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ABSTRACT

The variational method of Fletcher and Adamson is used, together with an
interaction potential due to Harrison, to calculate the energy of a (100) twist
poundary in aluminium as a function of twist angle. The calculated energy rises
from a cusped zero for zero misfit to high-angle misfit values of about 500 to 700

erg cm~2, in reasonable agreement with the only experimental data available.

§1. INTRODUCTION

Calculations of the energies of grain boundaries in metals have generally
been made in terms of the dislocation model introduced by Read and Shockley
(1950). This theory is perfectly satisfactory for small misfit angles and, if the
elastic moduli of the metal are assumed known, it contains only one adjustable
parameter which is related to the core energy of an isolated dislocation. For
misfit angles greater than abott 15°, however, the physical picture upon which
this model is based loses its validity because the dislocation cores begin to
overlap, and for angles greater than about 30° the numerical predictions become
unreliable.

More recently several other approaches to modelling a crystal interface to
examine its behaviour have been developed. A critical review of some of these
has been given by Fletcher (1971) while others are described in the Proceedings
of the International Conference held at Yorktown Heights in 1971 (Chaudhari
and Matthews 1972).

Tf real interfaces are to be considered in detail, then there seems to be no
alternative to a careful calculation using a realistic interatomic potential, and
here there are two possibilities : the real-space computer calculations exempli-
fied by the work of Hasson, Boos, Herbeuval, Biscondi and Goux (1972) and of
Weins, Gleiter and Chalmers (1971) and Weins (1972), and the reciprocal space
variational method introduced by Fletcher and Adamson (1966) and further
examined by Lodge (1970).

The real-space calculations give excellent results when applied to tilt
boundaries of small repeat distance, using a Morse or similar potential (Hasson
et al. 1972, Weins 1972). The reciprocal space method is more suited for
epitaxial problems and for twist boundaries and again gives useful results when
a simple potential is assumed (Fletcher 1967).

The purpose of the present paper is, however, to present an ab initio calcula-
tion of twist boundary energy for aluminium, using a quantum-mechanically
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derived interaction potential due to Harrison (1966), in order to evaluate the
difficulties involved in such a procedure.

§ 2. BASIS OF THE THEORY

For any grain boundary, the energy problem essentially reduces to finding
that atomic configuration which yields the minimum total free energy (or
simply the minimum energy if the temperature is well below the melting
point). The problem can reasonably be simplified by approximating the
crystal material well away from the interface by an elastic continuum and
reserving atomic coordinates for the discussion of just a few atomic layers on
either side of the interface. These atomic coordinates can then be varied,
taking into account the interatomic potentials and using appropriate connec-
tions to the assumed elastic continua, until the energy is minimized.

The method used here is essentially as outlined above, with the vital
modification that the whole variational problem is treated in reciprocal space
using the Fourier transform w»(k) of the interatomic potential instead of the
direct potential v(r). The detailed procedure and the reasons for its appro-
priateness are set out by Fletcher and Adamson (1966) while some additional
refinements to the elastic problem and minor amendments to second-order
terms are given by Lodge (1970) and by Fletcher and Lodge (1975).

In the original formulation of Fletcher and Adamson (1966, eqn. (21)) the
elastic strain energy for a half-crystal was written in the simplified form

3
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where Cg, and Dy, are Fourier components of the*distortion and =, are three
¢ effective elastic constants’. A more correct expression not only makes
these 7, explicit in terms of the shear modulus p but also includes coupling
between the Ox; and Dy, through the Poisson’s ratio o. Assuming isotropic
elastic behaviour, the elastic strain energy is given by
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The connection formulae between the distortions in the two half-crystals
are also extended from the simplified form (Fletcher and Adamson 1966, eqn.

(20))
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to the explicit and rather more complex relations
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The meaning of the various symbols is set out by Fletcher and Adamson (19686).
These expressions simplify in the present case since p=pu’ and o=,

§ 3. INTERACTION POTENTIAL FOR ALUMINIUM

The effective interaction between atoms in aluminium is built up from two
components : the repulsive Coulomb interaction between aluminium jon cores

so that the total interaction resembles an exponentially shielded Coulomb
repulsion with, superposed upon -it, an oscillation related to the shielding
cutoff. This potential, as calculated by Harrison (1966), is shown as the full
linein fig. 1. Tt is the principalminimum produced by the oscillations which is
responsible for the net attractive interaction between aluminium atoms in the
metal.

Fig. 1
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Effective interatomic potential in aluminium obtained by Harrison ( 1966) (unbroken
line) compared with that obtained from the altered Fourier transform (see
fig. 2) truncated at k=4-64 a.u. (broken line). -

At very small distances r the interatomic potential v(r) goes towards
infinity like Z%2/r, where Ze is the effective ionic charge. This produces a
Fourier transform v(k)-which is large and of long range, as shown in fig. 2, and is
therefore not very suitable for a variational calculation since components at
many reciprocal lattice points are involved. Ag far as the atomic interaction
is concerned, however, the exact form of v(r) at very small 7 is immaterial, and
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Fig. 2

)
S
o
o
T
—

300r \

- -2
200 \

100

Potential Transform (Rydbergs(a.u.)3

-
—
———

2 3 4 5
k/ke  (ke=0-9273q.u.)

Fourier transform of the effective interatomic potential obtained by Harrison (1966)
(broken line) compared with that obtained using the modified core potential
(eqn. (9)) (unbroken line and insert). The truncation point of 4-64 a.u. is
indicated by the arrow.

the potential can be modified in this region to optimize the form of the Fourier
transform. Therefore, a modified core potential (unshielded) is selected, of the

form
Z2 2
v’(r):——Re <2—-—%>, r<R

2,2
_Ze r> R, 9

o
where R is chosen small enough (actually 3-5 at. units or about 1-9 A) that ion
overlap into the altered region never occurs. The contribution from the
conduction electrons is left the same as before and the resulting form of
the transform v(k) is shown as the full curve in fig. 2. The reduction in
the range of v(k) is easily apparent.

This potential of Harrison has the advantage from the present point of view
of having been derived entirely ab initio. It therefore has certain complexities
associated with it which are real but which would not appear in a simple model
potential like that of Fletcher (1967) after adjustment to fit the physical data
for aluminium. One of the best tests of an interatomic potential is to apply
it to the calculation of elastic moduli. In the present case the relevant moduli,
both for the testing of Harrison’s potential and for subsequent use, are those
involving no volume change. These elastic moduli ¢;; as calculated and as
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found from experiment are shown in the table. For a homogeneous isotropic
medium, the shear modulus u is given by

p=Cgq=13(C13 —Cyy). (10)

Elastic constants for aluminium
(¢s; and p in units of 101 dyne cm=2).

Theory (Harrison) | Experiment

Caa 15 2:8
$(011—010) 34 23

@ 2:5 2-6

o (<0) 0-345

It is evident from the experimental data in the table that aluminium is hot
completely isotropic, in the sense of the equality required by (10), but that the
experimental value of p for polycrystalline aluminium is equal to the mean of
¢4e 80d §(cy1 —Cgp).  The theoretical values exaggerate the anisotropy but again
the mean value, which must be used in the simplified theory, is very close to the
experimental value.

Harrison’s theory applies essentially to atomic displacements in which the
volume of the crystal remains unaltered. Because the potential function omits
terms depending upon volume changes it is thus unable to give a good account
of elastic quantities like the bulk modulus and Poisson’s ratio. For this
reason it is not necessary to take too seriously the failure of the theory to
predict a physically reasonable value for Poisson’s ratio. The values of u and
used for the calculation are the experimental values in the table.

§ 4. TWIST BOUNDARY ENERGY

The variational theory is best adapted to the calculation of the energy of
twist boundaries on low-index planes. Indeed it was originally developed to
treat problems of epitaxial growth where this is the situation of interest. While
tilt boundaries can be encompassed by the theory, they are not nearly so simply
dealt with. TFor this reason a calculation of the energy of a twist boundary
lying on a (100) plane in aluminium was undertaken.

The variational procedure was carried out using the Harrison potential,
treated as discussed above, for the interaction between one atomic plane on
either side of the interface, the distortion energy for each semi-infinite crystal
being taken into account by the elastic continuum approximation. Such a
procedure is reasonable for twist boundaries but would not generally be satis-
factory-for tilt boundaries.

The reciprocal space summation involved in the calculation of the interaction
energy (Fletcher and Adamson 1966, eqn. (19)) must be truncated at some
appropriate point. This is equivalent to truncating the transform w(k), the
effect of which may be seen by determining the potential resulting from the
~ truncated transform. A reasonable value for truncation was taken to be
k=4-64 a.u. and the potential resulting is shown as the broken line in fig. 1.
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The reciprocal space summation parallel to the interface may be further
truncated as this simply involves the neglect of certain distortion components.
The value used for this truncation was 2-7 a.u. such that the neglected distortion
components have a negligible effect on the grain boundary energy. In the
same: way only distortion components with vectors K of magnitude less than
0.81 a.u. were found to contribute appreciably to the energy.

Even with these simplifications the computational problem is long because
of the number of variational parameters and the complexity of the second-order
terms. Computation for a single twist orientation took up to 2 hours on an
ICL 1904-A computer. For this reason only ten points were calculated, ag
shown in fig. 3. With the exception of the point for zero misfit, which is
accurate and provides a base energy for the other points, the calculation gives
an upper bound as well as a first approximation to the grain boundary energy.

Fig. 3
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Calculated grain boundary energy as a function of angle for a twist boundary lying
: on a (100) plane in aluminium.

The calculated behaviour is, however, in reasonable agreement with expecta-
tions. There is a cusped energy minimum at zero misfit, and the grain
boundary energy rises to between 500 and 700 erg em—2 for high-angle misfit.
The only coincidence boundary for which there is evidence of a cusp is for the
2, 1—1,-2 coincidence at 36° 52-2". The large minimum at about 22° arises
from the combined effects of the distortion vectors joining the surface reciprocal
lattice points 1,0—1,0; 1,1—1,0; 0,1-1,1; 1,1-1,1; 2 12,0
in the first quadrant and the corresponding vectors in the other three quadrants.
There is also a minimum in the interplanar spacing across the interface in the
same region. Although the minimum appears to coincide with a coincidence
boundary at 22° 37-2’, the corresponding coincidence in the surface reciprocal
lattices (3, 2—2, 3) is outside the range of the truncated potential transform
and so will not affect the energy. The curve is symmetrical about 45° misfib
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through the symmetry of the theory. The value of the large-angle grain
poundary energy is in satisfactory agreement with the result 630 + 100 erg cm—2
found calorimetrically by Astrom (1957).

Details of the calculation are, however, somewhat less satisfactory. The
interplanar spacing across the interface for zero twist angle is about 8%
smaller than the proper (100) spacing in aluminium, corresponding to a nearest
neighbour distance 4%, too small and suggesting a shortcoming in the potential
itself. This potential is determined from the band structure energy of a perfect
lattice and may not well represent the potential seen by atoms in a distorted
lattice. More serious, perhaps, is the restriction of the interaction across the
interface to only one atomic plane on either side.

The truncation of the transform v(k) also introduces an error in the calcula-
tions. Comparison of the two potentials in fig. 1 suggests that an error of 209,
could be introduced in a real space energy calculation. The effect on the
reciprocal space calculation is expected to be similar. This is corroborated
by the effect of the truncation on integral approximations to the surface
reciprocal lattice summations involved, which have about the same error.
The total effect is, however, a little more subtle than this.

In plotting the grain boundary energy of fig. 3, the zero of energy was
taken at zero misfit by convention. This in fact corresponded to a calculated
interaction energy of — 698 erg em=2. The error in the zero misfit energy due
to truncation is thus about + 150 erg cm™2  For high-angle misfits the 209,
error occurs in interaction energy dependent coefficients of the various distor-
tion components. As no large cancellation is involved in these terms an error
not greatly larger than 209, is to be expected. The interaction energy for
high-angle misfits being on average about — 200 erg cm—2 this gives an error
of + 50 erg cm~2 in this region.

It is concluded, therefore, that a calculation of the twist boundary energy
from first principles is feasible using the reciprocal-space variational method.
The calculation time, is however, rather long and a method using an appro-
priately chosen model potential may be of more practical utility.
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