Structural Coherence in the Condensed State

N. H. FLETCHER

INTRODUCTION

Research in theoretical solid-state physics began long ago with the study-—
of perfect crystals—a study which yielded many important results’ and
which necessarily provides a background for more recent investigations
of various defects in crystal structures. These topics are far from being
exhausted, from either a fundamental or a practical point of view, but the
attention of many solid-state physicists has turned in recent years to the
studyof liquids and amorphous solids. It is my purpose in this paper to
develop the concept of structural coherence in such a way that it can be
applied to discussions of the condensed state in any of these forms by
concentrating on their similarities rather than their differences.

The idea of structural coherence, though perhaps not given this title,
is not a new one and has been used qualitatively in various forms by many
workers. What is, I hope, novel is its formalization in the way I intend
‘here. With this in mind I shall not attempt to survey the literature in the
field but simply mention those few papers in which my earlier ideas on this
subject were dey_e-loped.

Before giving any formal exposition it is useful to have in mind just
what it is that we are talking about. A perfect erystal is certainly struc-
turally coherent in the sense that the unit cells are precisely arranged in a
space lattice and the atomic arrangement within each cell is identical. If
the crystal structure is a simple Bravais lattice then the environment of
each atom is identical in geometry and orientation so that knowledge of
this environment for any given atom allows us to extend the structure to
infinity in all directions—the structural coherence length is infinite. Similar
coherence exists in more complex crystal structures, though we may now
have more than one class of atom in the unit cell, distinguished by geo-
metrical environment, chemical nature, or some other property.
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At the other end of the scale we have-dilute monatomic gases in which,
except for a small exclusion volume, the environment of each atom is
determined in a completely statistical manner. In this case the coherence
length, depending upon its exact definition, should be taken either as zero
or else as equal to the radius of the exclusion sphere around each atom.

Since we are concerned here only with the condensed state, our extreme
example should probably be that of a monatomic simple liquid. Such a
liguid has, we know, an average co-ordination number of about 10,
while the radial distribution function shows structural peaks and valleys
out to several times the atomic radius. Presumably structural coherence,
however it is defined, hasa characteristic decay length of similar magnitude.

As intermediate cases we might consider a polycrystalline solid, for
which the structural coherence lengthis presumably approximately equal
to the average crystallite radius, and -the more complex case of a single
crystal of a disordered alloy such as beta-brass, in which the coherence -
length for geometrical structure is infinite while that relating to an index
of chemical identity is small, corresponding to the decay length for short-
range order.

CORRELATION. FUNCTIONS

Since we are concerned with three-dimensional structures and possibly
with parameters other than purely geometrical ones, our formalism must
take this into- account. Our basic concept is that of the generalized four-
body correlation function '

g4(r, X @ Yo, Xo; Ty, X1 Tas X;) ™

which is the probability density of finding an atom having attributes x at
position r, given that there are atoms with attributes x; at positions r; for
i =0, 1, 2. We shall concern ourselves in general only with the compact
form of g, in which atoms 1 and 2 are both close neighbours of the
atom 0 (which we take to lie at the origin so that ro = 0) and such that
atoms 0, 1, 2 are not collinear.

We now need to settle one or two other procedural questions about the
definition of g, before we can go on. We can easily choose as our origin
r, = 0 an atom with attributes x, and we can rotate our co-ordinate
system so that there is a near-neighbour atom in the direction of ry. In a
crystal, however, such a near-neighbour atom occurs only at a closely
fixed distance r; while in a liquid the distances are spread over a range of
r, corresponding to the loosely-defined nearest-neighbour shell. Let us
agree that g, will consist of a weighted average of the results computed for
all possible r; values within this range.

When we come to atom 2 the situation is similar. We can use the as yet
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undefined freedom of rotation of our co-ordinate system about the r,
direction to choose the plane defined by ry, r, to pass through another
atom of the nearest-neighbour shell. Once again there are limitations on
the magnitude r; and also on the angle between r, and r, for which an
atom can be found. Again we agree to take a weighted average over these
values. )

The same situation applies to the subsidiary parameters x. For a simple
monatomic material these can only refer to geometrical attributes like
position in the unit cell—for a diamond cubic structure, for example, there.
are two non-equivalent atoms in the unit cell so that x might be assigned
the two values +1, while for a primitive lattice like face-centred cubic
the x parameter would have the same value for all atoms. For an alloy
like brass x might be taken as -+ 1 for copper and — 1 for zinc atoms. For
a complex material like ice or water with the molecules treated as atoms
- from a geometrical point of view, x might be a vector quantity specifying
the orientation of the electrical dipole of the molecule. In such cases-wé~
shall also usually assume that the values of the x; to be used in g,;,.a-r.e’
weighted averages of the accessible values of x, though for some purposes
we may wish to concentrate on a particular x; assignment.

Finally we must assume that g, represents an ensemble average over all
possible choices of the spatial origin r,, with the directions of r; and r,
being adjusted for each different choice of r, as described above. The
parameter X, will not generally be included in the ensemble average, so
that several different g, functions may arise for different assignments of x,,.

Correlation functions as complex as g, are rarely discussed in detail in
structural theory but the properties of the related simpler functions g,
and g,, usually without the additional parameters x;, have been exten-
‘sively studied. In particular the two-body correlation function g,(r = r,)
is simply related to the radial distribution function g(r) by

g2(r : 0) = ng(r) )

where 7 is the number density of atoms in the condensed state considered.
For simple monatomic liquids like argon or sodium or for monatomic
solids with primitive lattice structures the ‘superposition approximation’,
which for our particular definition of g, has the form

g3(r 1 Xo3 xy) R g, (r 1 x)ga(r 1 1y) 3

is quite well satisfied, at least for the nearest-neighbour shell. This is,
however, very far from being true for crystals like diamond with more than
one atom per unit cell, for solids like amorphous germanium, or for
structured liquids like water.-Much of the individuality of these materials
and many of their practically important qualities arise from the deviations
of g4 from the form predicted by the superposition approximation. Each
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of the materials mentioned has at least an approximately tetrahedral
atomic environment and therefore effectively two atoms per unit cell or,
if we use our extended formalism, two x values.

Fortunately when we come to consider g, it seems a reasonable.
approximation on geometrical grounds, at least for the nearest-neighbour
shell, to write

84t 1o 115 1)) Ags(T 1o T1)gs(r 1 ¥0; T2)/82(r 1 Xo) ©)

and it is probable that this relation is satisfled also for the more general
functions involving the x;.

Of these correlation functions only g, can be derived directly from
diffraction- experiments on liquids or amorphous solids. It is therefore
generally necessary, in our present state of knowledge, to deduce infor-
mation about g5 and g, from structural models of the liquid. Such models
are themselves generally derived from structural information about the
bonding pattern of individual atoms or molecules, which thus incor-
porate information about g, quite directly. For crystalline solids, of course -
diffraction experiments provide complete structural information and
therefore define the g, of all orders.

COHERENCE LENGTH

Before proceeding to a formal definition of coherence length, let us examine
the behaviour of g, for several typical cases. For a perfect crystal at
absolute zero, neglecting zero-point vibrations, g, consists of an array of
delta function peaks with the same geometry as the crystal structure. If
we remove the delta function nature of the peaks by allowing each atom
to vibrate thermally about its ideal lattice position, then the peak height
becomes finite (except for a delta function at the origin, which we agree to
omit) and the envelope of the peak heights, plotted as a function of radial
distancer, is a straight line like A in Fig. 1. However we define it in detail,
the coherence length in this case is.clearly infinite.

If -we now introduce a random set of dislocations into the crystal, it is
apparent that when the ensemble average over positions of the origin
implied ‘in the definition of g, is taken, peaks at radial distances greater
than the average spacing between dislocations tend to be displaced through
distances related to the Burgers” vectors of the dislocations. The actudl
displacement depends on the geometrical relation between r and the dis-
location line, so that ensemble averaging effectively blurs out the more
distant peaks in g,. An envelope curve through the tops of these peaks
therefore has a form like B in Fig. 1. The curve behaves rather like
exp (—r/ 1), where the characteristic length £ is of the order of the distance
between dislocations.
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r

Fis. 1. Envelope of peak heights g, (omitting the delta-function. peak at the origin)
for (A) a perfect crystal, (B) a crystal contaning dislocations (C) a polycrystalline
material, and (D) a liquid or vitreous solid. In each case # is the number density of
the atoms.. :

A polycrystalline solid with average crystallite diameter 4 clearly has.a
g, function which assumes the uniform value 7, equal to the number
density of atoms, for all r greater than about d, and so has the form of
curve C in Fig. 1. If however, the crystal is of ideal mosaic form so that
the orientations of all the crystallites are closely clustered about some
common .orientation, there will be no sharp corner as in.curve C but
rather a quasi-exponential decay towards » for r greater than d. Crystal-
line solids can, of course, exhibit texture effects so that the curves A, B, C
might well differ in their length scale for different directions in the sample,
but we neglect this complication.

Finally we consider the case of a liquid. Quite clearly the randomness
of the structure means that the peak heights fall off very rapidly with
distance but we need to see how to calculate g, for such random structures.
In the case of a simple liquid to which the superposition- approximation
of eqn. (3) applies, we see from eqn. (4) that, at least for the nearest-
neighbour shell,

gar txos T T R nT2go (1 To)ga(r ¥ )E(r 1 1Y) (5

As far as the nearest-neighbour shell is concerned g,(r : r;) amounts to a
spherically symmetric shell centred on r; and having a more or less
Gaussian radial profile corresponding to the first hump in the radial
distribution function g(r). g, is then the intersection of three such spherical
shells centred on the points gy, r; and x,. It consists, as far as the atom
positions which are nearest neighbours to the points 1y, r, and r, are
concerned, of a pair of ellipsoidal probability maxima. These maxima
are not spherical because we must take into account the distribution .in
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the length of r; and r, and of r, — r, by adding the variances of the
Gaussian distributions in the appropriate directions. The standard
deviations associated with the ellipsoid are thus between 1 and about 1.6
times those of the peak in g(r).

This is not yet enough to define g, since we must construct the entire
neighbourhood of the atom at r, and then perform an ensemble average.
To do this, we first complete the nearest neighbour shell of r, by con-
tinuation of the process outlined above remembering that when one of
the basis atoms (equivalent to r, and r, in the first step above) has a
probability distribution as a result of the step generating it, this distribu-
tion must be compounded with the Gaussian width.of g(r) by adding the
variances.

Having completed the nearest-neighbour shell of r, in this way, the
probability peaks becoming broader and lower as we proceed further
away from the original reference atoms at r; and r,, we then go on to
‘construct- the next-neighbour shell of r, in a similar way. We stop only
when the probability peaks become wide enough that their overlap leads
to an essentially constant probability density. Finally we plot the average
height of probability peaks as a function of distance from the reference
. atom at r, to obtain a curve like D in Fig. 1. Incidentally, if we plot not
' the peak height but rather the average probability density as a function of
distance, we should regain the radial distribution fanction g(r).

For a structured liquid like water or a glassy solid like amorphous
germanium, in which cases the superposition approximation of eqn. (3)
is hot even approximately valid, we usually begin either with a knowledge
of g, or at least of g, and g5, from which g, can be found from eqn. (4).
Typically this information might be contained in a statement about the
approximate symmetry of the environment (e.g. tetrahedral), the distri-
bution of nearest-neighbour distances (or bond lengths) and the distribu-
tion of nearest-neighbour angles about the values prescribed by symmetry.
From such information, which. must of course be consistent with the
observed radial distribution function, we can proceed very much as
before to extend the probability distribution over the whole neighbour-
hood and hence to determine a curve like D of Fig. 1. Pople’s model for
liquid water is of this form (1).

In some cases the model description of the vitreous or liquid state may,
however, be very different. This is so for the various ‘cluster’ models for
liquid water in contrast with a uniform ‘bond-distortion’ model of the
type mentioned above. Such cluster models generally idealize the liquid as
a mixture of several significant structures of specified size distribution.
For example water may be pictured as clusters of about 50 molecules in
ice-like bonding configuration dispersed in a simple liquid of unbonded
molecules (1). When the model is as specific as this, it is relatively simple
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to estimate the behaviour of g, with distance, the characteristic decay
length being of the order of the radius of the clusters. For water near 0°C
both the distorted-bond model and the cluster model agree in giving a
coherence length close to 1 nm.

From this discussion it is clear that a useful definition of structural
coherence length can be formulated by plotting the average peak height of
&4 as a function of r, making a mean-square fit of an exponential function
A exp(—r/l), and defining £ to be the structural coherence length. An
exactly analogous definition can be used if we are concerned with one of

- the other parameters x instead of simply with position.

Representative calculations show that the structural coherence length
can vary from about 10 mm for high quality single crystals of germanium
or silicon, through perhaps 0.1 mm for finely polycrystalline metals and
0.01 mm for heavily cold-worked metals to less than 1 nm for liquids
and vitreous solids. Other parameters, such as dipole orientation in ice or
water, may have similar coherence lengths (less than 1nm) in both
liquid and crystalline phases, while the chemical ordering parameter in a
crystal can have a coherence length of order 1 nm above the ordering
temperature but as large as 1 mm below this temperature. Clearly co-
operative phenomena have an immense effect upon coherence.

APPLICATIONS

As set out above, the notion of structural coherence, with which is associ-
ated a characteristic length or a particular parameter in a particular |
material, is formally attractive but has no very obvious applications. In
the following paragraph I will examine several ways in which the concept
has proved fruitful.

Band Structure of Liquids (2)

An important question some years ago was to understand why it is
that amorphous germanium or silicon films prepared by condensation
onto a cold substrate exhibit semiconducting properties vety similar to
those of single crystals of the same materials whereas the liquid elements
behave as metallic conductors. We give in outline an argument which
provides at least a partial answer to this problem.

Crystalline germanium has a diamond cubic structure so that each
atom has a tetrahedral environment and thete are two non-eqiuvalent
atoms in the primitive unit cell. In a tight-binding approximation to the
calculation of band structure the orbitals of each atom are hybridized
to tetrahedral sp® configuration and the valence band consists of com-
binations of orbitals with opposite signs on the two non-equivalent atoms.
The conduction band states, separated from those of the valence band by

=
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an energy gap, are formed from orbitals with the same sign on each of the
non-equivalent atoms.
The discussion to ‘which we refer examines a two-dimensional analog

of this situation in which each atom has three nearest neighbours and the.

non-equivalent atoms are related by a rotation through 60°. In the
analysis it is shown that a band gap (the essential feature of a semi-
conductor) persists provided the uncertainty in angular orientation (due
to bond distortion) between nearest neighbours is substantially less than
30°. Once the uncertainty exceeds 30° the atoms are no longer non-

equivalent, the whole character of the electron wave function changes,

and the band gap disappears. The differences in short-range order between
the vitreous solid and the melt are enough to account for this distinction.
In terms of our present discussion we can deal either with the geo-
metrical structure itself or we can introduce a new parameter x taking on
the values +1 or —1 according as the bond orientation of an atom con-
forms in some mean-square way to one or other of the ideal crystalline
.orientations. In either case if the coherence length is much larger than the
nearest-neighbour spacing the material tends to exhibit a band gap, while
if it is comparable with or smaller than the interatomic spacing metallic
properties result.

Surface Structure of Water and Ice (3)

This is the first of a series of problems in which we are concerned not
with the breakdown of structural coherence away from an atom at the
origin but rather with its breakdown away from a plane surface. It'is easy
to see in a general way that the structural coherence length in this second
case is usually a good deal larger than in the first. The main reason is
that the imitial condition, whatever it is, is established for essentially all
the atoms of a plane, so that the atoms of the next layer are ali similarly
influenced by several neighbours in this plarie rather than simply by a
single atom at the origin. The breakdown of structural coherence is thus
rather analogous to a process of diffusion which follows a law like
exp(—z/l) in the one-dimensional case but the appreciably- steeper law
(1/r)exp(—r1/ 1) in the spherically symmetric case.

Again we give the argument in outline and expressed in terms of our
present discussion. Because the water molecule is not a symmetrical
dipole but possesses large quadrupole moments, molecules at the inter-
face between liquid water and vapour have a preferred orientation,
probably with their protons dirécted into the liquid. It turns out that,
using dipole orientation as -our structural parameter X, the one-
dimensional coherence length for liquid water near 0°C is about 1 nm or
three molecular layers, so that any preferred orientation induced at the
surface extends into the liquid for about this distance. Particular conse-
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quences follow in relation, for example, to surface potential and surface
electrical conductivity.

In the case of a single crystal of ice a similar surface orientation is
energetically preferred but, because the one-dimensional coherence length
for decay of orientation is of the order of 1 mm in a single crystal of ice,
entropy penalties preclude surface orientation.

If; however, the temperature is close to the melting point, it seems
possible to lower the free energy of the whole system by melting a thin
layer at the surface in order to take advantage of both the short coherence
length of liquid water and the possibility this allows for surface orien-
tation. Order-of-magnitide calculations suggest a liquid film thickness
of about 10 nm at —1°C, varying roughly inversely with the temperature
depression below the melting point. While this rather speculative theory
has yet to be unambiguously confirmed, there is a certain amount of
persuasive evidence in its favour.

The Solid-Liquid Interface (4)

As a final example let us consider the structure and dynamics of the
interface between a crystal and its melt. Clearly the crystal provides a
well defined set of atomic positions which constrain the configuration of
the neighbouring liquid structure in a rather more rigorous and com-
patible way than would the atoms of another solid. If we are provided
with information about g, or, equivalently, with a structural model for
the liquid, we can calculate the structural diffusion length in a direction
normal to the interface. Typically it is about 1 to 2 nm and significantly
greater than the normal spherical coherence length.

Within a distance of order one coherence length from the interface,
the structure of the liquid is more ‘crystalline’ than in bulk liquid and it
has both a lower energy and a lower entropy than the buik. Calculations

_suggest that the entropy contribution is dominant and that it is this which
largely accounts for the measured solid-liquid interfacial free energy.
This conclusion leads to the further prediction that the interfacial free
energy should decrease with decreasing temperature, a prediction which
is in general accord with experiment. The numerical values derived from
the theory are also in moderately good agreement with experiment for the
few cases that have been studied.

When we turn to examine the kinetic problem of crystal growth from
the melt, we recognise that the structural modification of the liquid near
the interface must propagate through the liquid with the same velocity
as the growing crystal and that this necessarily involves structural -dif-
fusion in the liquid. Analysis of this situation shows that there are two
possible crystal growth regimes. If the coherence length in the liquid isa
good deal larger than the interatomic spacing, then there is effectively no
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free energy barrier to interface motion and we have the familiar situation
usually thought of as continuous. growth with a rough interface. On the
other hand, if the coherence length is comparable with the interatomic
spacing, a significant free energy barrier prevents interface advance. This
corresponds to the situation with a smooth interface, when a two-dimen-
sional nucleation process or a screw dislocation mechanism must be
invoked to avoid the free energy barrier. More detailed analysis of the
kinetics of the situation also allows prediction of the concentration of
imperfections included in the crystal during the growth process, as &
function eof crystallization velocity.

CONCLUSION

Tt has been impossible in this short survey to do more than outline the
possible basis for a unified treatment of some aspects of the physics of
the condensed state which seems to offer a new approach to some old
‘problems. The formalism of the method exists as yet only in an.€mbryonic
.state and it will not be an easy task to develop it precisely. The interest of
the semi-quantitative treatments of problems to which it has so far been
applied, however, suggests that the effort may be worthwhile.
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