A class of chaotic bird calls?
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Evidence is presented that the basic vocalized sound produced by some cockatoos, specifically the
Australian sulfur-crested cockatg@acatua galerita and the gang-gang cockat¢@allocephalon
fimbriatum, has a chaotic acoustic structure rather than the harmonic structure characteristic of most
birdsongs. These findings support those of Eeal. [Nature(London 3953), 67—71(1999] on
nonlinear period-doubling transitions in the song of the zebra fif@eniopygia guttata It is
suggested that syllables with chaotic structure may be a feature of the songs of many birds.
© 2000 Acoustical Society of Amerid&0001-4966)0)04108-4

PACS numbers: 43.80.KaVA]

INTRODUCTION presents to air flow from the syrinx, and the formant bands
occur around the resonances of the vocal tract for which this
Birdsong has been the subject of study for many year§mpedance is a maximum, the acoustic pressure associated
fr_om physiological, _acoustical, _and_ behavioral poi_nts of\with the flow component,, beingp,=Z(nFy)U, . Integra-
view. A comprehensive account is given in the classic bookiq of these concepts into a calculable model gives good
by _Greenewait and there are many more recent papers Qg eement with experimedtThe frequencyE,, of the funda-
which we do not need to refer here. An excellent recentyonia) can be varied by varying the muscle tension on the
account of the relation between physiology and birdsong ha§yringea| membranes, while the frequendesof the vocal

; 2
been given by Suthemt al. tract resonances can be controlled by changing tongue posi-

Unpl recent_ly, only three'types c.)f birdsong havg beention and beak openiny.Details of the mathematical ap-
recognized, which we now discuss in turn. They might be

. . : roach to calculations such as these have been given
termed simple voiced song, double-voiced song, an
. . elsewheré.
whistled song, respectively.

. ! . . . In the case of song-birds, account must be taken of the
Simple voiced song is characterized by an acoustic Spe?éct that they possess two independent syringeal valves, one
trum consisting of a series of exact harmonics of a funda- yp b yrnng :

mental frequencyF, (to use a notation common in human located in each bronchus. There are, in fact, two possibilities

phonetics. The envelope of the spectrum of this song at any 2t arﬁ eg_p(ljom_ad (Ij|ffelrently ?fy different sp?mels. ":j one
instant is characterized by a set of formant bands at frequerf®>¢: the Dird simply closes off one syringeal valve during
ciesF,,F,,F3, . .. inwhich the amplitude of the harmonics SONd and uses the other, perhaps permanently and perhaps on
of F, rises above the general declining trend with increasind" alternating basis. In the second case, both syringeal valves

frequency. The frequencies of the fundamefighand of the operate at the same time, but their oscillations are locked into
formant bands$, may vary with time under voluntary con- synchronism by the common oscillating pressure at the base

trol by the bird, the extent of the variation being very differ- of the trachea. Such frequency and phase locking is common
ent for different species of bird. in many types of oscillators, and requires only that their
This simple voiced song is closely analogous to humarhatural frequencies be not too far apart and that there exist a
speech and song generally, and to human vowel sounds fenlinear physical coupling mechanism between tfiem.
particular. The physiological interpretation is given in termsThese conditions are easily met in the avian vocal system,
of a “source-filter model,” as for human speech. The avianwhere the two syringeal valves are at least nominally identi-
syrinx acts as a self-excited oscillator, driven by air pressurgal in structure, the flow through them is a nonlinear function
from the lungs to vibrate at a characteristic frequeRgyhat  of pressure, and the tracheal pressure oscillation provides an
is determined by the mass and tension of the syringeal mensffective coupling mechanism.
branes. This vibration in turn modulates air flow into the The second type of song, which might be called double-
upper vocal tract at the characteristic frequeRgy Because Vvoiced song, is one in which the frequencies of the two sy-
the flow equations for the syringeal valve are nonlinear, thigingeal valves are controlled to be so different that locking is
flow U contains a complete spectrum of exact harmonicsmpossible. When this happens, each bronchus feeds a flow
nF, of the fundamental, with amplitudds, generally de- signal to the trachea at its characteristic oscillation frequency
creasing steadily with increasing frequency. The acousticaF{") or F?). Each of these flows contains harmonic compo-
properties of the upper vocal tract can be expressed in termsents at integer multiples of its fundamental frequency but,
of the frequency-dependent acoustic impedafit® that it  in addition, there will be nonlinearly generated components
at multiple sum and difference frequencies{"+mF®,

dPermanent address: Research School of Physical Sciences and Engine\éfheren andmare ppsmve mte'gers- The amp“tUdeS Qf these
ing, Australian National University, Canberra 0200, Australia. mixture terms decline approximately 88" ™, wherex is a
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guantity less than unity that depends upon the exact nature of
the flow nonlinearity and is proportional to the amplitude of Y (a) 1 ()
the fundamental of the oscillation. Songs of this type sound
rather like pairs of notes played on musical instruments, pro-
vided the nonlinearity is not too great. - o

The third generally recognized type of song is termed
whistled song. Analysis shows that it consists of an almost
pure sine wave with no upper harmonics, and the frequency
can often be changed rapidly in a sweep over a range of
about a factor two. The physiological mechanism for produc- 4
tion of such song has not been established. The fact that
whistles are often interpolated within a voiced song suggests
a common generation mechanism, and it has been suggeste 9
that this might be a retraction of the syringeal membranes
while in oscillation so that they no longer completely close,
leading to a great reduction in the harmonic content of the
flow. Flow calculations, however, indicate that, while such a
procedure would reduce the relative amplitude of higher par- = () 4@
tials in the flow, it would not eliminate them entirely, as
appears to be the case in whistled song. It should also be
noted that some human languages, notably those from centra*
Africa, involve the interpolation of aerodynamically pro-
duced whistles amidst voiced speech.

An alternative explanation of whistled song is that it is
produced by pure aerodynamic means without any vibrating
surfaces, in much the same way as sound in flutes, orgarm
pipes and whistles. In all these cases the source of sound it
the interaction of an unstable air jet with a resonator. If the
resonator has many modes, as in an organ pipe, then the
sound has many harmonic overtones. If, however, it has but
one mode, as in the case of the Helmholtz resonator of an
occarina, which is a simple cavity vented by finger holes, 1 e e calls of the four birds in th
then the sound output il approximate a pure sine wave. ALC, ! THe oo e o e el o e o bl n e
simple biological example is human whistling, in which the crested cockatoo, arfd) the gang-gang cockatoo. In each case the duration
resonator is the mouth cavity and the jet issuing through thef the sample is about 0.7 sec and the frequency range is 0 to 5.5 kHz.
aperture between the lips is subject to a varicose instability

(or change in diametgwhich feeds back to influence flow stimulus of the present investigation. A good collection of

through the aperture and thus internal pressure. It is not cleq.|r]e songs of Australian birds of the region near Canberra,

what structures in the avian vocal system might be r€SPOMacorded in their native habitat, is availabfeand this was

sible for sound production by this mechanism. Possible CaNised for the required sound samples. The two cockatoos se-

didates are structures at the base of the trachea, but anothgr, . ¢, study were the sulfur-crested cockat@acatua

gg?:ﬁﬂ:ilent\\;voel\éist(tﬂ%lljagyanri(c,j ‘Zég'lfed tongue, and afurthergalerita) and the gang-gang cockatd@allocephalon fim-

. briatum). Each selected call was digitized at 32 kb/s and its
It is the purpose of the present note to present furthe

. o . Nevaveform examined. A section of nearly constant amplitude
evidence for a modified type of voiced utterance that mlghtand duration about 0.7 sec was then selected for detailed

be_ called chao_tlc song._The possibility that some bird Ca_"SanaIysis. From an auditory point of view these sections of the
might be chaotic was raised by the present author some tim

J in relation to the Australi i ted KB €all were constant in loudness and sound quality, and this
ago In refation o ne Australian suflur-crested cocka . constancy was confirmed by the nature of the oscillograph
c_atua galerita and since then a pioneering study of a t.rans"records of the waveforms, suggesting strongly that they are
.tIOI’I from normal to penod—.doubleq and_perhaps chaotic SONhe result of processes that are “stationary” in a statistical
in the case of the zebra finchaeniopygia guttatdnas been

: 8.9 ) sense. Two similar segments from the songs of birds with
published by Feest al”® The difference between the calls simple sound, namely the boobook ofinox novaeseelan-

reportgd here and thpse of the zebra finch will be discusse iae) and the Eastern rosella parr(Rlatycercus eximils
briefly in the conclusion to the present paper. were similarly studied for comparison purposes.
As an initial study, sound spectrograms of the four bird
calls were made, and the results are shown in Fig. 1. The call
To the ear, the calls of Australian cockatoos have theof the owl, in Fig. 1a), has a simply harmonic structure and
sound of a steady raucous screech, quite unlike the moneo pitch change, while that of the parrot, in Figb), con-
melodious sounds of other birds. This observation was theists essentially of a single simple tone with rapid frequency

I. ANALYSIS OF CHAOTIC CALLS
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variations. In contrast, the sulfur-crested cockatoo call in FigTABLE I. Parameters computed from CDA program.
1(c) has a very broad-band spectrum, though with traces of . ,

. . . . . Lyapunov ~ Capacity  Correlation
two independent voices and vestiges of quasiharmonic struc- exponent  dimension  dimension

ture. The call of the gang-gang in Fig(dl is broadly simi- p— —— 00 T4 >
lar, but with a higher pitch and less obvious substructure. Iﬂwo noninearty coupled sighals ; ' ;

. enon attractor 0.6 1.4 1.3

appears reasonable to treat the major part of these latter tw@en, attractor 0.1 1.7 2.0
songs as being stationary in a statistical sense. Random noise 0.15 24 1-6
It was the assumption at the beginning of the study thaBoobook ow 0.06 15 1.9

the calls in question might have a chaotic structure, and thBosella parrot 0.02 25 21

digitized records were therefore subjected to analysis on thig-"crested cockatoo 03 22 32

9 | y (S;ang—gang cockatoo 0.2 2.3 3.8

basis. Such an analysis of time-series data to detect chags
and other interesting phenomena has been the subject of

much detailed study’"*and a set of computer progratfis g res the degree of sensitivity of the oscillation to its initial
with the title “Chaos Data Analyzer” is available to carry congitions and its deviation from predictability. First the
out the analysis. In addition, a newly available suite of\,5veform is mapped onto a phase space which, in the sim-
programs* for “Visual Recurrence Analysis” provides an plest case, plots the slope of the waveform at each point
independent and rather different approach. These programgyainst the magnitude of the waveform at that point. For a
were applied to the observational records with the resultg,gye consisting of exactly harmonic components, this phase
detailed below. map consists of a simple closed curve, while for more com-
The essential feature of normal nonchaotic song is itglex waveforms the map is correspondingly more involved.
predictability. As discussed above, the short-term spectrunthe Lyapunov exponent essentially measures the rate at
consists of an assembly of pure sinusoidal tones that arghich the distance between two points on the curetated
generally in harmonic relationShip, gIVIng an exaCtIy repeat'by the Samp“ng time between thémCreaseS as the wave-
ing waveform. When two syringeal sources produce soundform evolves. For a simple harmonic or multifrequency de-
at unrelated frequencies the overall harmonic relationship igerministic system, the distance between the points settles
complicated by multiple sum and difference tones and thejown to a constant value, on average, while for a chaotic
waveform no longer repeats. In either case, however, onceystem the distance increases steadily. The Lyapunov expo-
the spectral composition of the sound is known, its futurenent measures the exponential rate of this increase in sepa-
waveform can be predicted exactly. This statement appliegation. Chaotic systems are characterized by moderate posi-
of course, only to short segments of song in which the birdive exponents and simple systems by negative or zero
does not deliberately change the defining parameters such agponents. Random systems have large positive exponents.
pitch and loudness. The Chaos Data Analyzer programgrovide facilities
At the other end of the scale comes random noise. Heréor plotting phase-space maps, calculating the largest
the future waveform is entirely unpredictable and the signal.yapunov exponent, and otherwise examining time-series
can be described only in statistical terms. data. As a control, short segments of song from the boobook
Between these two extremes lies chaotic behavior, irowl (Ninox novaeseelandiaeand from the Eastern rosella
which the oscillation is governed by well-defined and oftenparrot (Platycercus eximiyswere also analyzed. The boo-
simple laws but, because of nonlinearity in the basic vibrabook song was nearly sinusoidal, with a single dominant
tion mechanism, the future waveform is unpredictable in thefrequency, giving a simple closed-loop phase map and a
absence of knowledge of the precise initial conditions—aargest Lyapunov exponent of 0.8®.03. The rosella song
very small change in initial conditions makes an immensecontained two dominant frequencies, had a more complex
change in the exact future course of the oscillatto@haos  but still generally ring-shaped phase map, and a largest ex-
is often studied by examining the behavior of the systenponent of 0.02-0.02. Both these exponents are essentially
when the parameters of the underlying differential equationgero, as would be expected for deterministic signals. Further
are progressively changed. In a natural biological systendetails of the analysis are given in Table I, which also shows
such as birdsong such an approach is not possible; rather wiee capacity dimensiofHausdorff dimensionand correla-
must attempt to find something of the nature of the underlytion dimension calculated from the data. For both of these
ing equations by examining the sound output. songs, the correlation function had the form of a cosine func-
tion and did not decay in amplitude over the sample length,
indicating a closely predictable behavior. The phase-space
The syrinx is, of course, a complex vibrating system,plot in both cases had the form of a broad elliptic ring, as
since the pressure-controlled vibrating valve, whether it bavould be expected for a basically sinusoidal signal modu-
the syringeal membrane or some other structure, can suppdsted by other frequencies. Comparison with computed data
a large number of possible oscillation modes. It thereforefor a signal consisting of two nonlinearly interacting unre-
turns out not to be possible to discover much about the exadated harmonic oscillations, given in the first line of Table I,
nature of its vibration from the sound output, but a demon-indicates close similarity and confirms the predictable nature
stration that it is indeed chaotic is relatively simple. Theof these songs, despite their irregular waveform. We return
approach is to calculate the so-called Lyapunov exponent® discuss such songs in a later section.
that describe the waveform. In essence this exponent mea- The contrast with the calls of the sulfur-crested cockatoo

A. Data analysis
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decay as rapid as for the Lorenz or Henon systems, and there
appears to be significant sinusoidal residue.

From the data given in Table | it is clear that there is a
close resemblance between the parameters for these two
cockatoo calls and those for the well-known Lorenz and
Henon chaotic attractors. These two cases, however, derive
0 from analysis of well-defined and simple nonlinear differen-

tial equations and lead to phase-space maps that are fractal
10 /\ N “strange attractors.” In the case of the cockatoo calls, the
] n A WA/ \v\ J\ {\ phase-space maps essentially filled uniformly an elliptical
20 ANL g H i area, and no further information could be gained from them,
V V “ (v \V\/M even if the embedding dimension was raised. The explana-
v ' v’h VW‘ tions for this are probably that the call is not truly stationary

-30

Relative level (dB)

[~

=

o=
=

in a statistical sense, and that it also contains noise, both of
-40 VV v T dv which features tend to blur any phase-space pattern, although
it could also result from the dimensionality of the system
50 " > 3 y 3 being higher than 3. The further fact, however, that the com-
Frequency (kHz) puted correlation dimension, regarded as a function of the

FIG. 2. (a) Waveform andb) spectrum of a short sample of the song of the embeddlng dlm_enSIO_n’ rlse.s toa gently sloplng plateau \./a!ue
sulfur-crested cockatoo. Plots for the gang-gang cockatoo are very similarfor_ an embedding dimension g_reater than _apOUt 3’_ distin-
guishes the call structure from simple band-limited noise, for

which the correlation dimension rises smoothly to large val-

and the gang-gang cockatoo is marked. While the wavefornaes with increasing embedding dimension.
of the song of the boobook owl and rosella parrot appears
“smooth” in each case, that of the two cockatoos has 3 visual recurrence analysis
“rough” appearance, as shown for the case of the sulfur-
crested cockatoo in Fig(&. Each cockatoo call had a broad As a second approach to understanding the nature of the
power spectrum peaked at about 2.5 kHz and with mangockatoo call, the technique known as visual recurrence
subsidiary peaks, as shown for a short segment of the sulfunalysis® was used. In this approach, the signal is sampled at
crested cockatoo call in Fig(i. This confirms the analysis @ set of equally spaced timgsand at each time the follow-
provided by the spectrograms of Fig. 1. The quasiperiodidnd N sample values are used to define limensional
components are, however, of large amplitude. The largestectorY; associated with the timg. A color-coded matrix
Lyapunov exponent for the sulfur-crested cockatoo call Wagplot is then made of the Euclidean distance between all pairs
0.28+0.06 and that for the gang-gang 0:28.05. As shown of vectors, such that thei ,q)th element of matrix is the
in Table I, these values are comparable with those computedistance between the vectors andY;. Although it is dif-
for typical chaotic signals, such as those associated with thcult to draw any quantitative conclusions from such a plot,
Lorenz and Henon systems, and indicate a lack of predictt does show up patterns in the data in a very clear manner—
ability. For each bird the correlation function has the form ofa well-correlated signal gives a repetitive pattern, a chaotic
a decaying cosine wave, as shown for the sulfur-crestegignal has an irregular but definite pattern, and simple noise
cockatoo in Fig. 3, the decay rate being rather more rapid ifias a pattern that is irregular at all scales.
the case of the gang-gang. In neither case, however, is the Figure 4a) shows a recurrence plot for a signal consist-
ing of two incommensurate nonlinearly interacting harmonic
signals, as discussed in the next section, and Riy.a plot
to a similar scale for a random noise signal. These figures set
the range of variation to be expected. Figu(e) Shen shows
\ the recurrence plot for the Lorenz attractor, while Figo)5

shows a plot to a similar scale for the cockatoo call. The
\ similarity between Figs. & and Jb) is clear, as is their
\ /[\\ //\\ A difference from the plots of Fig. 4. We again conclude that

/\ /\ /\ \ /\ /\ /“ the call of the cockatoo likely has a chaotic nature.
I / \/ \/ \/ \/ \/ II. PHYSICAL MODEL

4
} It is important to seek the reasons why the cockatoo
V calls might be chaotic, or at least the mechanism that might
lead to this result. For the present this is largely speculation,
but as such is necessary as a guide to further studies. In
particular it is important to distinguish chaotic song from the

FIG. 3. Computed correlation function for the song of the sulfur-crestedtyPe Of r!onlinearly mixed two-voice song described in the
cockatoo. Introduction.

Correlation function

Time separation
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(b) FIG. 5. Visual recurrence analysis plot ¢d) the Lorenz attractor time

series, andb) the song of the sulfur-crested cockatoo. The recurrence plot
for the Henon attractor is qualitatively very similar to that for the Lorenz

FIG. 4. Visual recurrence analysis plot @) two nonlinearly coupled har- attractor.(The original plots were in color.

monic signals, as defined by Eq4)—(3), and(b) a random noise signal.
(The original plots were in color.

of degrees of freedom for chaotic oscillation, rather than sim-
ply for the generation of multiple sum and difference fre-
Although the largest Lyapunov exponent is significantly quencies. At the same time, the natural frequencies of the
different from zero, the waveform in Fig(@ has at least two syringeal valves may well contribute quasiperiodic com-
one strong quasiperiodic component, which is also visible omonents to the overall oscillation, as observed.
the spectrogram in Fig.(B). In addition, the correlation On the other hand, it is possible that the two nonlinear
function of Fig. 3 also has a periodic structure, although ongnembrane vibrations simply couple nonlinearly to produce a
that decays toward zero with time. These facts suggest thagultitude of multiple sum and difference frequencies that
the mechanism might be one in which the syringeal valves ijives the appearance of chaos. To test this, a synthetic signal
the two bronchi of the bird oscillate simultaneously and arey(t) was created from two harmonic signalgt) andx(t)
coupled by a strong interaction through the sound pressure @bmbined nonlinearly. Specifically,
the base of the trachea. The fact that the bird has a very loud _ .
cry, with an estimated radiated power of at least 100 mW, X1(1) = sin(wst) +ay SIN2w1t+ ¢1)
implies an acoustic pressure at the base of the trachea that is +a, sin(3wit+ ¢y), (1)
perhaps as high as 1 kPE54 dB. Such an acoustic pressure
is comparable to the blowing pressure below the syrinx and ~ X2(t) =SiN(wot) + a5 SIN(2wot + ¢b3)
can therefore strongly influence the vibration of the syringeal ;
valves. Furthermore, the airflow through these valves is a T azsin3wat+ ¢y), @
highly nonlinear function of pressure drop across them, and y(t)=[xq(t)+Xo(t) ]+ by[ X1 (1) +X(1)]?
the membrane vibrations themselves are probably quite non-
linear because they are likely to contact the wall once in each bl xa(1) +x2(, @)
cycle. where the fundamental frequencies; and w, have no
With two nonlinear vibrating sources and a strong non-simple integer relationshipa,=1.38240,), and the ampli-
linear coupling between them, there is an adequate numbéndesa,, andb,, are given asa;=0.3, a,=0.1 andb,;=b,
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=0.1. The waveform and spectrum of this signal showed The investigation of chaotic oscillations in simple sys-
patterns broadly similar to those recorded for the cockatodems, by which is generally meant systems with a small num-
cries. As shown in Table I, however, the largest Lyapunower of degrees of freedom or dynamic variables, is now a
exponent in this case is essentially zero, the actual valueell-established subjeét. The case of birdsong is likely to
given by the CDA program being-0.01+0.03. The corre- be more complex because the primary oscillating system, the
lation function is irregular but shows no decline in amplitudesyrinx, has many degrees of freedom corresponding to wave-
with time, while the visual recurrence plot, shown in Fig. like motions on the membranes or other vibrating structures,
4(a), has an obvious regularly repeating structure. We conand because there may often be two vocal sources involved.
clude that a simple nonlinear mixing of two periodic signals, This makes detailed analysis much more difficult.
as might indeed be achieved in the syrinx, cannot explain the  This study thus supports the detailed work of Fee and
nature of the observed sound signal. colleague$ on the song of the zebra finch. Their analysis
The final possibility to be investigated is that the signalshowed the existence of abrupt period-doubling transitions in
consists of a nonlinearly combined pair of harmonic signalsthe song, a feature that is characteristic of one major route to
as just discussed, with a significant admixture of randonthaos® Their numerical analysis showed that such a transi-
noise. A signal with this property was constructed, the ratiction could be derived for the case of a simple model of air-
of peak noise to peak signal being either 0.1:1, 0.3:1 or 1:1flow through a compliant constriction, without requiring two
The CDA program was then used to determine the largeshdependent oscillatory sources. It is also interesting to note
Lyapunov exponent for the signal and also the behavior othat the double reeds of woodwind instruments such as oboes
capacity and correlation dimensions with increasing embeder bassoons show a period-doubling transition when blown
ding dimension. For noise ratios of 0.1:1 and 0.3:1, the largvigorously and not fitted to the instrumer- a test carried
est Lyapunov exponent was less than 0.01, indicating noneut when the reed is being adjusted by the player.
chaotic behavior. For a noise ratio of 1:1, the calculated  While the vocal utterances of these Australian cockatoos
Lyapunov exponent was 0.2, but the capacity and correlatioappear to be entirely chaotic in structure, and thus an ex-
dimensions increased steadily with increasing embedding direme case, it seems likely that shorter syllables with highly
mension, as for an essentially random-noise behavior. It canonlinear or even chaotic structure may be part of the vocal
be concluded that the bird cry is not adequately simulated byepertoire of many birds.
such signal.
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