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ABSTRACT

Display ads proliferate on the web, but are they effective?
Or are they irrelevant in light of all the other advertising
that people see? We describe a way to answer these ques-
tions, quickly and accurately, without randomized experi-
ments, surveys, focus groups or expert data analysts. Dou-
bly robust estimation protects against the selection bias that
is inherent in observational data, and a nonparametric test
that is based on irrelevant outcomes provides further de-
fense. Simulations based on realistic scenarios show that
the resulting estimates are more robust to selection bias
than traditional alternatives, such as regression modeling or
propensity scoring. Moreover, computations are fast enough
that all processing, from data retrieval through estimation,
testing, validation and report generation, proceeds in an au-
tomated pipeline, without anyone needing to see the raw
data.
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1. INTRODUCTION

Online display ads have many formats. They may be plain
text, static images, video clips, or games that users can play.
An ad campaign may use just one format or a mix of for-
mats that changes over time. The ad creatives (ad content)
may change over time even if the ad format does not change.
Some campaigns may use only a few creatives for months,
while others may use thousands of creatives, changing them
by site and over time. The rate at which impressions are
served may change abruptly with short bursts of intense ac-
tivity interspersed among lulls in ad serving. Or, a campaign
may move from narrowly targeted to broadly targeted, and
the sites at which ads are shown or the geographical areas
that are targeted may vary. In other words, a campaign
is whatever the advertiser defines it to be. The advertiser
may simultaneously run similar campaigns in other media
such as print, radio or television and its competitors may
simultaneously run their own campaigns, perhaps showing
display ads on the same websites. The question is whether
a display ad campaign, however complex or simple it and its
environment may be, is effective.

Traditionally, online campaign effectiveness has been mea-
sured by “clicks” because someone who interacts with an ad
was affected by it. Besides, counting clicks is nearly cost-
free. However, many display ads are not click-able, or at
least not obviously so, and some campaigns hope to build
longer-term interest in the brand rather than drive an imme-
diate response. Counting clicks alone then misses much of
the value of a campaign. More subtle effects can be elicited
from focus groups and panels, but these provide small sam-
ples and are too expensive for routine application. Delayed
responses to a campaign can be measured by counting visi-
tors to the advertiser’s website or users searching for brand
terms during the campaign, but these metrics overstate cam-
paign effectiveness. Some people would have visited the ad-
vertiser’s website or searched for brand terms even if the
campaign had never run. Better measures of campaign ef-
fectiveness are based on the change in online brand interest
that can be attributed to the display ad campaign alone.

We propose robust estimates of the change in the proba-
bility that a user searches for brand terms or navigates to
brand sites that can be attributed to an online ad campaign.
The estimates require only summary data from opt-in users
and can be computed and validated in an automated pipeline
so even the summary data are not viewed by anyone. Only



highly aggregated statistics need to be released to advertis-
ers, and then only if validation tests are passed.

Our measures of campaign effectiveness are developed in
the framework of causal models introduced by Rubin [20].
Randomized experiments that randomly assign a user to the
“served an ad” group or to the “not served an ad” group are
the gold standard for estimating treatment effects in causal
models. However, true randomization for display ads re-
quires an advertiser to forego showing ads to some users, and
possibly to pay for public service announcements or blank
ads that appear in its allotted space instead. Often advertis-
ers are not keen to relinquish an opportunity to advertise or
to pay for non-campaign ads. Randomization also requires
the study to be set up before the campaign runs.

Estimation without randomization is more difficult but
not always impossible. Section 4 describes estimation based
on propensity scoring; a refinement known as doubly ro-
bust estimation is discussed in Section 5. To further pro-
tect against residual, hidden selection bias, we introduce a
new nonparametric test for observational studies (Section 6).
Namely, the test statistic for an outcome of interest to the
advertiser is judged against a null distribution that is based
on a set of outcomes that are irrelevant to the advertiser.
Additional validation steps are discussed in Section 7. To
make the ideas concrete, data from an actual campaign are
introduced in Section 3 and discussed throughout. Experi-
mental results are reported in Section 8.

We are not the first to use causal models to evaluate cam-
paign effectiveness. In a careful analysis of one set of data,
Rubin and Waterman [21] used stratified propensity scores
to evaluate the effect of visits from pharmaceutical sales
teams on the number of prescriptions that physicians write.
Fulgoni and Morn [5] match exposed and control panelists
on a set of characteristics X such as query volume and then
compare the fractions of matched control and exposed sam-
ples that show interest in the advertiser after the campaign.
But matching can fail when X has many dimensions, and
it does not lead to an obvious test of residual, undetected
selection bias. Our approach avoids matching on X and has
built-in safeguards against hidden selection bias, and so is
more suited for routine application. We believe that this
is the first method that has enough built-in safeguards to
run in an automated pipeline that retrieves data, computes
estimates, and decides whether to release results, suppress
results, or send them to an expert data analyst for review.

2. CAUSAL EFFECTS

Imagine a parallel universe exactly like ours, except for
one small change: an advertiser never ran a particular dis-
play ad campaign. Competitors still advertised their prod-
ucts, and the advertiser still advertised in other media, but
the campaign display ads did not run. What would have
changed? Would fewer people have visited the advertiser’s
web site or searched for the advertiser’s products and ser-
vices, or would those counts not have changed? If noth-
ing would have changed, then the campaign was ineffective.
This notion of counterfactuals, or what would have hap-
pened had the campaign not been run, is fundamental to
understanding the analysis of observational data found in
corporate and government databases.

Re-stating in the language of statistics, an advertiser is
interested in an outcome Y, such as “user visits a brand
website” or “user searches for a brand term”, where positive

values of Y indicate interest in the advertiser’s brand. Every
user who could be exposed to a campaign ad has two po-
tential values (Yo, Y1) of the outcome, where Yy will be the
user’s outcome if not shown a campaign ad and Y; will be
the user’s outcome if shown an ad. Both Yy and Y7 cannot
be observed for the same user because a user either is or is
not shown a campaign ad. The unobservable outcome, re-
gardless of whether it is Yy or Y1, is called a counterfactual.
The observed outcome will be denoted by Y.

The unobservable per-user difference Y1 — Yy is the effect
of the campaign on that user. If Y7 = Yp, then the cam-
paign had no effect on that user, at least not as measured
by the outcome Y. Only Y1 > Yp is a favorable response.
The average campaign effect on those served an ad is then

A=EY,-Y) =EM)—-E(Yo),

where E denotes an average taken over all users who were
served ads. Note that A does not include users who might
have been served ads but were not. In other words, A mea-
sures the effect of the campaign as it was run, not what the
effect would have been had the advertiser been able to serve
everyone an ad. In the terminology of causal models, A is
called the treatment effect on the treated [22].

The challenge is to estimate the average unobservable out-
come E (Yp) for the users who were served ads. Randomly
assigning users to a test group that is served campaign ads
and a control group that is not served ads would make
that easy. On average the randomized exposed and con-
trol groups will be similar except for their exposure status.
We would expect large random samples of controls and ex-
posed users to be equally active on the web, to have the
same geographical distribution, and to be equally interested
in the advertiser before the campaign, for example. Ran-
domization alone then justifies using the average observed
outcome Yeontroi Of the controls as a proxy for the unob-
servable “without-campaign” average outcome F (Yj) for the
exposed, so Yezposed — Yeontrol €stimates A.

Unfortunately, the process of serving ads does not ran-
domly assign users to exposed and control groups. The most
glaring problem is that active web users are much more likely
to fall in the exposed group than inactive users are. Any-
one who arrives at a webpage when an advertiser is alloted
space on the page and who satisfies the targeting conditions
for the campaign is served an ad. The more a web user
visits a web page that sometimes shows campaign ads and
sometimes does not, the more likely the web user is to see a
campaign ad. So, more active web users are more likely to
be exposed and less active web users are more likely to be
unexposed and hence potential controls, even if they satisfy
the targeting conditions for the campaign. Unfortunately,
more active web users are also more likely than inactive
users to visit any site on the web, including the advertiser’s
site, even if they are not shown an ad. In other words, the
without-campaign average outcome E(Yp) for the exposed is
probably higher than E(Yp) for those not served ads, mak-
ing the unexposed users poor surrogates for the exposed in
the without-campaign state. In short, the ad serving pro-
cess leads to selection bias or differences in the control and
exposed that are related to the distribution of the outcomes
(Yo, Y1). If ignored, this selection bias contaminates the es-
timated campaign effect. Our goal is to use the unexposed
users to produce statistically sound estimates of F (Y;) for
the exposed.



3. THE CONTROLS

Simply put, the controls were eligible to be served cam-
paign ads but were not. More precisely, our controls are
users that satisfy the following four conditions C1 - C4. The
controls

C1 met targeting conditions, such as country and language,

C2 visited a website near a time that it served a campaign
ad to an exposed user in the study,

C3 were served at least one non-campaign ad on that visit
to the publisher site, so were not blocking ads served
by google.com, and

C4 were not served campaign ads during the study period.

Websites that show campaign ads are called publisher sites.

The first ad served to an exposed user breaks its time-
line into before and after exposure periods. Before and after
periods are defined for each control by choosing one of its
visits to a publisher site during the campaign to be a pseudo-
exposure. The duration of the before period is the same for
each user. The after period extends from the time of the first
exposure or psuedo-exposure until the end of the campaign
or until the end of a post-campaign follow-up period during
which the advertiser may continue to accumulate responses
to the campaign. An advertiser may also specify that the pe-
riod to be analyzed end before the campaign ends, in which
case there is no follow-up period.

Our estimates require summary (not personally identifi-
able) data on exposed and controls. The summary data are
obtained from several sources, including the advertiser’s own
campaign information, ad serving logs, and sampled data
from users who have installed Google toolbar and opted in
to enhanced features. The summaries include features such
as the country and language from which the user most of-
ten accessed the web and measures of online activity in the
before period, such as total number of navigations, number
of navigations to the sites that showed campaign ads, and
number of navigations to the advertiser’s site before expo-
sure. Exposure data include time of first exposure and the
number of campaign ads served to the user during the analy-
sis period. If the analysis captures only a slice of an ongoing
campaign, then campaign exposure before the analysis pe-
riod is also measured. Finally, brand outcomes are actions
that the advertiser believes will be affected by the campaign,
such as whether the user navigated to the advertiser’s web-
site or searched for a brand term after exposure.

To protect privacy, estimates are not released for rare out-
comes. All of the results reported to advertisers are aggre-
gated over thousands of users. Moreover, all the data used
in the analysis are anonymized, so it is not possible to match
a summary record back to a small sample of records in the
raw logs. For example, geographical areas are aggregated to
meet privacy constraints. In addition, because the system is
fully automated, no one sees even the summary records.

Although the controls met the targeting conditions C1 -
C4, so could have been served ads, they are different from
those who actually were served ads. In particular, as pre-
dicted in Section 2, the exposed are more active on the web
than the controls are. Figure 1 compares the online activity
of the controls and exposed before their first exposure for
a campaign that lasted 42 days and had about 150 differ-
ent ad creatives. The study includes about 15,000 exposed

users and 70,000 controls. Each of the four panels in Fig-
ure 1 considers a different measure of online activity for these
samples, and each point in a panel shows the ratio of a per-
centile of the activity for the exposed to the same percentile
of the activity for the controls. If controls and exposed were
equally active, their percentiles would be equal, and the ra-
tios of their percentiles would be one. Clearly, that is not
s0; the exposed are much more active. The median exposed
navigation count is 2.8 times the median control navigation
count, the median exposed navigations to sites that pub-
lished campaign ads is 4.1 times the median for the controls,
and the median number of non-campaign display ads served
to the exposed on the publisher sites is 8.7 times that of
the controls. In other words, the controls did not act like
the exposed before exposure, so the average outcome of the
controls after exposure is likely to be a poor estimate of the
average counterfactual E(Yp) for the exposed.
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Figure 1: Ratios of the percentiles of the activity
levels of exposed web users and controls satisfying
conditions [C1] - [C4] before exposure. The dashed
line corresponds to a ratio of one.

4. PROPENSITY SCORES

If a control and exposed user were identical before expo-
sure, then it is reasonable to assume that they would have
had the same probability of showing interest in the brand
after exposure if the campaign had not been run. This sug-
gests matching each exposed user to one or more controls
pre-exposure and omitting the unmatched controls. More
precisely, if an exposed and control user are matched on the
K features X = (X, ..., Xk), then successful matching en-
sures that

P (Yo =1] X, exposed) = P (Yo =1| X, control)

when the outcome of interest is binary. All valid analyses of
observational data either explicitly or implicitly assume that
there is an X that breaks the dependence between exposure
and the unobservable counterfactual Yy in this way.



4.1 Propensity Matching

Matching on X breaks down when X is high dimensional,
especially if some dimensions are heavily skewed. Fortu-
nately, a remarkable theorem in [18] states that matching
on X is unnecessary. If

0<p(X) <1,

S0 no user is certain to be a control or certain to be exposed,
then matching on the one-dimensional propensity score p (X)
defined by

p(X) = P (exposed | X) (1)

removes selection bias whenever matching on X itself re-
moves selection bias. (Because our goal is to estimate the
causal effect on those who were exposed rather on everyone
who could have been exposed, we need only assume that
every control could have been served; i.e., p(X) > 0.) Sur-
prisingly, matching on a consistent estimate p(X) of p (X)
can remove selection bias better than matching on X or
p (X) can [19].

After matching each exposed with a control, the cam-
paign effect A can be estimated by the average within-pair
difference of observed outcomes. Or, controls and exposed
with similar propensities can be grouped together, and mean
differences within groups averaged [19]. Propensity score
grouping has been used extensively in clinical medicine, epi-
demiology and the social sciences. (See [12], [11] and the
references therein, for example.) There are disadvantages,
though. It may not be possible to pair each exposed to a
different control or even to any control. Grouping may in-
clude too few controls at high propensities to give reliable
group mean differences. Or, groups may be so coarse that
the controls and exposed in a group are not well-matched.
Stratifying is also inconsistent (asymptotically biased) when
the mean outcome is not constant within groups [13].

Figure 2 shows the estimated propensities using logistic
regression with variable selection for the study introduced
in Section 3. (See Section 8 for a discussion of model selec-
tion in this context.) As expected, the controls have smaller
p(X). The median exposed propensity score is 0.31 but
the median control propensity score is only 0.10. The ex-
treme exposed and control propensities are similar, though.
The exposed range is (.004,.94) and the control range is
(.004, .89). Pairing exposed and controls by p(X) is not
likely to be successful here because many fewer controls than
exposed have high propensities (e.g., above 0.5).

4.2 Inverse Propensity Weighting

Propensity score weighting is an alternative to propensity
score matching. It can be motivated by a simple analogy.
Suppose that 35% of a target population is from Canada and
65% from the U.S., and the outcome Y is smaller in Canada.
If 60% of a random sample is from Canada, then the average
over the random sample underestimates the mean in the tar-
get population. A better estimate weights everyone in the
sample from Canada by .35/.6 and everyone in the sample
from the U.S. by .65/.4 before averaging. That is, there is
selection bias because a feature (country) is correlated with
both sample selection and the outcome, but re-weighting the
data with weights inversely proportional to the probability
of selection removes the bias. Averaging with known inverse
sampling weights was introduced by Horvitz and Thomp-
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Figure 2: Estimated propensities for the controls
and exposed in Figure 1.

son in 1952 [9] and has been further studied in recent KDD
papers such as [10].

In nonrandomized studies, the controls can be weighted
to resemble the sample of exposed before exposure by giving
each control ¢ a weight proportional to

wi = p(Xq) /(1 =p (X)) )

where the sum of the weights over the controls equals one.
This is called inverse propensity weighting. The exposed
users are not weighted. Weighting the exposed by 1/p (X)
and the controls by 1/ (1 — p (X)) is appropriate when the
goal is to estimate the potential campaign effect on all users.

Figure 3 shows that inverse propensity weighting effec-
tively matches the controls to the exposed for the campaign
in Section 3. It reduces the ratios of the exposed medians
to the control medians for the four activities shown from
(3.1,2.8,4.1,8.7) to (1.04,1.06,1.07,1.14). The ratios for all
but the smallest percentiles now lie between 0.8 and 1.20.
Moreover, search activity on google.com is now balanced,
even though variable selection deleted that term from the
estimated propensity model.

Because inverse propensity weighting matches the controls
to the sample of exposed, the inversely propensity weighted
(IPW) estimate of A is defined by

Z w;Y;/ z wi> (3)

controls controls

AIPVV - Yemposed - <

where Y; is the observed outcome for a control and w; is
defined by equation (2).

Although Arpw is asymptotically unbiased, it has high
variance if p (X) is close to one for some controls. Propen-
sities close to one arise if X nearly separates the controls
and exposed. In that case, estimation by any method may
be unwise because too few controls resemble the exposed.
Estimated propensities close to one may also occur because
the algorithm used to estimate the propensities is unstable.
In a criminal justice application, McCaffrey, Ridgeway and
Morral [14] were able to match propensity weighted controls
to exposed using boosted stumps but not logistic regression,
for example.
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exposed and propensity weighted controls.

5. DOUBLY ROBUST ESTIMATION

Inverse propensity weighting is fundamental to causal es-
timation because any estimator of A that is asymptotically
unbiased is equivalent to an estimate based on inverse propen-
sity weighting [16]. The question is which estimate with in-
verse propensity weighting is best in the sense of smallest
asymptotic variance among all consistent estimates of A?

The variability of Arpw depends on random noise in the
observed outcomes, which affects any estimate, and errors
in p (X). To adjust for those errors, first define the exposure
indicator Z; = 1 if user i is exposed and Z; = 0 if not for
the ¢ = 1,...,n users in the study and let p; = p (X;). Then
consider the estimate

A ~ (zY, (1-2Z)Y; -
A*:Zpi{ —( 1_13)2_ }/lei7

i=1 pi

which is identical to Arpw if p(X;) is constant but not in
general. The estimate A, is consistent when p (X) is consis-
tent. If we were interested in the causal effect on everyone
who might have been served a campaign ad rather than the
effect on those who were served a campaign ad, the leading
multiplier p; outside the braces would be omitted and the
denominator would be n rather than > p;.

The theory in [16], [13], and [8] shows that the minimum
asymptotic variance is achieved by modifying A. by the er-
rors Z; — p; as follows:

Apr=> pibi/ > pir (4)
i=1 i=1

where

_ Z:Y; — mai (Zi — ps) B (1= Z:)Yi + moi (Z; — Ps)
Di 1—pi

and Mm.; = m. (X;) is consistent for E(Y | X;, Z; = 2).

Usually, 71 (X) is obtained by regressing the observed Y

on X for the exposed, and 1o (X) is obtained by regressing

5;

Y on X for the controls. In other words, computing Abr
is not much more difficult than computing Arpw. (Here we
have used the fact that the standard theory remains valid if
the term in braces is multiplied by a weight like p; that does
not depend on the outcome or Z.)

The estimate ADR is doubly robust because it remains con-
sistent if the outcome models are wrong but the propensity
model is right or if the propensity model is wrong but the
outcome models are right, although in those cases there is
no guarantee that Apr has minimum asymptotic variance.
Extensive simulations (e.g., [13]) show that the asymptotic
claims hold in standard settings and that the standard error
of ADR has a simple estimate $pr defined by

§br = n° iq? (& - ADR)2, where (5)
i=1

“ = —L—

' n=t Y Bi

Doubly robust estimation is used in applications ranging
from medicine [2] to criminal justice [15]. The statistical
analysis systems SAS [1] and STATA [3] include procedures
for computing doubly robust estimates, standard errors, and
model diagnostics.

Table 1 gives A IPW, A pr and a regression estimate

Aveg=nit > <m1 (X,) — rho (xi)), ny = ilz

exposed

for the campaign introduced in Section 3. Brand navigation
refers to navigation to the advertiser’s website; brand search
refers to searches for the advertiser or its advertised product.
Lift is the ratio of AD r to the average prediction of the
counterfactual Yy for the exposed. The campaign increased
interest in the brand and, to a lesser extent, its competition.
Increased interest in the competition is unavoidable when
exposed users comparison shop.

Table 1: Estimates of the causal effect for brand
navigations, brand searches, and competitor navi-
gations for the campaign in Section 3.

Outcome Arpw Ar-eg ApRr SepRr lift

brand nav .025 .027 .009 .002 37
brand srch .048 .037 .016 .002 .34
compet nav .294 .091 .022 .004 .08

6. HYPOTHESIS TESTING

The obvious test of the null hypothesis Hop : A < 0 against
H; : A > 0 with size « (false alarm probability «) compares
Tpr = ADR/§DR to a standard normal(0, 1) percentile gq.
This test should perform well when the propensity model
and outcome regression models are adequate. But if a fea-
ture that is correlated with Z and Y but not the features in
X has been missed, then differences in the missing feature
for the controls and the exposed that are not germane to the
campaign may cause Tpr to wrongly reject Ho. This is the
problem of hidden, residual selection bias.

Rosenbaum [17] suggests detecting hidden bias by test-
ing Hp for an outcome that should be unaffected by the
treatment (the campaign, in our context). For example, a
campaign that advertises Google’s web browser Chrome may



have recipes as an irrelevant search term. If Hy is rejected
for the irrelevant outcome then there may be residual selec-
tion bias and a test of Hg based on Tpgr for an outcome of
interest may have more than probability « of a false rejec-
tion.

We take the idea of irrelevant outcomes a step further,
and compute T™ for many irrelevant outcomes. The T*’s
for the irrelevant outcomes should act like a random sample
from the null distribution of the brand test statistic. When
Hy is true, the brand outcome should act like an irrelevant
outcome too. In other words, instead of comparing Tpr to
a percentile of a normal distribution, which assumes that
selection bias has been controlled, compare Tpr to a null
distribution that allows for partially removed selection bias.

If there are K irrelevant outcomes, then there are K test
statistics 17, ..., Tk and so under Ho there are K + 1 ob-
servations in all, including Tpr for the brand outcome, from
the null distribution. In keeping with standard testing prac-
tice, Ho is rejected only if Tpr is larger than a tail per-
centile of this null distribution. A fully nonparametric test
is obtained by rejecting Ho only if Tpr is larger than the
(ko +1)/(K + 1) quantile of the empirical null distribution
where ko = min{k: (k+1)/(K + 1) > a}. It is possible to
fit a parametric distribution to the K + 1 test statistics and
use a percentile of the parametric distribution to test Ho,
but we prefer not to make assumptions about the shape of
the null distribution.

It may be challenging to obtain data on many irrelevant
outcomes for medical studies, but that is not the case for on-
line campaigns. There are many websites and search terms
that are irrelevant to an advertiser. These can be found
by looking at advertisers in other segments or clusters, for
example. An automated system may wrongly declare such
a term or site to be irrelevant, but that should happen so
infrequently that the nonparametric test is hardly affected.
(See, for example, Section 8.) Finally, all results and sum-
mary data on irrelevant outcomes can be withheld because
by definition the irrelevant outcomes are unimportant to the
advertiser. Also note that a test that compares a brand out-
come to irrelevant outcomes may be easier for advertisers to
appreciate than a standard statistical hypothesis test is.

The three outcomes in Table 1 are statistically significant
at the a = .05 level of significance when Tpr is compared to
either a percentile of a normal distribution or a nonparamet-
ric null distribution defined by a set of irrelevant outcomes.
However, the experiments in Section 8 suggest that the test
based on normal distributions is too liberal even when the
propensity and outcome models are correct. The nonpara-
metric test is more trustworthy.

7. MODEL SELECTION AND VALIDATION

The estimated campaign effect Apr depends on two out-
come models and a propensity model. In this paper the out-
comes Y and exposure status Z are binary, and any method
for estimating probabilities that includes feature selection
can potentially be used to compute Apg, including regres-
sion trees, boosted stumps, leaps and bounds [6], or L, and
L; penalized regression [4].

It is not enough for a propensity model to fit the data well,
though. Its primary goal is to balance X across controls and
exposed, in the sense that the distribution of X conditional
on (p(X), Z) should be independent of Z even for features
X that are not included in the fitted propensity model. In
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small studies, this assumption can be tested by stratify-
ing users into several groups (a common recommendation
is seven groups [19]) according to their p (X;)’s, computing
the difference Dy = Xg,ezposed — Xg,mmml in each group g,
and then using an analysis of variance (anova) F-test to test
whether the within-group mean differences are zero. An al-
ternative in large studies is to compute D, corresponding to
a fine grid of p(X;) rather than a coarse grid, fit a smooth
function to Dy as a function of the group mean p (X), and
then test whether the smooth curve is different from a hor-
izontal line at zero. This can be done in the open source
software environment for statistical computing and graphics
R (www.r-project.org) by applying the anova function in
R to the output from the gam (generalized additive model)
function, for example.

The propensity weights w; = p(X;) /(1 — p (X)) them-
selves are useful for testing the validity of the results of a
study. For example, an analysis may be declared invalid if
a small subset of controls accounts for too high a fraction of
the tgtal weight on the controls because in that case A DR
and Arpw may be determined by only a small subset of
the data and Areg may be based on extrapolation. For the
campaign introduced in Section 3, only 2% of the controls
have w; > 1 and only 0.09% have a weight larger than 3.
The largest weight is 9.4, so the most extreme control has
as much weight as 9.4 exposed users.

As another check of the validity of a study, note that if n
independent observations {Al7 R An} have the same mean
and same variance and the n weights {W;, ..., Wy} are fixed,
then the weighted mean Y W;A;/ > W; has variance pro-
portional to 3. W72/ (3. W;)?. The same result is approxi-
mately true if the weights are random and independent of
the Als. Because the sample mean A has variance propor-
tional to 1/n, the effective sample size for a weighted mean
in either case is (3. W:)? /> W2. This suggests failing a
study when the effective sample size for the controls is too
small. For the campaign introduced in Section 3, the effec-
tive number of controls is about 30% of the total number of
controls, giving a ratio of 1.4 effective controls per exposed
user in the study, which also suggests that the study is valid.

Finally, Hainmueller [7] estimates the propensity function
by minimizing the deviance under an assumed model, like
logistic regression, subject to the constraint that the means
of X for the weighted control sample equal the means of X
for the exposed. That is an interesting proposal, but not one
that we have tried to automate. It also raises the question
of what to match, e.g. means of the features themselves,
means and second moments of the features, or means of
transformations of the features?

8. EXPERIMENTS

Often less than 5% of the exposed searched for the adver-
tiser’s brand or navigated to the advertiser’s website before
the campaign. If a campaign increases that rate by 50%,
then the effect to be estimated is less than 0.025. Here we
provide experimental evidence that it is possible to estimate
such small effects for online campaigns.

The experiments simulate users like those in the campaign
introduced in Section 3, except that exposed outcomes cor-
respond to a specified lift. First, a model to generate users



was built in stages using the fact that

K
P(X1,...,Xx) = [[ P(XelX1,..., X 1), k=2,..., K.

k=1

At the first stage, the probability that a user in the study is
exposed (and not a control) is set to the fraction of exposed
users in the study. At the second stage, the distribution of
geography conditional on exposure status is taken to be the
empirical distribution of geography for the exposed and the
empirical distribution of geography for the controls. At later
stages, the log of an activity metric is taken to be normally
distributed with a conditional mean and variance that de-
pend on the features previously modeled. The conditional
mean and variance are estimated from a linear regression
with leaps and bounds variable selection. Although the con-
ditional models are normal, the unconditional distributions
for the controls and exposed are as long-tailed as those in
the original data due to mixing over the conditioning vari-
ables. The final multivariate distribution is then a mixture
of binary, categorical and continuous variables that is much
more complex but also much more realistic than one based
on standard parametric distributions. It is, however, not
pathological so we do not claim that the simulations repre-
sent a worst possible scenario.

Models were produced for 31 outcomes irrelevant to the
advertiser and the three brand outcomes in Table 1. The
models for (Yo, Y1) for each irrelevant outcome were obtained
from separate logistic regressions for the controls and ex-
posed. A model of the “without-campaign” brand outcomes
Yo for both the control and exposed users was obtained by
fitting a logistic regression to the brand outcomes for the
controls. The model of Y7 is then chosen to give either
A = 0 or a A corresponding to 50% lift according to the
following three scenarios.

No Effect, No Hidden Bias The brand outcomes Y7 for
the exposed are simulated from the brand model for Yp.
All features X of the simulated users are available for
model fitting, but some may be dropped during model
selection. There is selection bias in this scenario, but
there no hidden bias unless model fitting deletes an
important feature from the propensity and outcome
models.

Positive Shift The brand outcomes Y7 for the exposed are
generated by adding a shift 6 to the intercept in the
model for Yy, where 6 gives a lift of 50%. The 6 for
brand navigation, brand search, and competitor navi-
gation are 0.51, 0.58 and 0.84 respectively, which cor-
respond to campaign effects of A = .013, .024, .147.
The mean no-campaign outcome E(Yj) for the exposed
are .026, .050 and .295 respectively. There is no hid-
den selection bias in this scenario, except that due to
variable selection.

No Effect, Hidden Bias The brand outcomes (Yo, Y1) are
generated from the, same model, so there is no cam-
paign effect, but number of navigations to the websites
that served ads and number of display ads served by
Google on those sites were not used to fit the outcome
or propensity models.

Each scenario was simulated 500 times, and 80,000 users
were generated in each simulation trial.
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Table 2 summarizes the results for the no effect, no hidden
bias scenario. Because there is no hidden bias, all three es-
timates ADR, Areg and AIPW should behave well and they
do, although, as the theory predicts, Apr behaves slightly
better. However, the large sample standard error estimate
Spr (6) is much too optimistic. As a result, the parametric
test that compares Tpr to the .10 quantile of a normal(0,1)
distribution has a false alarm rate of about 20% for the two
advertiser related outcomes instead of 10%. (The test for the
effect on navigations to competitor sites appears to be unbi-
ased). The nonparametric test against irrelevant outcomes
is a better choice. Under the null hypothesis the mean p-
value should be .50 and 10% of the p-values should be below
.10 (except for small differences due to discreteness). While
the mean nonparametric p-value is less than .50 for the two
advertiser related outcomes, the simulated false alarm rate
is also smaller than 10% for all three outcomes so the non-
parametric test is conservative.

Table 2: Results for the no effect, no hidden bias
scenario. rmse is root mean squared error, (bias2 +
sdz)l/z. Ppr is the mean simulated p-value under the
null distribution defined by the irrelevant outcomes.
P(Tpr > z.10) is the fraction of (false) rejections of
a one-sided a = .10 test in the simulation using the
large sample normal theory test. P(Ppr) < .10) is
the fraction of false alarms for the nonparametric
test based on irrelevant outcomes.

brand nav | brand search | comp
rmse(Apr) .0051 .0053 | .0168
rmse(A,cq) .0056 0061 | .0243
rmse(A;pw) .0059 .0060 | .0253
mean(5pr)/sd(Apr) 83 82 .80
P(Tpr > z.10) .19 .21 .09
mean(Ppr) .40 .38 .50
mean(Ppr) < .10) .05 .06 .03

Table 3 gives the results for the scenario with positive
shift and no feature withheld from model fitting. Surpris-
ingly, Apr is less biased than either A,¢y or Arpw for the
advertiser related outcomes, and only slightly more biased
than Areg for the competitor outcome. The relative biases
bias/A for ADR, Areg and AIPW for brand navigations are
2%, 5% and 10% respectively, while those for brand search
are -1%, 4% and 9% respectively. As in the null case, the
large sample estimate §pr is smaller than it should be, but
only by about 10%. The nonparametric test for positive
shift rejects for most simulation trials, as it should.

Table 4 shows the results of omitting two of the features
that were important to the models for the study data and
were used to generate the simulated outcomes. Both features
increase the chance that Y7 = 1, so omitting both should
overstate the effect of the campaign. The theory suggests
that Apgr should behave well if the omitted features are in-
cluded in either the propensity model or the outcome mod-
els, but here they are excluded from both models. Although
the theory is silent on this case, omitting features from both
models seems more realistic than omitting them from only
the propensity model or only the outcome models. This ex-
periment shows that the three estimates respond differently
to hidden bias. The regression and propensity weighted es-



Table 3: Results for the positive shift scenario.

brand nav | brand search comp
bias(Apr) .00030 .00034 | -.00037
bias(Aeq .00066 .00105 | -.00021
bias(Arpw) .00130 .00220 | .00650
sd(Apr) .0023 0033 | .0060
sd(Areg) .0021 0031 | .0048
sd(Arpw) .0028 0036 | .0062
mean(8pr)/sd(Apr) .89 91 87
mean(Ppr) < .10) .98 1.00 1.00

timates are more biasegl but 1es§ variable than ADR. The
ratios of the rmse of A,y to Appgr fall between 1.10 and
1.44, while the ratios for AIPW to ADR fall between 1.14
and 1.56, so ApR has the better overall behavior. Note
that although Appg is biased high and its estimated stan-
dard error is too small, the nonparametric test of the null
hypothesis of no campaign effect does not break down for
brand navigation and brand search and is not too far off for
competitor navigation.

Table 4: Results when there is hidden bias, no shift.

brand nav | brand search | comp
bias(Apr) .0037 0062 | 011
bias(Aeq .0041 0074 | .018
bias(Arpw) .0044 .0080 | .020
sd(Apr) .0020 .0028 | .0068
sd(Arey) .0017 0022 | .0041
sd(Arpw) .0019 0025 | .0044
rmse(Apr) .0042 .0068 | .0128
rmse(Acq) .0046 0077 | .0184
rmse(A;pw) 0048 .0084 | .0200
mean(5pr)/sd(Apr) .86 78 61
P(Tpr > z.10) .78 .86 .78
mean(Ppr) .28 .22 .25
mean(Ppr) < .10) .08 .09 14

9. DISCUSSION

This paper has focused on estimating the effect of a cam-
paign on everyone who was served a campaign ad. The
expression (4) can also be used to estimate effects on sub-
sets of users, as long as the subset can be identified with-
out knowing the outcomes or exposure status of the users.
For example, an advertiser may want to estimate the effec-
tiveness of a campaign by region. A propensity model and
outcome models can then be fit to the data from all regions
together, and the effect within region j estimated by

Apr() =Y Wi;bi/ Y Wi,
i=1 i=1

where W;; = p;U;; and U;; = 1 if user ¢ is from region j
and U;; = 0 otherwise. The standard theory holds because
the region of a user can be identified without knowing if
it is exposed or its outcome. Note that fitting propensity
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and outcomes models to all users together should give more
reliable estimates than fitting propensity and outcome mod-
els within each region separately if the effect of the other
features in the model is not highly correlated with region.
That is, it is not necessary to estimate a separate propensity
and outcome models for each region. Of course, region may
also be included in the propensity and outcome models, and
there should be enough users in each region to detect an
effect of interest if present.

It is only slightly more difficult to estimate how A varies
with a continuous feature of the users that can be computed
without knowing the exposure status or outcome of the user.
For example, suppose an advertiser wants to understand how
A varies with the time ¢ that a user first sees a campaign ad,
and that A is thought to be a smooth function of ¢. Then
define

n n
Apr(t) = si()pidi/ Y pis
i=1 i=1
where s;(¢;) is a smoothing weight that depends on how
close the first exposure time t; for user i is to t. Because
the weights no longer sum to one, the large sample standard
error estimate $pr has to be multiplied by >, s:(¢)pi/ >, Pi,
but otherwise the standard theory holds.

Observational data are ubiquitous in KDD applications,
and so is the need to identify important but numerically
small effects for many outcomes. Examples other than mea-
suring campaign effectiveness for advertisers are as diverse
as mining health records to evaluate the effectiveness of myr-
iad medical treatments without randomized trials and min-
ing cellular network data to evaluate the quality delivered to
subsets of users, such as those with particular mobile devices
in particular regions. Each of these applications may need
to run routinely, without review by a skilled data analyst
who understands the dangers inherent in reasoning from ob-
servational data. This paper has shown how that goal can
be realized, and suggests safeguards against hidden selection
bias
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