676

with H(¢, g, p) = " Llog(¢"'/p) — kt"q. Because
this is 4 non-autonomous system, with ¢ appearing
explicitly, the Hafiltonian H is not a constant of
-motion. However, (6) is invariant under the one-
parameter group of scaling symmetries r — ur,
f— w1 f, so by introducing the new scale-invariant
‘independent variable y= fr, and the dependent

. varidbles v =v(y) = —logt, w=dv/dy, it reduces to
a first~order equation for w(y):
dw

o y@2n — ky)w? + (3n — 2ky)w?
+((n—1)/y — bw.

Unfortunately, it is not possible to reduce this to a
quadrature, since the action (7) is rot invariant under
scaling, unless k = 0 when the general solution to (6) is
f@&) =(At™ + B)Y/™ (with A, B arbitrary constants).
Other important methods for ODEs include the
Painlevé analysis of movable singularities (Kruskal &
Clarkson, 1992), and asymptotic expansions around
regular orirregular fixed singular points (Wasow, 1965;
Tovbis, 1994).
ANDREW HONE

See wlso Chaotic dynamics; Constants of mo-
tion and conservation laws; Euler-Lagrange equa-
tions; Extremum principles; Hamiltonian systems;
Integrability; Painlevé analysis; Partial differential
equations, nonlinear; Riccati equations
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See Spiral waves.

OVERTONES

OSCILLATOR, CLASSICAL
NONLINEAR

See Damped-driven anharmonic oscillator

OVERTONES

When a tonal sound, such as a note played on a flute,
a human vowel sound; or a bell, is analyzed in the fre-
quency domain by applying a Fourier transform to the
acoustic pressure waveform, the spectrum consists of a

- large number of sharp lines. The component of lowest

frequency is termed the “fundamental”, and the others
are “upper partials” or “overtones.” If the frequencies of
the overtones are all exact integer multiples of the fre-
quency of the fundamental, then they are termed “har-
monics.” The partial with frequency f, =nf1, where
f1 is the frequency of the fundamental, is the nth har-
monic, so that the fundamental is the first harmonic.
A one-dimensional simple harmonic oscillator, or
linear oscillator, in which the restoring force is
proportional to displacement y from the equilibrivm
position, obeys the equation
d?y
maz— = —ky, )]

where m is the mass of the moving particle and k
is the restoring force constant. A damping term can
also be included, but this need not concern us here.
Such an oscillator vibrates with a single frequency
f1=(1/2m)(k/m)*/? thatis independent of oscillation
amplitude. It is useful to think of this oscillator in terms
of its potential energy function, which is quadratic as
shown in Figure 1(a). In real oscillators, the restoring
force is not linear for large displacements, but nonlinear
so that

d2

= =kl +aytam?+), @

where the o, are constants. The energy curve then has a
distorted parabolic form such as that shown as an exam-
ple in Figure 1(b). In the absence of damping, the total
energy must remain constant so that the magnitude of
the velocity is a simple function of the displacement,
and the motion repeats cyclically. This means that the
spectrum of such a nonlinear oscillator consists of exact
phase-locked harmonics of the fundamental frequency,
though this fundamental frequency depends upon the
amplitude of the motion. For a reason that is derived
from molecular physics, as discussed below, such a
nonlinear oscillator is often confusingly called an “an-
harmonic oscillator.”
A thin taut string of length L ideally obeys an
equation of the form
82y 32y
\ "z = o )
where x measures length along the string, m is the
mass per unit length, and T is the string tension.

m
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Figuare 1. (a) Potential energy curve for a simple harmonic
oscillator. (b) Potential energy curve for a typical nonlinear
oscillator such as a diatomic molecule.

If its ends are rigidly fixed, then the mode frequen-
cies are exact harmonics of the fundamental so that
fo=@/2L)(T/m)Y?. Tt is thus a multimode har-
monic oscillator. The nonlinear frictional action of
the bow on a violin reinforces the harmonicity of the
modes and locks them into rigid phase relationship
(Fletcher, 1999). Something very similar happens with
wind instruments, which also have precisely harmonic
spectra.
A thin stiff bar, on the other hand, obeys an equation
of the form
2 4
ma—y =K 0
912 dx

<

, “

~

where K is the elastic stiffness. If the ends are free
or rigidly clamped, then the mode frequencies are
approximately f, ~ g(n + %)2 f1, and the overtones
are very far from being harmonically related. Such an
oscillator might be termed “inharmonic.” The modes of
a three-dimensional object such as a bell are even more
complex (Fletcher & Rossing, 1998).
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While sustained-tone musical instruments depend
upon the nonlinearity of the active generator for
their operation (bow, reed, or lip air-flow), the linear
resonator (string or air column) determines the os-
cillation frequency, so that the pitch is nearly inde-
pendent of loudness, and only the relative amplitudes
of the harmonics change (Fletcher, 1999). Some Chi-
nese opera gongs, however, make a virtue of nonlin-
earity so that, after an impulsive excitation, the pitch
either rises or falls dramatically as the vibration dies
away (Fletcher, 1985). The frequencies and relative
intensities of upper partials determine the tone qual-
ity of a musical sound and have dictated the devel-
opment of musical scales and harmonies (Sethares,
1998).

The human auditory system itself hassome nonlinear
aspects (Zwicker & Fastl, 1999), and, as in any forced
nonlinear oscillator, these lead to ‘the generation of
harmonics (“harmonic distortion”) and of multiple sum
and difference tones (“intermodulation distortion™). In
the ear these are chiefly apparent in the generation
of the difference tone' | f; — f2| when loud tones of
frequencies f; and f> are heard simultaneously.

Optical absorption and emission spectra have many
similarities to acoustic phenomena (Herzberg, 1950;
Harmony, 1989). Diatomic molecules, for example,
have interatomic potentials of the form shown in
Figure 1(b) and thus constitute nonlinear oscillators.
If the interatomic potentials were simply parabolic, as
in Figure 1(a), then the quantum energy levels would
have the form E, = (n+ $)hv, where h is Planck’s
constant and v is the classical vibration frequency
labeled f7 above. The wave functions describing the
atomic vibration would then be either symmetric or
antisymmetric, and the selection rule would dictate that
n could change only by 1. There would thus be only
a single absorption band consisting of the vibrational
transition 0 — 1 surrounded by the allowed rotational
transition lines.

For a more realistic model of the interatomic
potential, as in Figure 1(b), the energy levels can be
written as

En = (n+ [l + pi(n+ 1)
+Ban+ 3+ 1, (5)

where 8, are usually called the “coefficients of an-
harmonicity” and By is always negative in practice.
The asymmetry of the potential also relaxes the se-
lection rule so that in addition to the strong allowed
absorption transition 0 — 1, there are much weaker
transitions from n =0 to higher levels. The absorp-
tion bands associated with these transitions have fre-
quencies that are in approximate, but not exact, har-
monic relationship to the fundamental, and are called
“overtone bands.”
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Although the quantum treatment of a nonlinear
oscillator may seem to conflict with the classical
treatment, and the term anharmonic certainly suggests
this, there is not really any disagreement. The

infrared spectrum is derived from transitions between

two levels of different energies, and therefore different
- classical amplitudes, and the classical frequency
depends upon amplitude, as for the Chinese opera
gong.

NEVILLE FLETCHER
See also Damped-driven anharmonic oscillator;
Harmonic generation; Molecular dynamics;
Nonlinearity, definition of; Ordinary differential
equations, nonlinear; Partial differential equations,
nonlinear; Spectral analysis -
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