation between the
crystal parts separated by the boundary, 6 is the angle of rotation and B
is the vector sum of the Burgers vectors of all dislocations cutting v, the
unit of length used in defining v being very much greater than the lattice
spacing. Two arbitrary directions for v give all the available information
about the boundary from this relation so that, if only one or two kinds
of dislocation are present, their distribution is uniquely determined. If
three or more dislocation types occur in the boundary, then there are
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many possible geometrically consistent solutions and the physically
applicable one must be that with lowest energy.

Fig. 3— Dislocation model of a small-angle tilt boundary.

Kuhlmann-Wilsdorf [11] has considered the application of Frank’s
result in some detail. From this and other work we can see that boundaries
consist in general of intersecting grids of parallel dislocations. If there
is only one grid, then the boundary must be a tilt boundary of the type
discussed before. A twist boundary has two intersecting grids of screw
dislocations as shown in Fig. 4 and any more complex boundary requires
at least two grids of dislocations of mixed type. It can be stated in general
that the vector sum of the edge components, in the plane of the boundary,
of all Burgers vectors contributing to the network, multiplied by the
respective dislocation densities, must vanish; the corresponding sum of”
the screw components is equal to twice the negative angle of twist.

The validity of the dislocation model depends upon the dislocations being
far enough apart that they may preserve their separate identity. This can
only be the case if their separation is greater than about four atomic
spacings which, from Equation (2), implies a misorientation angle 1e§s
than about 15°. For greater angles of misorientation some other sort of
model must be used.

One such possibility has been suggested by Brandon [5] and represents
an extension of the coincidence lattice model. We have already seen that,
at particular relative orientations, the reciprocal density % of coincidence
lattice sites is small and favoured boundaries are then the most closely
packed planes of the coincidence lattice. For closely neighbouring orienta-~
tioms, % is very large, but it may be energetically favourable to strain
the crystals slightly near the interface to force a coincidence lattice of
small & over neighbouring regions of crystal. Because of the slight misfit,
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however, this coincidence lattice will then contain arrays of dislocations
separating these well-aligned lattice blocks. The intercrystalline boundary
can then follow the close-packed planes of the coincidence lattice but will
be disturbed at intervals by the dislocations.

Fig. 4.—-A twist boundary of small angle, showing the crossed grid of screw dislocations
which comprise it. Atoms in planes immediately above and below that of the paper
are shown.

This sort of picture is valid provided, again, that the dislocations in the
coincidence lattice are far enough apart that their cores do not begin to
overlap. For an orientation difference close to zero, the coincidence
lattice becomes identical with the real lattice and % = 1. In this case the
orientation range over which the dislocation model applies is roughly
7o = +15°, as follows from Equation (2). For a more general boundary
Brandon therefore suggests the criterion

f<,(Z)~* “@
Figure 5 shows the range of orientations over which this sort of model is
applicable in the face-centred cubic system. The stereographic plot shows
the crystallographic orientation of the twinning direction involved and
the circle around each particular orientation suggests its range of validity.
Only cases with £ <19 have been plotted, but even for these there is
considerable overlap. It is plain, however, that quite a large fraction of
possible boundary orientations might be treated in this way.
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When 'we come to consider boundaries between crystals of differing
structites, the same sort of principles apply. In general, there will not |
exist ‘any strict coincidence lattice, but one can be forced by introducing
elastic distortions and it will then contain dislocations. The one case
exceptional to this rule is that of a very thin film of material growing
upon a substrate, for it may then be energetically possible to strain this
film macroscopically so that its lattice parameter is changed and an
undislocated coincidence lattice is formed over the whole interface [12].
For any film much thicker than a monolayer, however, this cannot occur
and the resulting coincidence lattice will contain dislocations [13].

001

Fig. 5.—Stereographic plot of the twinning directions for which simple coincidence-
Jattice boundaries occur in a f.c.c. metal, together with an indication of the range of
validity of each boundary model (after Brandon [5]).

From our previous discussion we may therefore expect to find oriented
overgrowth (epitaxy) of one material upon another provided one can |
produce a reasonably large density of coincidence sites in the interface
with a relatively small strain. To be more explicit, if X' is the density of
coincidence sites in the interface, then the allowable fractional deviation
from fit should be of order 0.2 ()~ %. There may, of course, be several
orientations which simultaneously satisfy this criterion, so that there is
the possibility of several different epitaxial orientations.

5 Energy Considerations

So far our discussion has only been concerned with geometrically reason-
able solutions to the interface problem, and the selection of the appropriate
boundary has been made on the intuitive ground that the most symmetrical
configuration will generally have the lowest energy. Let us now consider
the energy in more detail.
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Once again, the background calculation relates to grain boundaries in
homogeneous materials and here it is the well-known treatment of Read
and Shockley [15]. We have already seen that simple grain boundaries
can be regarded as made up of grids of dislocations, and the problem is
simply to calculate the energy of such an array. This energy is basically
elastic strain energy and, for the purposes of the calculation, it can be
divided conveniently into two parts: that contained in the dislocation
cores, which can only be evaluated by detailed calculation of atomic
interactions, and that in the rest of the crystal, which can be treated to
good approximation by elastic continuum theory.

Provided the dislocations are far enough apart that their cores do
not begin to overlap (about four atom spacings) then the first contribution
is simply proportional to the density of dislocations and hence to the
boundary angle 6. The continuum contribution can be evaluated in several
ways [14, 15], all of which are equivalent to an integration of the stress-
strain product for the combined elastic fields of the dislocations over the
region outside the cores. The final result is ' -

E=E,0(A —-Inb _ %)

Eo = Gaj/dn (1 ~0) (6)
where G is the rigidity modulus, a the lattice constant and o Poisson’s
ratio for the crystal material (neglecting anisotropy). The constant A,
which contains the core contribution, is found to have a value near 0.23
for many metals.

The shape of this theoretical curve is shown, as the full curve, in Fig. 6,
but it must be remembered that its validity is restricted to values of @
small enough that the cores do not overlap, say 6 less than 15° or at
most 20°. Despite this restriction, some metals such as iron actually
show an energy maximum near 6 = 30° as calculated, though they tend
towards a behaviour independent of angle for larger 6 [1]. Rather more
commonly, however, in lead and tin 1], in germanium [16] and in AgCl1[17]
the energy increases steadily until it becomes independent of angle for
6=30°. The correctness of Equation (5) is therefore limited to 6<20°,
which is what would be expected from its derivation. The extension
necessary in this model when the core regions begin to overlap has been
examined by Li [18]. In outline, one expects the core regions to be highly
distorted so that, once overlap occurs, the boundary is nearly amorphous
and has an energy independent of 6. The detailed argument is, of course,
rather more specific than this. ’ S

Although the theoretical curve plotted in Fig. 6 is shown as smooth,
this is really an oversimplification, for it assumes that the spacing of
dislocations can have any arbitrary value, while the dislocation model
requires that dislocation cores be directly upon atomic planes. Thus, for
example, for 6§ = 9° 24’ in a simple cubic tilt boundary, a dislocation is
required in every sixth lattice plane. If the angle is increased slightly, by
86 say, then the average dislocation spacing will be somewhat less, and
occasionally dislocations will be separated by five rather than six planes.
For small values of 86 these “five”” spacings will occur at separations of
a/680 and can be thought of as arising from a superimposed set of dis~
locations at this spacing [14]. These additional dislocations have an

with
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associated elastic energy, so that the special point 8 = 9° 24 is located
at a small cusp of the form —E'86 In86, where E’ in the present case is
of order Eo/6. The smooth curve given by Equation (5) is therefore really
the locus of cusps such as this, and the true behaviour is as suggested by
the broken line in Fig. 6.

ENERGY E

1 A A, [ 1 '

0 10 20 30 40 50 60 70
MISFIT ANGLE IN DEGREES

Fig. 6— ——~— The Read-Shockley Equation (5) for interface energy.
— ——— Qualitative addition of cusped subsidiary minima.
- - -+ Energy calculated from the theory of Van der Merwe

1t is immediately clear that this is simply another manifestation of the
coincidence lattice idea and the stability of boundaries containing a high
density of coincidence lattice sites. The strength E' of the cusp near any
preferred orientation increases as the site density %! increases, so that
simple twin boundaries, like that at 53° in Fig. 6, are located at particularly
deep cusps. This calculation can, however, only be suggestive, since the
dislocation model is not valid in detail for 6>20°.

It is not possible to apply this sort of treatment to boundaries between
crystals of different materials since the elastic properties change con-
tinuously across the boundary. Frank and Van der Merwe [12], however,
have investigated the detailed nature of dislocations in this case and
Van der Merwe [19, 20] has applied the results to a discussion of such
interfaces.
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Basically we can divide the problem into two parts: the interaction and
dislocation problem at the interface itself and the treatment of elastic
strain energy in the two separate half-crystals. Except in the case where
one of the half-crystals is a monomolecular layer so that it can be homo-
geneously strained, it will be necessary for the interface to contain dis-
locations to accommodate the lattice misfits, for example as shown in
Fig. 7. Treatment of these dislocations is difficult because the adhesive
forces across the interface are different from the cohesive forces within

the crystals.

Fig. 7—Dislocations in a simple misfit boundary between two crystals.

Van der Merwe avoids this difficulty by replacing the real boundary
potential by either a simple sinusoidal potential or by a set of periodically
arranged parabolic wells. His treatment is basically one-dimensional but
the results are then superposed to give a reasonable approximation for a
real two-dimensional boundary. With this assumption, the atomic posi-
tions at the boundary can be determined to quite good approximation,
so that it is no longer necessary to separate out the dislocation cores.
Since the real misfit regions are confined to the crystal boundary, it is then
reasonable to treat each half-crystal by simple elasticity theory, matching
stresses-across the boundary to connect the two regions.

This model is really a generalization of the treatment of Read and
Shockley, since dislocations are still quite explicitly involved. We therefore
expect the two treatments to agree, at least for small angles in the case of
simple twist boundary which can be discussed in either formalism. This
is, in fact, the case, and the model of Van der Merwe shows the familiar
—81n8 cusp for § = 0. For >20°, however, the new curve continues to
rise in energy, as shown in Fig. 6, rather than falling, as does the Read-
Shockley result. This tends to give better agreement with experiment in
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many cases but brings.its own region of invalidity, for the energy of a
cubic (100) twist boundary, for example, continues to rise as 6 approaches
90°, whereas # = 90° is really equivalent to § = 0. This situation can be
alleviated by combiningthe curve centred on 6 = 0 with another centred
.on § = 90°, but this is not very satisfactory.

Van der Merwe’s original treatment [19, 20] gives a curve with no 7
subsidiary cusps, but this is a product of the simplifications built into
the model. A later calculation [21] using a hierarchy of dislocations,
similar to those proposed by Read and Shockley, leads to the same sort
of subsidiary cusped minima.

The new information which comes from Van der Merwe’s calculation
relates not to simple grain boundaries but rather to interfaces between
differing crystals. The simplest case is that of two crystals with a fractional
difference

a4, — a,
- = Ty
a1+a2 . ()

in lattice parameter, meeting on similar crystallographic planes.-It is not
possible to write a simple expression for the energy but the curve of
E vs § is very similar to the E vs 8 curve given by the theory in Fig. 6.
There is a cusp of approximate form —dlnd at 8 = 0, where the fit is
exact, and the curve then rises continuously as the lattice parameters
differ increasingly.

This discussion also allows an evaluation to be made of the relative
contributions made to boundary energy by interactions across the
boundary and by elastic energy stored in the bulk of the crystal. Generally
speaking, if the dislocation separation in the boundary is D, then most
of the elastic strain energy is localized within a distance D of the boundary,
with a predominance of energy in the softer crystal, as measured by the
effective surface modulus G/(1—o). This allows definition of an effective
thickness of order 2D for the interface zome, and this is of particular
importance in cases where the growth of one material in the form of a
thin film upon a crystal of macroscopic dimensions is being considered [13].

Whilst this sort of treatment can be extended [22] to show that there |
are subsidiary cusped minima for cases when the lattice parameters of =
+the two crystals are in the ratio of two small integers, corresponding again
to a surface coincidence lattice of small %, the approach suffers from the
fundamental defect that the true interface potential is replaced by an
arbitrary and rather artificially simplified potential. We shall see in the
next section how this restriction can be removed.

8 =2

6 Variational Methods

At the beginning of this paper we remarked that the interface problem
is essentially variational in nature—we seek that interface which will
minimize the free energy of the system subject to such constraints as may
be applied. All the approaches so far discussed have essentially attempted
this, but they have done so by combining together elements, such as
dislocations, for which the energy solutions for the strain field and re-
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lated quantities were already known. They have also all dealt with energy
rather than free energy, corresponding to the solution expected at very
jow temperatures. This is not a serious approximation and we shall
return to it later. The point we now take up is whether some more direct
variational procedure might lead more conveniently, or more generally,
to information about crystal interfaces.

The variational method is simple in principle—if the interaction
potentials between all the atoms involved are known, then we just vary
the positions of all the atoms, subject to constraints like that defining the
relative orientations of the two crystals at large distances, until the energy
is a minimum. This is, of course, too large a programme to be feasible
in practice, so that we may simplify matters by noting that each bulk
crystal behaves, to a good approximation, like an elastic continuum.
We may, therefore, confine our atomic interaction calculation to the
region very near the interface and adopt some artifice to couple this
variational problem to the continua representing the bulk crystals.

Before discussing this further, let us examine the sorts of potential
functions which characterize the interactions between atoms, for.the
nature of these may affect our approach to the problem. For simple
insulators like solid argon, the potential consists of an r~¢ attraction,
- due to dispersion forces, and a short range repulsive term due to electron
overlap. This can be reasonably represented by a potential of Lennard-

Jones form
V(1) = Vol(t/ro)™*? —2(t/ro)~°] ®
or by the analytically more tractable Morse potential
V() = Vo {expl —2a(r-16)] —2 expl—a(r-1o)]} ©

where the potential has the value —V, at the equilibrium distance .
In ionic crystals the r~° attractive potential is replaced by the r~* Coulomb
interaction which makes matters much more difficult because of its ex-
tremely long range, though, by taking plane-wise summations, the inter-
action of a single ion with the crystal is more nearly exponential [23, 24].

In metals the interaction is primarily that between ion cores, shielded
by the charge distribution of the valence electrons. A simple discussion
would lead to a potential of the form

V'(r) = A r~lexp(—ar) - (10)
which has no attractive part at all if the volume is kept constant.
A miore careful treatment of the shielding, however, shows that the sharp
cut-off in electron density at the Fermi surface can give rise to potential
oscillations of considerable magnitude[25], the so-called Friedel oscillation.
The total cohesive energy is a combination of this interaction potential
which, though of complex origin, can be treated very nearly in the same
way as an ordinary potential [26], together with an electronic term which
depends mainly upon the total volume per atom and so can usually be
considered as constant in an interface problem. Because of the collective
nature of these metallic potentials, however, they can only be applied in
detail to discussions of grain boundaries in otherwise homogeneous
material. The interactions between two metal atoms across an interface
separating two crystals of the pure metals may be quite different.
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Fig. 8.—Different forms of atomic interaction curves: (a) Lennard-Jones potential;
{b) Morse potential; (¢) Harrison calculation for aluminium.

Curves showing the general form of these interactions are drawn in
Fig. 8. Apart from their obvious differences, one of the main things to
note is their moderately long range. Any calculation must therefore extend
to at least second-nearest neighbours, in general, to be a reasonable
approximation to reality.

- There is one further type of interaction potential which we have not
yet discussed. This is the sort of interaction found in materials with a high
degree of covalent bonding, such as diamond or germanium, for example.
These interactions are not simple central forces but involve three-body
correlations and have strong angular dependence. An analytical treatment
of such materials is extremely difficult but, as a compensation, the concept
of valence bonds in particular directions assumes good physical reality
so that useful boundary models can be built which probably have a high
degree of validity [27]. .

Once the interatomic potential has been evaluated, it becomes margin-
ally possible, using modern computers, to perform a direct variational
calculation of interface structure and energy. Such a calculation might
consider the positions of atoms in the two layers on either side of the
boundary as variational parameters and use some simple method to con-
nect their displacements to associated elastic strains in the crystal bodies,
approximated by continua. This does not, however, seem yet to have
been attempted.

An alternative approach which achieves the same result has been
developed by the present author and his students [28, 29]. The basis is
still that outlined in the preceding paragraph but, by dealing with the
Fourier transform of the interaction potential, the whole manipulation
can be carried out in reciprocal space. This leads to important simplifica-
tions, since the Fourier components of the atomic displacements are
much more nearly independent, in the expression for the energy, than are
the displacements themselves and, in addition, several formal results
directly related to the coincidence lattice and O-lattice concepts arise.
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Consider the potential V, experienced by a B atom just outside the
plane surface of a crystal of A atoms located at positions R. If the inter-
action potential between individual atoms is Vas(r), then

Vo (1) = 2 Vas (Ir-R]) = % v(r-R) (1D
R R

where we shall now keep to the simplified notation at the right." This
potential can be written as a Fourier series

Vo (r) = %V, (k) exp(ik.r) (12)
k

where the Fourier components V, (k) are given by
Vo (k) = 2 v(k) exp(—ik.R) (13)
R

and v(k) is the transform of the interatomic potential v(r).

If the B atom is one of a whole crystal with lattice positions R’, then
the total interaction energy across the interface is
E, = 2 V,R) =X 2 2 v(k) exp[ik.(R'—R)] ' (14)
R’ RRk
Since the R and R’ summations are over crystals which are infinite in
directions parallel to the interface and semi-infinite in the normal direction,
the sum in Equation (14) vanishes except for values of k whose components
parallel to the interface are vectors of both the reciprocal lattice of the
surface layer of crystal A and of the reciprocal lattice of the surface layer
of crystal B. Expressing this differently, the only Fourier components
contributing to the energy are those belonging to the coincidence lattice
of the two-dimensional reciprocal lattices of the surfaces of the two crystals.
There are various phase factors involved in Equation (14), representing
the normal separation of the two crystals, but the interaction energy will
generally be large (corresponding to a low-energy boundary) if the density
of these reciprocal coincidence lattice sites is high. This is the exact dual
of our earlier statement about the density of ordinary coincidence lattice
sites in direct lattices, but is now formulated in such a way as to allow
direct evaluation of interface energy.

The next thing to be included is some allowance for relaxation of
atomic positions near the interface. This can be done by -displacing the
A atom at R to a position R 4 F(R) where

F(R) =  Fx exp(iK.R) 15)
K

and the Fx are now the Fourier components of the displacement. The
atoms of the B crystal are similarly displaced from R’ to R’ 4+ F'(R).
This is quite general, but it is convenient to consider only displacements
of atoms right at the interface, the displacement associated with Fourier
component Fx falling off with distance z from the interface as exp(—XKz),
from the standard elastic solution. The components Fx and ¥'x in the two
crystals are matched across the interface by requiring continuity of stress.
The allowed Fourier components K are controlled by the requirement
that the boundary configuration be periodic with the period of the coinci-
dence lattice between the two crystals at the interface and, in addition,
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there must be displacement nodes at all points of the O-lattice. The
allowed K are thus the vectors of the reciprocal lattice of this coincidence
lattice. For twin boundaries the allowed K will be rather large in magnitude
and there will be only few of them, but for a general boundary K will
approximate a continuous variable.

When the displacements (15) are made, the energy E, given by (14)
becomes more complicated [28], but the leading terms have the form

B B0 FTo(2k Fi) (B S+ 5 1S 5 5104 + SO Fal* (16)

K K g Jo(Zk.Fx) K
where g is a surface reciprocal lattice vector of crystal A and g’ of crystal
B and the Ja(X) are Bessel functions. Briefly, the first term 8y ¢ Sk, TEpIrE-
sents the undistorted energy E,, modified by the Debye-Waller-like
distortion factor IIJ,. The second term represents a coupling between
nearly-coincident reciprocal points g and g’ by the distortion component
K and gives an energy contribution nearly linear in Fg. The final term
takes account of the elastic energy stored as distortions in the crystal.
There are higher order terms representing compound coupling between g-
and g’ involving several different X, which have been omitted.

Equation (16) can be minimized with respect to the distortions Fx
and exhibits cusped minima whenever two reciprocal vectors g and g’
coincide. Near such coincidences the prominent Fg, which are those
with smallest K, produce a distortion of the lattice near the interface
which is equivalent to a dislocation. The dislocation “core”, however,
is treated in a straightforward manner rather than being separated off
as an unknown quantity.

No calculations applying this approach to real materials have yet been
published, but a trial calculation using a simple short-range potential
shows the expected behaviour [30]. The case treated was that of a (100)
twist boundary between two face-centred cubic crystals of lattice para-
meters a, and a,. There is, as expected, a deep cusped minimum ata,; = a,,
f = 0 and a much shallower minimum at a, = 4/2a,, § = 45°. No other
minima were apparent but this may have been because of the particular
form of potential chosen. Calculations using Harrison’s potential for
aluminium [25] are now in progress [29]. The actual variational calculation
using a real potential like that for aluminium is, unfortunately, not as
simple as the abbreviated Equation (15) might suggest, but the minimiza-~
tion, when taken to second order, can be performed in about 10- minutes
on a CDC 3600 computer.

One particularly atiractive feature of this approach, in addition to the
use of realistic potentials, is the fact that crystal symmetry is automatically
included, which is not the case for most other methods.

As a final comment, something should be said about the effects of
temperature, since at finite temperatures it is the free energy, rather than
the energy, which must be minimized. Little work seems to have been
done on this in the case of crystal-crystal interfaces, attention being
concentrated on the solid-liquid and solid-vapour cases. The same prin-
ciples, however, apply. As the temperature is raised, the entropy term
becomes increasingly important and there is a general blurring of sharp
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" lipes. We thus expect dislocations to becomie more diffuse and steps less
well defined. The interface energy must be supplemented by an entropy
term, deriving from the difference between the vibrational spectrum of
modes which can be localized at the interface and those which are charac-
teristic of the bulk crystal. All this is important but probably has little
effect on interface properties, except at temperatures approaching the

melting point.

7 Discussion.

This paper has reviewed what appear to be some of the most promising
approaches to the theoretical treatment of the structure and energy of
simple interfaces between crystals. The word simple should perhaps be
stressed because it 1is clear, from experimental work using electron
microscopy, that rather complicated structures can arise at general inter-
faces. None the less, the two key concepts involved are those of the
coincidence lattice and the dislocation grid. Together they: allow simple
pictures to be drawn up for various lattice structures and these pictures
are substantiated by energy calculations using a sufficiently 'general
formalism. '

References — see p. 18.
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