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ABSTRACT. While linear considerations suffice to determine many of
the design and performance parameters of musical instruments, such
as the shapes of horns, the placing of finger holes, and the
resonances of vibrating structures, it is essential to take into
account- the nonlinearity of the system in order to understand such
things as radiated sound power, relative intensity of harmonics, and
attack transients. This paper discusses some aspects of nonlinear
behaviour, with particular reference to wind instruments.

1 INTRODUCTION

Musical instrument makers have a practical tradition which defines the structural
features of their instruments in a completely adequate way so that they have
good intonation and tone quality, though there are subtle differences between
those produced by different craftsmen. In the case of percussion instruments
and plucked—string instruments nonlinear effects are not usually of great
importance, though exceptions to this remark occur for certain Chinese gongs
and for instruments like the sitar. In these cases the sound quality and even
the pitch depends on the amplitude of the vibration, so that nonlinearity is
showing its presence.

Instruments with sustained tones, however, such as violins, trumpets or flutes,
rely very directly upon nonlinearity to determine the loudness and harmonic
content of their sound, and indeed also to lock together their various possible
vibrational modes into a coherent and harmonic whole. The violin, in which
Raman was so interested, relies for its sound production mechanism upon the
nonlinear relation between frictional force and relative velocity, giving in its
extreme case the stick-slip motion and characteristic waveforms which have
become so well known. Not so well known are. the nonlinearities of wind
instruments, and it is upon these that my paper will concentrate.

In its essentials, a musical wind instrument consists of a very nearly linearly
behaved resonator, the air column in the horn of the instrument with its
associated finger holes or valves, closely coupled to a nonlinear acoustic
generator, the reed, lips or air-jet produced by the player(l). To be complete
we must include the player as well, as shown in Fig. 1, but rather surprisingly
the acoustic output, which is the whole reason for the exercise, appears as only
a small perturbation which consumes only about 1 percent of the input pneumatic
energy. Complex feedback loops, some of them involving the player, are an
essential feature of the system and largely determine its performance.

”-
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In most of the discussion below we will concern ourselves with the internal
acoustics of the instrument, since radiation is such a small component of the
energy balance. The transfer function from internal to external spectrum and
waveform involves an emphasis on high frequencies, to the extent of 6
dB/octave, up to the radiation cut—off frequency, above which the internal and
external spectra are the same. This simply reflects the behaviour of the
resistive component of the radiation impedance at the open horn or open holes of
the instrument, the cut-off frequency being determined by the size of these
openings.
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Fig. 1 The system diagram for a musical wind instrument,
showing the couplings and feedback loops.

Table 1 analyses the behaviour of the system in terms of the relative influence
of its various components, with the influence of the generator being separated
into linear and nonlinear aspects. It is clear that the loudness and tone quality
of the acoustic output are largely controlled by nonlinear effects, and these
quantities are second in importance only to the pitch of the note being played.
It is the purpose of this paper to examine, in a fairly general way, the
particular aspects of nonlinearity that are important in this context and to show
how the acoustic behaviour to be expected from a particular type of instrument
can be calculated.

TABLE 1 TImportance of Various mechanisms
Resonator Generator Vocal Tract
(Linear) Linear Nonlinear (Linear)
Pitch of note S S W W
Amplitude W S S w
Spectrum w R w
Transients \ w w w
S = strong influence; W = weak influence
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2 REED GENERATORS

2.1 Linear Theory

Pressure—driven reed generators, such as those found in woodwind instruments
of the clarinet, saxophone, oboe and bassoon families, are perhaps the simplest of
all to analyse. The clarinet reed has received most attention because its
geometry is particularly simple and easily reproducible, which is less true of
double reeds. Let us first outline the linear theory as a background(2).

Fig 2a shows the essentials of a clarinet-like reed generator. A thin flexible
cane reed is clamped against an opening in a slightly curved mouthpiece in such
a way as to leave a narrow opening through which the air can pass. The
player's lips seal the mouthpiece and reed and the blowing pressure po in the
player's mouth tends to force the reed closed against the lay of the mouthpiece.
The acoustic pressure p.inside the mouthpiece, conversely, tends to force the
reed open. The double reed generator of an oboe or bassoon operates similarly,
but the two leaves of the reed close against each other rather than against a
rigid mouthpiece. The reed itself is essentially a tapered elastic plate and can
be excited to vibrate in one of its normal modes. In all ordinary playing, only
the lowest cantilever mode 1is excited, with the reed tip free and its base
clamped against the mouthpiece. The. natural frequency of this mode Iis
ordinarily much higher than the frequency of the fundamental of the note being
played. It 1is this feature which makes the first—order analysis particularly
simple, for the displacement of the reed is essentially proportional to the
difference in the pressures on its two sides and there is very little phase shift.

Fig. 2 The physical arrangement of (a) the reed in a
clarinet, blown closed by the mouth pressure po, and (b) the
physical arrangement of the lips and mouth cup in a brass
instrument, in which the lips are blown open.

If x measures the opening at the reed tip, then the volume flow U from the
mouth into the instrument through the reed is essentially

U ~ Bx(po-p)'"" ~ B[xo-s(po-p)l(pPo-p)" (1)
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where B is a constant proportional to the width of the reed, xo is the
equilibrium opening when pe = p = 0, and s is the elastic compliance of the reed
for cantilever deflection under a pressure difference. All these quantities can
be fixed in magnitude and refinements added to account for things such as the
curvature of the lay of the mouthpiece, but this need not concern us here. The
important thing is the general shape of the flow curve, as shown in Fig. 3. The
flow first increases as the pressure difference is increased, goes through a
maximum at the point A, and then decreases to zero at C where the reed is
completely closed. The acoustic conductance of the generator as seen from
inside the instrument is just the slope of this flow curve, and so is negative in
the region AC. If the blowing pressure po is adjusted to bring the operating
point close to O in the middle of the negative-resistance region then playing
conditions will be optimal and the generator will feed energy into the vibrational
modes of the air column of the pipe resonator.
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Fig. 3 The steady flow U through a clarinet—like reed
system '‘as a function of blowing pressure pe and mouthpiece
pressure p.

When we take the resonance frequency of the reed into account, the situation is
a little more complex and the reed opening x is described by an equation of the
form

d?x dx , S ‘
+2k——+ =(p- 2
Tt 2kgrrwix=—(p-po) (2)

where m is the effective mass of the moving part of the reed, S is its area, and
k and wr are respectively the damping constant. and resonance frequency of the
reed. To be complete we must add to the right—hand side of this equation a
term representing the aerodynamic Bernoulli force on the reed, while the flow
equation must be modified by adding a term describing the inertia of the air in
the reed passage and another term for the flow associated with the physical
displacement of the reed surface. None of these refinements makes a significant
difference to the general behaviour.
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The acoustic conductance for a blowing pressure in the region AC of Fig. 3 then
has the form shown in Fig. 4. It is still negative at all frequencies below the
reed resonance, but is positive and therefore dissipative above(3). Just below
the resonance there is a maximum in the negative conductance, which is actually
used as the operating point for organ reed pipes, but in woodwind instruments
this resonance lies well above the fundamental of the note being played. There
is evidence, however, that players tune the reed resonance by changing the
tension of the lips so that it coincides with a harmonic of the note being played,
thus stabilising its production and emphasising the harmonic concerned(4).

Both these techniques are important for playing high notes, since the air column
generally has several lower resonances available to it(5), and the reed can
potentially interact with any of them. It is here that nonlinearity also becomes
important, as we shall see presently.
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Fig. 4 Acoustic conductance of a clarinet—like reed system
as a function of frequency.

2.3 Nonlinearity

While the conductance characteristic shown in Fig. 3 is linear if the pressure p
makes only small excursions around the operating point O, this is clearly no
longer true if p becomes an appreciable fraction of pe. Fig. 5 shows this
explicitly by giving the flow waveforms for sinusoidal pressure excursions p of
various magnitudes. It is clear that the flow is limited at both ends of the
pressure excursion, though the clipping is "hard" when the reed beats against
the mouthpiece and much "softer" when it simply opens past point A on the
curve of Fig. 3. While the waveforms in Fig. § do have a close resemblance to
those produced inside a real clarinet, the calculation is more involved than we
have suggested so far, since the flow waveform must be allowed to act upon the
acoustic impedance of the resonator to produce the pressure waveform inside the
mouthpiece which then drives the reed.

Before we go on to calculate the behaviour in detail, we can see immediately that
the nonlinearity does two things. It certainly produces harmonics of the
fundamental frequency - all harmonics are present but there is a tendency_ for
odd harmonics to be emphasised because of the nearly symmetrical nature of the
clipping. The final amplitude of these harmonics will, of course, be considerably
influenced by the nature of the resonances of the air column of the instrument.
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The second feature of the nonlinearity is that it imposes a limit on the maximum
amplitude of the flow waveform, and can therefore be expected to determine in
large measure the maximum amplitude of the pressure wave in the air column and
thus the sound power radiated from the instrument.

Two different approaches have been developed to describe in detail the nonlinear
behaviour of the instrument, and these will be outlined below. When taken to
completion they are mathematically equivalent, and so give the same answers, but
each gives a rather different physical picture of the processes involved, and
different approximations are more easily made. The first approach treats
everything in the frequency domain, where the behaviour of the pipe resonator
is simple and that of the reed generator complex; the second uses the time
domain, where the situation is reversed. We discuss these in turn.
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Volume flow U through reed

Time
Fig. 5 Flow waveform for a clarinet-like system with an
assumed sinusojdal mouthpiece  pressure, for various
pressure amplitudes.

2.3 Nonlinear Theory in the Prequency Domain

- The behaviour of the linear air column resonator can be expressed in terms of
its pressure eigenfunctions (or normal modes, or standing waves),- which we
write in the form ¥a(y,t) where y is a coordinate measuring distance along the
air column from the reed at y = 0. All these modes have a pressure maximum
near to the reed end of the instrument, and the pressure acting on the reed is
essentially just the sum of their individual contributions. If we assume that the
nth mode has pressure amplitude an at the reed, natural frequency w=z and phase
¢z, then we can show(6,9) that the flow U(p) drives these modes away from their
initial states according to the equations '

da, Ua rdU
o — - 3
T Trw. e dt cos0,do, ka, (3)
dé¢. Hn j’“dv
~ - —sin8,do 4
dit 2rna,w,Jo d:sm v (4)
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where pwpcwa/S, S being the pipe cross section, and we have written for
convenience

0., =w, t+9,. (9)

The integrals in (3) and (4) are intended to remove all high frequency terms so
that the amplitudes and phases of the normal modes vary only slowly with time
and quickly settle down to steady values. Since U in the integrals depends on
the total pressure and thus on the sum of all the mode pressures, there is a
reasonable amount of complication about the solution, but the final result is a set
of steady modes with frequencies

w(n)=w,+d¢,/dt (6)

which are all locked into exact harmonic relationship(10). It is this consequence
of the nonlinearity that gives to wind instruments their exactly repetitive
harmonic waveforms and hence their usefulness for ordinary musical
performance. It is only in the case of air column resonances that are very far
from integral relationship that this coupling breaks down, giving the peculiar
"multiphonic" tones now being exploited by contemporary composers.

2.4 Nonlinear Theory in the Time Domain

The solution in the frequency domain, outlined above, has a counterpart in the
time domain which is simpler in concept though wusually more difficult in
application to wind instruments(l11). Description of the motion of the reed and of
flow through it is relatively simple in the time domain, since this description is
given by the equations (1) and (2) which are formulated in terms of the
time—domain functions p(t) and U(t). To treat the air-column resonator in the
time domain we need to know its impulse response, or Green function, G(t-t")
which describes the pressure response at time t when a sharp impulsive flow is
injected at time ¢’ If the injected flow has the more general form U(t'), then
the pressure response is

p(t)=j:G(t-t')U(t’)di’. (7)

The difficulty arises from the fact that, since G is defined with the mouthpiece
end of the air column rigidly closed except at the instant ¢ = t' so that U will
be zero, the pressure pulse produced by the impulse is reflected back. and forth
between the open and closed ends of the tube for a very considerable time.
Stated in another way, the impulse response is actually just the Fourier
transform of the input impedance, and if the impedance function has sharp peaks
in the frequency domain, then its transform has a large extent in the time
domain. The convolution integral (7) is therefore very extended and laborious to
evaluate.

Schumacher(12) has suggested a way out of this dilemma by recognising that
there are initially no reflections when a flow pulse is injected into the air
column, and the initial pressure response is just that due to the characteristic
impedance Zo of the air column at its input. We can therefore write

-

81



P()=Z,U(t)+ j;'r(t')[zozf(z-z')+p(z—t')]dt' (8)

where r(t) is the impulse response when the horn input is blocked with a
non-reflecting termination after the initial pulse is injected. In general r(t-t")
will have a much shorter time span than G(t—-t'), though it may still be
complicated by multiple reflections from finger holes and other irregularities in
the bore. For a simple smooth cylindrical tube, r(t) has the form of an inverted
and slightly attenuated pulse, delayed by the transit time along the pipe and
back - the integral is very simple to evaluate in this case.

3 LIP GENERATORS

3.1 Linear Theory

There are important similarities between the behaviour of lip—-driven instruments
of the brass family, the generator mechanism of which is shown in Figure 2b,
and reed—-driven instruments of the woodwind family. There are also important
differences which arise from the fact that the blowing pressure tends to force
the player's lips open, while in woodwinds it tends to force the reed closed.
This appears as a change in the sign of (pe—p) on the right-hand side of both
equations (1) and (2) above. This has the consequence that the static flow
characteristic U(po—p) simply rises with (pe—p) and has no negative-resistance
region. The form of the acoustic conductance at non—-zero frequency is similarly
inverted compared with the reed case shown in Figure 4, and now has the shape
shown in Figure 6. The region of negative conductance associated with
operation as an acoustic generator is limited to a narrow frequency range just
above the resonance frequency of the mechanical vibration of the lips(3).
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Fig. 6 Acoustic conductance of a vibrating-lip generator, &s
in the trumpet, as a function of frequency.

The consequences of this behaviour are immediate. Clearly the player must
adjust the lip resonance frequency to coincide quite closely with the frequency
of the note to be played, and this frequency must also be very close to an
impedance maximum of the instrument air column, or rather of the instrument in
series with the player's vocal tract, in order that an adequate mouthplece
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pressure can be built up to control the reed. Balance between the reactive
parts of the lip and instrument impedances will control the exact sounding
frequency. .The lip resonance can fortunately be made very narrow, so that
notes lying only a semitone apart, and represented by adjacent resonances in
the upper register of an instrument such as the French horn, can be selected
with good reliability by a skilled player.

The input impedance of a typical brass instrument is determined by the length
and profile of the horn itself and by the Helmholtz resonance of the cavity and
back-bore of the mouthpiece cup(13). The exact frequencies of the horn
resonances depend upon the flare at its bell end and are generally adjusted to
produce an accurate integer—harmonic series, though with the (first—mode
resonance unavoidably very much below its nominal frequency. The player
selects any one of these resonances as the fundamental of the note to be played,
-and intermediate notes can be produced by shifting the whole frequency scale
downwards by adding lengths of tube at the mouthpiece end of the instrument
using valves or a slide.

There is an interesting feature of brass instrument performance which arises
from the considerable length of the horn - several metres in a typical case. The
travel time for the first pulse of a note to propagate from the player's lips to
the .open end of the bell and then refleet back to the lips may be many periods
of the lip vibration when a high note is being played. The player must thus
adjust lip and vocal-tract resonances to produce a self—-sustaining vibration
during this time, and a characteristic attack transient will evolve.

Once again, the radiated power, frequency spectrum and transient behaviour of
the instrument are all dominated by nonlinear effects, and these can be treated
either in the frequency domain or in the time domain. The formal development is
identical with that outlined above for reed-driven instruments, so that all that is
required is a set of comments on the results.

3.2 Nonlinear Behaviour in the Frequency Domain

Description of the behaviour of the instrument mouthpiece and horn, together
with the player's vocal tract, is relatively simple in the frequency domain, as we
have outlined above. The behaviour of the player's lips is described by a
driven harmonic oscillator equation (2), as for a reed but with the sign of the
driving term reversed. The resulting motion is now much simpler, however,
since the driving pressure is close to the reed resonance, giving large
amplitude, while all harmonics are well above this resonance frequency and
produce very little disturbance to the motion. This has been verified by
stroboscopic study, the lips being found typically to just close once in each
cycle(14). ’

with the lip motion x(t) determined in frequency and form, though not in
amplitude, it is now simple to write down the flow U in terms of the pressure
difference (ps—p), using the modified form of equation (1) appropriate for a lip
generator. The flow U(t) can be decomposed into harmonic frequency
components, each of which lies very close to a resonance of the instrument and
therefore interacts with a nearly purely resistive input impedance R, which we
can assume to be nearly the same for the first few harmonics. All this leads to
an equation of the form

. . (RBx)* _4po V7
p ~ RU : {[u(mx)z] 1} (9)
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where B is a .constant related to the mass, width and compliance of the lips. If
the blowing pressure is moderate and the lip opening large, as is usually the
case for moderately loud playing,then 4po < (RBxR, and the approximate solution
to (9) is

pP=RU=p,~ pg/[RBx(1+sinwt)]? (10)

The shape of this waveform is shown in Figure 7, and is very similar to that
actually observed for a trombone(15). The waveform is clearly non-sinusoidal
and contains overtones in significant amplitude, though they are not as marked
as in the case of a reed instrument.

Volume flow U through lips

Time

Fig. 7 Calculated flow waveforms for a brass instrument at A
several amplitudes of motion of the player's lips.

This treatment is only a first approximation. To derive a more accurate
waveform and amplitude we must solve the pressure and flow equations in the
frequency domain properly, as was indicated for reed instruments. The process
has a large computational load, but is essentially straightforward. This
treatment will give the form of the initial transient as well as that of the steady
state.

3.3 Nonlinear Behaviour in the Time Domain

An instrument of the brass family is in many ways more suitable for treatment in
the time domain than is a ‘woodwind instrument, since the smooth bore of the
horn produces mostly a reflection associated with the sharp flare and open end
of the bell. The nature of this bell reflection is, however, quite complicated,
because different frequencies are reflected by ‘the flare at different places,
giving a complex shape to the reflected pulse. This corresponds, in the
frequency domain, to the adjustment of mode frequencies accomplished by the
bell(16).

The form of the analysis is very .similar to that for a woodwind instrument,
except that explicit note must be taken of the autonomous nature of the lip
vibration. Clearly the time-domain approach gives a very direct description of
the initial transient, since the integral in (8) is zero until the first part of the
pulse returns from the bell, and during this time the mouthpiece pressure Iis
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simply Zo'U(t), where Zo'is the characteristic impedance of the horn at its input,
modified by the Helmholtz resonance effect of the mouthpiece. No waveforms for
brass instruments calculated in this way have been published, to our knowledge,
but it is not expected that they would lead to any surprises.

4 AIR-JET GENERATORS

4.1 Linear Theory

To complete this survey of wind instruments, we must look at those of the flute
family, which are excited by an air jet blown across an aperture and impinging
on a lip at the opposite side. Such a mechanism relies upon the deflection of
the jet by acoustic flow at the aperture and is therefore described as a
flow—-controlled generator, in distinction from the pressure—controlled reed and
lip generators.

When a plane jet (either laminar of turbulent) emerges from a slit into a
transverse acoustic flow field, it is deflected as shown in Figure 8 and this
deflection propagates along the jet with a phase velocity equal to about half the
jet velocity. The amplitude of the disturbance grows, provided that its
wavelength 1is greater than about 5 times the jet thickness; for shorter
wavelengths the disturbance is attenuated as it propagates(17). The growth is
exponential for small amplitudes, but becomes linear when the amplitude becomes
comparable with the wavelength, the wave-like disturbance then breaking up into
a complex vortex street.

flue // jet
} upper lip

foot // < languid K pipe

Fig. 8 Geometry of the mouth of a flute-like instrument
with a fixed windway, showing the sinuous disturbance
growing on the jet as a result of the influence of
transverse acoustic flow past the slit form which the jet
emerges. '

The interaction of such a sinuous jet with an edge forming part of a resonator
has been widely studied,  and the phenomena are now moderately well
understood(18-21). The details of this drive mechanism are too complex to set
out here, but the essence of the driving force is the volume flow of the jet -into
the pipe, which has a form like that shown in Figure 9, saturating both when
the flow is completely into the pipe and completely outside the pipe. Detailed
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consideration shows that the shape of this curve is fairly closely a hyperbolic
tangent function, though any similarly shaped curve could be assumed. We
return to the nonlinearity in the next section - for the present we simply note
that the driving force is linear for small excursions about the operating point O.

The important thing about the jet mechanism is that it has a built-in time delay
because of the transit time of wave-like displacements from the slit or flue to
the edge or lip. For a typical blowing pressure of a few Kkilopascals, the jet
velocity is about 50 m/s and the wave speed about half this, so that the transit
time from the slit to the lip, typically a distance of 5-10 mm, is a fraction of a
millisecond. This represents a very significant, and blowing-pressure dependent,
phase shift in the excitation function. When all details are taken into account, it
turns out that the linear acoustic conductance of the jet, as seen by the air
column, is negative when this phase shift is around 180'. The player can
therefore select the pipe mode to be excited by varying the blowing pressure
and, in the case of lip—blown flutes, the length of the jet - this Ilatter
adjustment is not available, of course, in instruments such as the recorder(22).

Volume flow U into pips
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Flg. 9 Form of the acoustic flow into the mouth of a
flute-like instrument as a function of jet displacement x
away from the static offset position xo.

4.2 Nonlinear Behaviour

We can use the same techniques as outlined in Sections 2 and 3 to treat the
nonlinear sound production mechanism in air-jet driven instruments. We shall
not go into this in detail, but rather just look at the first approximation. To do
this we note that, because of the phase shifts and attenuation of high
frequencies on the jet, only the fundamental of the note being played is driven
directly, with higher harmonics being produced by the nonlinearity. Detailed
consideration of this situation shows that the relative strength of the harmonics
is strongly influenced by the extent to which the pipe lip is offset relative to
the centre-plane of the jet(23). Such an offset moves the operating point O of
Figure 12 away from its symmetrical condition, and the result then follows from
expansion of the flow function

U(t)=Btanh[x,+asin(wt)] S (11)
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where xo defines the operating-point offset from the centre-plane of the jet and
a is the amplitude of the jet displacement at the lip. The amplitudes of the
upper- harmonics produced by the driving function increase with increasing jet
deflection amplitude, and their relative strengths vary with jet offset as shown
in Figure 10. To convert this driving function to response of the resonator we
need to multiply by the air column admittance at each frequency. In most
flute-like instruments the resonances are well aligned, and the upper partials
are well developed, though the "softness" of the nonlinearity in Figure 9 means
that they are much less fully developed than in reed or lip—driven instruments.
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Fig. 10 Relative amplitude of the harmonics produced by a
driven air—jet as a function of the offset of the lip from the
centre plane of the jet. .

A full treatment of the nonlinearity and its interaction with the pipe modes,
including transient effects, can be carried out essentially as outlined in Section
2, but in a dual way, in the sense that flows replace pressures and admittances
replace impedances. Initial transients in jet—-driven instruments typically occupy
20 to 40 periods of the fundamental of the note being played.

5 CONCLUSION

In this review I have had time only to touch briefly upon the important role
played by nonlinearity in determining the sound output of musical wind
instruments, and to show in outline how one may reach a quantitative
understanding of the steady waveforms and transient effects that are so
important in giving each instrument its characteristic auditory effect.

In concentrating on nonlinearity, I have not meant to belittle the role of linear
effects or of linear theory in determining instrument behaviour - indeed, since
nonlinearity is always with us, do what we may, it is not unreasonable to take
the approach of looking after linear effects in instrument design and leaving
nonlinearities to take care of themselves! Be that as it may, it is the
nonlinearities, as I have tried to show, that win in the end.
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