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Abstract
We introduce the hiring problem, in which a growing com-

pany continuously interviews and decides whether to hire

applicants. This problem is similar in spirit but quite dif-

ferent from the well-studied secretary problem. Like the

secretary problem, it captures fundamental aspects of deci-

sion making under uncertainty and has many possible ap-

plications. We analyze natural strategies of hiring above the

current average, considering both the mean and the median

averages; we call these Lake Wobegon strategies. Like the

hiring problem itself, our strategies are intuitive, simple to

describe, and amenable to mathematically and economically

significant modifications. We demonstrate several intriguing

behaviors of the two strategies. Specifically, we show dra-

matic differences between hiring above the mean and above

the median. We also show that both strategies are intrin-

sically connected to the lognormal distribution, leading to

only very weak concentration results, and the marked im-

portance of the first few hires on the overall outcome.

1 Introduction
One of the most famous combinatorial mathematical
questions is the secretary problem (also known as the
marriage problem, the optimal stopping problem, the
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Sultan’s dowry problem, and by several other names):
applicants for a secretarial position are interviewed in
a random order, and the relative rank of an applicant
compared to previous applicants is revealed. After an
interview, the applicant must either be accepted or re-
jected before the next interview. The goal is to max-
imize the probability of accepting the best applicant,
and the problem is to design a strategy that maximizes
this probability.

Since its introduction in the 1960’s [5], the secre-
tary problem has been the subject of dozens of papers.
(See, e.g., [1, 3, 4, 6, 8–10, 15, 16, 18] and the references
therein.) This simple abstraction highlights the problem
of choosing the best of a set of sequentially presented
random variables, and thereby captures fundamental is-
sues and inevitable tradeoffs related to making irrevo-
cable decisions under an uncertain future. As such, it
spans multiple scientific disciplines, such as mathemat-
ics, economics, and computer science. Furthermore, the
basic form of the problem is easily stated, understood,
and amenable to many variations that capture particu-
lar settings.

We introduce a problem in the same spirit that also
captures basic tradeoffs in the face of uncertainty. To
honor mathematical history and the connection to the
secretary problem, we call it the hiring problem. In our
setting, a small, nimble, start-up company that intends
to grow into a huge, evil, multinational corporation
begins hiring employees. The company wants to ensure
a high quality of staff by consistently improving average
employee quality. On the other hand, the company
needs working bodies, and it cannot simply wait for
the best candidate to come along. As in the secretary
problem, applicants are interviewed, and the decision
is immediate. In contrast to the secretary problem,
however, hiring is done continuously, with no fixed limit
in mind. The basic tradeoff in this setting is between
the rate at which employees are hired and their quality.

Like the secretary problem, the hiring problem cap-
tures a fundamental issue that arises in many applica-
tions where one must make decisions under uncertainty.
We emphasize that the hiring problem is as much about
a company hiring employees as the secretary problem is



about a person hiring a secretary. (That is, only tan-
gentially.) Rather, the general problem statement is
meant to give insight into a general mathematical ques-
tion with many possible applications.

While one could consider many strategies that bal-
ance the rate of hiring and the quality of the resulting
hires, we analyze two natural strategies, that, following
Peter Norvig [13], we denote as Lake Wobegon strate-
gies1: hire applicants that are better than the average
employee you already have, where by average we refer
to either the mean or the median. Such strategies are
not entirely theoretical: in [13] it is claimed that Google
actually uses hiring above the mean, and a small sim-
ulation is presented to show that it leads to higher av-
erage quality than hiring above the minimum, even in
the presence of noise. (Ignoring noise, this follows easily
from our results: the average quality when hiring above
the mean converges to 1, while when hiring above the
minimum, it converges to (1 − µ)/2 where µ is the ini-
tial minimum quality.) Additionally, at least one author
of this paper has heard of this strategy in the setting
of tenure decisions within a department: to improve a
department, only tenure junior faculty member whose
quality lies above the current average tenured faculty.
As we explain further below, the intuition behind this
approach is that it leads to consistent improvement in
employee quality.

One initial issue to be dealt with regards how appli-
cant scores are determined. In this paper, we consider
applicant scores to be interpreted as arbitrarily small
quantiles of some predictive measure of an applicant’s
contribution to the company (for example, IQ, although
that is unlikely to be the most desirable measure in prac-
tice). Thus, for reasons we explain more clearly below,
we model scores as uniformly distributed on the interval
(0, 1). Our notion of an average employee is one whose
quality score is either the mean or the median of all
employees.

We find several interesting behaviors for these pro-
cesses, using both mathematical analysis and simula-
tion, including the following:

• Hiring above the median and hiring above the mean
lead to greatly different behaviors.

• Both processes are intrinsically connected to log-
normal distributions, leading to only very weak

1As explained in the Wikipedia, Lake Wobegon is a fictional
town where “the women are strong, the men are good looking, and
all the children are above average.” The Lake Wobegon effect in
psychology refers to the tendency of people to overestimate their
abilities, so that a large majority of people believe themselves to
be above average. This term matches our strategies in which every
employee, at least at the time they are hired, is above average.

concentration bounds on the average quality.

• Both processes exhibit strong dependence on the
initial conditions; in economic terms, this means
the first few hires of your start-up can have a
tremendous effect!

We emphasize that this paper represents just a
first attempt to study this problem (and indeed some
of our results are cut here for lack of space). Given
our initial findings, we expect there to be further
work on variations of and alternative strategies for the
hiring problem in the future. We discuss some natural
directions in the conclusion.

2 Introducing the Model
2.1 Definitions and Motivation We suppose that
we are interviewing applicants for positions at a com-
pany, one-by-one. Each applicant has a quality score Qi,
and we assume that these scores are independent with
common distribution Q ∼ Unif(0, 1), where this nota-
tion is read as Q is distributed according to the uniform
distribution on (0, 1). While interviewing an applicant,
we observe his quality score; for the strategies we study,
we choose to hire an applicant if and only if his quality
score is at least the average score of the current employ-
ees, for an appropriate notion of average. We assume
henceforth that we start with one employee with some
particular quality q ∈ (0, 1). We do this because if the
first employee has quality score U ∼ Unif(0, 1), then the
number of interviews needed to hire a second employee
with score at least U is geometrically distributed with
mean 1/(1 − U), and hence is E[1/(1 − U)] = ∞. We
avoid this undesirable situation by conditioning on the
first employee having fixed quality 0 < q < 1.

The choice of Q ∼ Unif(0, 1) has a natural inter-
pretation. If Q instead has some non-uniform contin-
uous distribution, then we can define an alternate no-
tion of the quality of a candidate by F−1(Qi), where
F is the cumulative distribution function of Q. Then
the F−1(Qi)’s are independent Unif(0, 1) random vari-
ables, and F−1(Qi) is a natural measure of quality: it
corresponds to the applicant’s quality presented as an
arbitrarily small quantile in the original metric. Since
this transformation can be performed regardless of the
original distribution of quality scores, the assumption
that Qi ∼ Unif(0, 1) is not only very realistic, it is ar-
guably the best one to use. Note that this transforma-
tion preserves ordering, so that hiring above the median
leads to the same decision process regardless of the ini-
tial measure. It is perhaps less clear that the strategy of
hiring above the mean is natural in the setting of such
a transformation, although we still suspect it to be rel-
evant to practical scenarios, if only because the mean is



an intuitively simpler concept for most people than the
median.

We emphasize that throughout our analysis of the
Lake Wobegon strategies, we assume that the exact
value of Qi is determined during the interview process.
Of course, it is natural to try to extend the model so
that, during an interview, we obtain only an estimate
Q̂i of Qi. We consider this variation of the model in
Section 6.3.

2.2 Baseline Strategies Before studying our Lake
Wobegon strategies, it is worth considering two other
seemingly natural strategies and pointing out their po-
tential flaws. We emphasize, however, that all strategies
involve tradeoffs between the quality and speed of hires,
so there is no single best strategy.

Let us first consider what happens if we choose to
only hire applicants with quality scores above a pre-
specified threshold t. It should be clear that this strat-
egy leads to a collection of employees with scores uni-
formly distributed between t and 1. With a large value
of t, this strategy guarantees high quality from the be-
ginning. However, because the threshold is fixed, this
strategy does not lead to continual improvement as the
size of the company grows. Perhaps more problemat-
ically, since the rate at which employees are hired is
1 − t, fixing t requires us to make a very stark trade-
off between the overall quality of our employees and
the rate of our company’s growth (which is particu-
larly important early on, when the company is small).
This weakness in the threshold strategy seems difficult
to overcome. In contrast, the Lake Wobegon strategies
generally allow faster hiring when the company is small,
with increasingly selective hiring as the company grows.

It is also natural to consider the strategy where
we start with a single employee with some particular
quality score q and only hire applicants whose quality
scores are higher than the scores of all current employ-
ees. We refer to this as the Max strategy, and we sketch
an analysis of it here because it introduces some im-
portant ideas that appear in our analyses of the Lake
Wobegon strategies. For convenience, rather than con-
sidering the quality score Qi of the ith hire, we consider
the gap Gi = 1 − Qi between the score and 1, with
G0 = g = 1 − q denoting the gap for the first em-
ployee. By conditioning, we have that Gi is uniformly
distributed on [0, Gi−1], so that E[Gi | Gi−1] = Gi−1/2,
and hence inductively we find E[Gn] = g/2n. Thus, the
expected size of the gap shrinks exponentially as the
number of hires grows.

On the other hand, we also have the multiplicative
representation Gi = Gi−1Ui, where the Ui are inde-
pendent uniform (0, 1) random variables. This equation

shows that the expected number of interviews required
between any two hirings is actually infinite, for reasons
similar to those given in Section 2.1. For example, since
G0 = g, we have G1 = gU1 and hence the expected num-
ber of interviews between the first and second hirings is
E[1/G1] = E[1/U1]/m = ∞. While one could conceiv-
ably avoid this problem by changing the model in vari-
ous ways, this issue certainly highlights a key problem
with this strategy: large lags between hires.

Turning our attention away from the time between
hires and back to the employees’ quality scores, we can
also use the multiplicative representation to determine
the limiting distribution of Gn. This multiplicative
process is best handled by taking the logarithm of both
sides, from which we obtain lnGi = ln Gi−1 + lnUi, or
inductively, lnGn = ln g +

∑n
i=1 lnUi. The summation∑n

i=1 lnUi has an approximately normal distribution by
the central limit theorem. More formally, E[lnUi] = −1
and Var[lnUi] = 1, and hence 1√

n

∑n
i=1(1 + ln Ui)

converges to N(0, 1), the normal distribution with mean
0 and variance 1, as n →∞. Thus, for large n, we have

lnGn = ln g +
n∑

i=1

lnUi

≈ ln g + N(−n, n) = N(ln g − n, n),

and so Gn has an (approximately) lognormal distribu-
tion (see, e.g., [11]). Interestingly, the above equa-
tion implies that the median value for Gn is approxi-
mately g/en for large n, since the normal distribution is
symmetric around its mean. The mean and the me-
dian of Gn are therefore vastly different (recall that
E[Gn] = g/2n), and we can see that the distribution
of Gn is highly skewed for large n. This phenomenon is
a recurring theme throughout our analysis.

3 Hiring Above the Mean
We now move on to studying our Lake Wobegon strate-
gies. We begin with hiring above the mean, for which
the analysis is a bit simpler.

Let Ai denote the average quality after i hires, with
A0 = q being the quality of the initial employee (so
that Ai refers to the average of i + 1 employees). The
following basic convergence result is straightforward and
given without proof, but we state it so that we are
clear that all of the random variables that we use in
our analysis are well-defined.

Proposition 3.1. With probability 1, we hire infinitely
many candidates and limi→∞Ai = 1.

3.1 Analysis of Expectations To quantify the rate
at which we hire applicants and the rate of convergence



of the Ai’s, we proceed by studying the gap sequence
given by Gi = 1 − Ai, which converges to 0 almost
surely. In what follows, we let g = G0 = 1 − q denote
the initial gap. In this setting, we have a pleasant form
for Gt for any t ≥ 0, as given by the following lemma:

Lemma 3.1. For any t ≥ 0, the conditional distribution
of Gi+t given Gi is the same as that of Gi

∏t
j=1[1 −

Uj/(i+j+1)], where the Uj’s are independent Unif(0, 1)
random variables.

Proof. We proceed by induction on t ≥ 0. For t = 0,
the result is trivial. Now, suppose that t > 0 and
that the claim holds for t − 1. Then conditioned on
Gi, . . . , Gi+t−1, the quality score of the (i + t)th hired
candidate is clearly Unif(1−Gi+t−1, 1) ∼ 1−Gi+t−1Ut.
The remainder of the proof is essentially algebra with
the uniform distribution. For details, see the extended
draft version of this paper [2].

Using Lemma 3.1, we can derive formulas for the
expected gap and the expected number of interviews
after hiring n people. We then compute the asymptotics
of these quantities directly from these formulas.

Proposition 3.2.

E[Gn] = g
n∏

j=1

(
1− 1

2(j + 1)

)
= Θ

(
1/
√

n
)
.

Proof. The result follows easily from Lemma 3.1 and
the Taylor series of ln(1 + x) for |x| < 1. For details,
see [2].

Proposition 3.3. Let Tn be the number of candidates
that are interviewed before n are hired.

E [Tn] =
1
g

n∑

i=1

i−1∏

j=1

(j + 1) ln(1 + 1/j) = Θ
(
n3/2

)
.

Proof. By Lemma 3.1,

E
[

1
Gn

]
=

1
g

n∏

i=1

E
[

1
1−Unif(0, 1)/(i + 1)

]

=
1
g

n∏

i=1

(i + 1) ln(1 + 1/i) = Θ(
√

n),

where the last step follows from a straightforward
calculation; for details, see [2]. Let T ′j denote the
number of candidates interviewed between the (j− 1)st
hire and the jth hire. Then the conditional distribution
of T ′j given Gj−1 is geometric with parameter Gj−1, and

so E[T ′j ] = E[1/Gj−1]. Therefore,

E[Tn] =
n∑

i=1

E
[

1
Gi−1

]
=

1
g

n∑

i=1

i−1∏

j=1

(j + 1) ln(1 + 1/j)

=
n∑

i=1

Θ
(√

i
)

= Θ
(
n3/2

)
.

It is worth noting that the initial starting gap
g = G0 has a multiplicative effect on the expected
gap and the expected number of interviews, as seen
in Proposition 3.2 and Proposition 3.3. This would
still be true even if we started with more than one
employee; that is, generally, initial differences in the gap
lead to multiplicative differences in these expectations,
demonstrating the importance of the initial hires on the
growth of an organization under this strategy.

Also, it is worth noting that after n3/2 candidates,
the expected value for the mean gap for the best n
candidates is Θ(n−1/2). Hence hiring above the mean
is, in this sense, within a constant factor of optimal.

3.2 Convergence and Concentration We have
now given results concerning the expectation of the
number of interviews to hire n people and the expec-
tation of the resulting gap after hiring n people. While
these results are already useful, there is more that we
can say. In this section, we show that the distribution of
the gap weakly converges to a lognormal distribution.
By weak convergence, we mean that the body of the
distribution converges to a lognormal distribution (un-
der suitable initial conditions), but there may be larger
error at the tails. In fact, our simulation results demon-
strate this, as we show in Section 5.

In order to give stronger bounds regarding the be-
havior of the gap at the tails of the distribution, we pro-
vide a martingale-based concentration argument. It is
important to note that this argument does not give the
extremely strong concentration around the mean that
usually arises in applications of this technique; indeed,
it clearly cannot, since the body of the distribution is
converging to the heavy-tailed lognormal distribution.
Still, we find substantially better concentration at the
tails of the distribution through our martingale-based
argument than can be obtained using Chebyshev’s in-
equality or other weaker, standard approaches.

Proposition 3.4. lnGn −E[lnGn] converges to some
random variable G almost surely and in mean square as
n →∞.

Proof. In light of Lemma 3.1, we may abuse the defini-
tion of our probability space and write Gn = g

∏n
i=1(1−

Ui/(i+1)), for independent Unif(0, 1) random variables



U1, U2, . . .. Letting Yi = ln(1 − Ui/(i + 1)) − E[ln(1 −
Ui/(i + 1))] for i ≥ 1 gives Zn ! lnGn − E[lnGn] =∑n

i=1 Yi. Since E[Yi] = 0 and the Yi’s are independent,
the sequence Z1, Z2, . . . is a zero-mean martingale. Fur-
thermore, E[Z2

n] =
∑∞

j=1 Var[Yj ] = O(1) by a straight-
forward calculation; for details, see [2]. We may now
apply a variant of the martingale convergence theorem
(see, e.g. [7, Theorem 7.8.1]) to obtain the desired result.

Given that lnGn is the sum of independent random
variables, one might expect that it can be asymptoti-
cally approximated by a normal distribution, implying
that Gn can be asymptotically approximated by a log-
normal distribution. Some care must be taken however,
since lnGn is not the sum of identically distributed in-
dependent random variables, and the means and vari-
ances of the summands shrink rather quickly. These
facts require that we use some care in stating the re-
sult, and that we use a strong form of the central limit
theorem commonly known as the Berry–Esséen inequal-
ity (e.g. [14, Theorem 5.4] or [2, Lemma A.1]).

Now, once we have enough employees so that no
single new hire can have too dramatic an effect on the
final gap after n hires, the conditional distribution of
the final gap given the gap after these first few hires is
approximately lognormal. In other words, the first few
hires influence the distribution of the final gap a great
deal, but once we condition on them, the distribution
of the final gap is essentially lognormal. This idea is
expressed formally in the following proposition.

Proposition 3.5. Suppose f : Z>0 → Z>0 satisfies
f(n) = ω(1) and lim supn→∞ f(n)/n < 1. Then

sup
x

∣∣∣∣∣Pr

(
ln

Gn

Gf(n)
−E

[
ln

Gn

Gf(n)

]

< xVar
[
ln

Gn

Gf(n)

])
− Φ(x)

∣∣∣∣∣

= O
(
f(n)−1/2

)
= o(1),

where Φ(·) denotes the cumulative distribution function
of N(0, 1).

Proof. The proof is a straightforward application of the
Berry–Esséen inequality. For details, see [2].

Proposition 3.5 shows that, assuming we take our
starting point to be after a sufficiently large number of
hires, the body of the distribution of the final gap will
be approximately lognormally distributed. The bounds
given by Proposition 3.5, however, are weak at the
tail of the distribution, since those bound give results
only within O

(
f(n)−1/2

)
= O(n−1/2) (for, say, f(n) =

)n/2*). When we are dealing with subpolynomially
small probabilities, such a bound is not useful.

To cope with this, we provide a martingale-based
concentration bound, making use of the fact that
changes in the average are generally small.

Proposition 3.6. For any s ≥ 0 and t, λ > 0, we have

Pr





∣∣∣∣∣∣
Gs+t −Gs

t∏

j=1

(
1− 1

2(s + j)

)∣∣∣∣∣∣
≥ λ

∣∣∣∣∣ Gs





≤ 2 exp
(
− 8λ2(s + t + 2)

eG2
s ln(1 + t/(s + 1))

)
.

Proof. For i = 0, . . . , t, let Xi = E[Gs+t | Gs, . . . , Gs+i].
Then the conditional distribution of the Xi’s given Gs

forms a martingale. The remainder of the proof is now a
fairly straightforward application of Azuma’s inequality.
For details, see [2].

It is worth examining the bound of Proposition 3.6.
When s = 0, t = n, so that the expected value of Gt

is Θ(
√

n), choosing values of λ that are Θ(1/
√

n) gives
useless bounds. This is not surprising given what we
know regarding the distribution of Gn. However, if we
choose λ = (c log n)/

√
n for some constant c > 0, we

obtain inverse polynomial bounds on deviations from
the expectation, and if we choose λ = n−(1/2+ε) for any
constant ε > 0, we obtain probability bounds that are
exponentially small.

4 Hiring Above the Median
We now analyze the hiring problem when the distribu-
tion of applicants’ quality scores is Unif(0, 1) and one
hires above the median. More precisely, we begin with
one employee with quality q ∈ (0, 1). Whenever we have
2k + 1 employees, we hire the next two applicants with
quality scores at least the median Mk of the 2k + 1
employees. The restriction that we only update the me-
dian when we have an odd number of employees is an
interpretation that greatly simplifies the analysis.

One might suspect that hiring above the mean and
hiring above the median would have essentially the same
behavior, perhaps from the intuition that the median
and means of several uniform random variables are
generally quite close to each other. In fact this is not the
case, as we now show. Hiring above the median leads
to smaller gaps with fewer hires. Of course, the tradeoff
is that the number of interviews between hires is much
larger when hiring above the median than when hiring
above the mean.

Our analysis is essentially analogous to that of
Section 3. We begin with the following proposition,
which we state without proof.



Proposition 4.1. With probability 1, we hire infinitely
many applicants and limk→∞Mk = 1.

We proceed by studying the gap sequence given by
G′k ! 1 − Mk, which converges to 0 almost surely as
k → ∞. For convenience, we let g = G′0 = 1 − q.
Notice that G′k refers to the setting where we have 2k+1
employees.

4.1 Analysis of Expectations Whereas in studying
hiring above the mean we dealt with uniform distribu-
tions, when studying hiring above the median the beta
distribution arises naturally. (Recall that Beta(i, j) for
integer values of i and j is the distribution of the ith
smallest of a sample of i + j − 1 independent Unif(0, 1)
random variables; we use this fact repeatedly in our
analysis.)

Lemma 4.1. For any t, k ≥ 0, the conditional distribu-
tion of G′t+k given G′k is the same as G′k

∏t
j=1 Bj, where

the Bj’s are independent and Bj ∼ Beta(k + j + 1, 1).

Proof. The main idea of the proof is that when there
are 2k + 1 employees, the quality scores of employees
that are above Mk, as well as the quality scores of the
next two hires, are independent Unif(Mk, 1) random
variables. Mk+1 is therefore the minimum of 2k + 3
independent Unif(Mk, 1) random variables, and the
result follows by induction on k. For details, see [2].

With Lemma 4.1, we can find the expected gap
E[G′k], as well as the expected number of interviews
to reach 2k + 1 employees, which turns out to have a
very nice form. The proofs of the following propositions
are analogous to those of Propositions 3.2 and 3.3; for
details, see [2].

Proposition 4.2.

E[G′k] = g
k∏

j=1

(
1− 1

j + 2

)
= Θ(1/k).

Proposition 4.3. Let T ′k be the number of interviews
until there are 2k + 1 employees. Then E[T ′k] = k(k +
1)/g.

Again, we note that after n2 candidates, the ex-
pected value for the median gap for the best n candi-
dates is Θ(1/n). Hence hiring above the median is, in
this sense, within a constant factor of optimal.

Propositions 4.2 and 4.3 strongly suggest that the
strategy of hiring above the median leads to higher
quality employees than the strategy of hiring above
the mean, at the cost of significantly slower company
growth. However, one could reasonably believe that

these results cannot be directly compared against those
in Section 3.1. Indeed, in Section 3.1 we analyze the
average quality score for the strategy of hiring above
the mean, and in Proposition 4.2 we analyze the median
quality score for the strategy of hiring above the median.
Thus, we desire results about the median quality score
for the strategy of hiring above the mean and the mean
quality score for the strategy of hiring above the median.
The former seems difficult, but we achieve the latter in
Proposition 4.4 below.

Proposition 4.4. Let A′n denote the mean quality
score of the first n employees when hiring above the me-
dian. Then E[A′n] = 1−Θ(log n/n).

Proof. Let Q′i denote the quality score of the ith hire.
Then Q′0 = q and for i ≥ 1, the conditional distribution
of Q′i given G′) i−2

2 *
is Unif(1 − G′) i−2

2 *
, 1). A simple

calculation then gives E[Q′i] = 1 − Θ(1/i), where we
have used Proposition 4.2. It now follows that E[A′n] =
1
n

∑n−1
i=0 E[Q′i] = 1− 1

n

∑n−1
i=0 Θ(1/i) = 1−Θ

(
log n

n

)
.

Proposition 4.4 can be directly compared with
Proposition 3.2 to conclude that the strategy of hiring
above the median really does give significantly higher
quality employees than the strategy of hiring above the
mean.

4.2 Convergence and Concentration Hiring
above the median also yields a weak convergence to
a lognormal distribution, in the same sense as hiring
above the mean. We can also obtain a martingale
argument to handle the tails in this case, but the proof
requires a more challenging argument. The additional
difficulty comes from the fact that, for the strategy
of hiring above the mean, a single new hire cannot
change the mean employee quality scores significantly.
However, when hiring above the median, a single new
hire can have a drastic impact on the median employee
quality score, although this is rather unlikely. Dealing
with this difficulty makes the martingale argument
slightly more complicated.

The proofs of the following two propositions are
essentially analogous to those of Propositions 3.4 and
3.5; for details, see [2].

Proposition 4.5. lnG′k − E[lnG′k] converges to some
random variable G′ almost surely as k → ∞. Further-
more, the moment generating function of G′ is ψG′(t) =
Γ(t+2)e(γ−1)t for t > −2, where γ = limk→∞

∑k
j=1

1
j −

ln k is the Euler–Mascheroni constant.



Proposition 4.6. Suppose f : Z>0 → Z>0 satisfies
f(k) = ω(1) and lim supk→∞ f(k)/k < 1. Then

sup
x

∣∣∣∣∣Pr

(
ln

G′k
G′f(k)

−E

[
ln

G′k
G′f(k)

]

< xVar

[
ln

G′k
G′f(k)

])
− Φ(x)

∣∣∣∣∣

= O
(
f(k)−1/2

)
= o(1),

where Φ(·) denotes the cumulative distribution function
of N(0, 1).

As before, we may use a martingale argument
to obtain bounds where Proposition 4.6 breaks down,
although the argument is a bit more sensitive. For the
proof, see [2].

Proposition 4.7. For s, t ≥ 1, u ≤ s, and λ > 0, we
have

Pr





∣∣∣∣∣∣
G′s+t −G′s

t∏

j=1

(
1− 1

s + j + 2

)∣∣∣∣∣∣
≥ λ

∣∣∣∣∣ Gs





≤ 2 exp

[
−λ2

2t

(
s + t + 2

euG′s

)2
]

+ te−u+1.

Proposition 4.7 tells essentially the same story as
Proposition 3.6. For s = 1 and t = n, we have
E[Gt] = Θ(1/n), and so choosing values of λ that are
Θ(1/n) gives useless bounds. As before, this is not
surprising. However, if we fix s = u = )c1 lnn*, G′s =
Θ(E[G′s]) = Θ(1/s), and λ =

√
(c2 lnn)/n for some

constants c1, c2 > 1, then we obtain inverse polynomial
bounds on deviations from the expectation. Similarly, if
we choose s = u = )c(ln n)2*, G′s = Θ(E[G′s]) = Θ(1/s),
and λ = n−(1/2+ε) for some constants c > 1 and ε > 0,
we obtain probability bounds that are sub-polynomially
small.

5 Simulations
In this section, we present simulation results related
to our analysis. We give these results with two goals
in mind. First, we wish to check our theoretical
analysis of the expected values associated with these
processes against simulation results. Second, we wish
to verify and examine the relationship between the gap
distributions and the lognormal distributions, with a
particular emphasis on the tails.

In Table 1, we provide the average (that is, the
mean) and expected number of interviews and gaps
from our simulations, each of which consists of 1000
trials, starting with one employee with quality score
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Figure 1: Plots of the samples of Z1024,k.

0.5. (The expectations are calculated directly from the
formulas in Propositions 3.2, 3.3, 4.2, and 4.3.) As can
be seen, across the board the simulation numbers match
the exact answers obtained from our analysis.

Examining the lognormal approximation discussed
in Sections 3.2 and 4.2 through simulation requires a
little more work. The results in those sections tell us
that, for either the strategy of hiring above the mean
or the strategy of hiring above the median, if we let Hn

denote the threshold gap score for hiring a new employee
after hiring n people, then for any k , n, we have that

Zn,k ! lnHn −E[lnHn | Hk]
Var[lnHn | Hk]

≈ N(0, 1),

where the approximation is in the sense of probability
distributions. Furthermore, this approximation is good
for the body of the distribution of Zn,k, but fairly
inaccurate at the tails.

To demonstrate these claims via simulation, we set
n = 1024 and the quality score of the first employee
to 0.5. Then we take 10000 independent samples of
Zn,k for k = 0 and k = 32. (Note that the conditional



Hiring above the Mean Hiring above the Median Hiring above the Mean Hiring above the Median
Average Expected Average Expected Average Expected Average Expected

Hires Gap Gap Gap Gap Interviews Interviews Interviews Interviews
256 0.03556 0.03518 0.00761 0.00769 5192 5261 33560 33024
512 0.02493 0.02490 0.00370 0.00388 14865 14856 133547 131584
1024 0.01755 0.01762 0.00189 0.00195 41987 41986 561442 525312
2048 0.01251 0.01246 9.68× 10−4 9.75× 10−4 118011 118706 2408235 2099200
4096 0.00867 0.00881 4.89× 10−4 4.88× 10−4 340552 335682 8195709 8392704
8192 0.00630 0.00623 2.47× 10−4 2.44× 10−4 939643 949352 35427404 33562624
16384 0.00444 0.00441 1.25× 10−4 1.22× 10−4 2669107 2685031 130726647 134234112
32768 0.00313 0.00312 6.09× 10−5 6.10× 10−5 7585301 7594213 548812815 536903680
65536 0.00223 0.00220 3.10× 10−5 3.05× 10−5 21273638 21479393 2180257224 2147549184

Table 1: Avg. gap values and # interviews (from simulation) and their expected values (calculated).

expectations and variances needed to compute Zn,k

from Hn and Hk are easily determined from the results
in Sections 3 and 4.) We graph the results in Figure 1
using normal probability plots [12]. (Intuitively, each
graph is obtained by plotting the samples so that, if
they were truly drawn from N(0, 1), they would all lie
very close to the line y = x with high probability.)

It is clear from Figure 1 that the approximation
Zn,k ≈ N(0, 1) is fairly accurate for the body of the
distribution of Zn,k, but weaker at the tails. It is also
evident that as k increases, the approximation improves,
which tells us that first few hires really do have a
substantial effect for both strategies. Furthermore, we
see that the normal approximation is better for the
strategy of hiring above the mean than for the strategy
of hiring above the median, which indicates that the
latter strategy is more sensitive to the quality scores of
the first few hires.

By using standard techniques for interpreting nor-
mal probability plots [12], we can also see how the
tails of Zn,k differ from those of N(0, 1). Indeed, both
curves on the graph for hiring above the median depart
markedly downwards from the line y = x on the tails,
especially on the lower tail, which tells us that, in this
case, the distribution of Zn,k has a long left tail and
a short right tail, and that this effect diminishes as k
grows. Since lower values of Zn,k correspond to higher
employee quality scores, this observation tells us that
for the strategy of hiring above the median, the first
few hires really do have a tremendous impact on the
final result, and this impact is much more likely to be
positive than negative.

6 Variations and Extensions
One of the key features of the hiring model is that it
naturally allows for variations and extensions, which
may be useful for considering more realistic scenarios
or gaining more insight into the underlying tradeoffs.

While we expect other researchers will consider more
elaborate extensions in future work, we briefly consider
some natural extensions here, focusing on situations
where our analysis can be generalized easily.

6.1 Preprocessing Interviews The number of in-
terviews required to hire an employee for the Lake
Wobegon strategies starts small but grows quickly. As
interviews are themselves expensive, the fact that the
number of interviews grows in this way suggests a po-
tential problem with our model.

In reality we expect interview preprocessing to
occur. This preprocessing may simply stem from self-
selection; low quality people do not bother to apply.
Alternatively, a weeding process could discard weak
candidates early in the process, such as after a read
of the résumé instead of after a full interview.

Such preprocessing does not substantially affect our
model, as long as the conditional distribution of the
quality of a person above the current hiring threshold
remains uniform. That is, the quality of the ith hire
does not need to be different, just the number of
interviews to reach the person, which can be handled
separately. As an example, if when hiring above the
mean the applicants have quality uniform over (1 −
cGt, 1) for some constant c > 1 and current gap Gt,
then on average only c interviews are needed per hire,
but the change in the gap over each hire follows the
same distribution. One can devise similar models for
hiring above the median.

6.2 Alternative Quantile Hiring Strategies In
some sense, there is really nothing special about the
median in the hiring problem; we could consider hiring
people above the 60th percentile of the current work
force instead, for example.

For purposes of analysis, the easiest way to gener-
alize our previous work is to consider strategies of the



following type: fix some employee Q in the ranking, hire
a additional people whose quality is above Q, and then
move the threshold up b employees in the rank order.
Our median strategy can be thought of as the “hire 2,
move up 1” strategy, and we generalize this to a “hire
a, move up b” strategy. Other quantiles can be suit-
ably approximated by an appropriate choice of a and
b, and the analysis in Section 4 can be appropriately
generalized. For details, see [2].

6.3 Errors In our analyses in Sections 3 and 4,
we assume that an applicant’s exact quality score is
revealed during the interview. In reality, however, the
interview process cannot be perfect, so the interview
score will differ from the applicant’s true quality. We
may therefore hire applicants whose true quality scores
lie below the threshold prescribed by the hiring strategy,
and similarly we may reject applicants whose scores
lie above this threshold. Furthermore, it may also be
unrealistic to assume that we know the exact value of
the threshold when interviewing applicants, as this may
require more information about our employees’ quality
scores than we can exactly determine.

We would like to take these sorts of errors into ac-
count in our analysis. Unfortunately, it seems quite dif-
ficult to formulate a model for all, or even just some, of
these errors that is simultaneously justifiable and ana-
lyzable. In particular, our analysis in Sections 3 and 4
relies heavily on the fact that the conditional distribu-
tion of an applicant’s quality score Qi given that Qi ≥ x
is Unif(x, 1) ∼ 1 − (1 − x)Unif(0, 1). This observation
allows us to derive the simple expressions for the form
of the gap distribution given in Lemmas 3.1 and 4.1.
But if we allow for errors in the interview process, then
the conditional distribution of an applicant’s true qual-
ity score Qi given that the observed score Q̂i ≥ x does
not seem to have an analogous form for most standard
models of measurement error. We believe that resolving
this issue is a worthwhile open problem.

As an example of what we can analyze, for the case
of hiring above the mean, suppose that the conditional
distribution of the true quality score of the ith employee
hired given the prior history of the system and Gi−1 ≤
g0 is Unif(1 − Gi−1Ri−1, 1), where Gi−1 is the true
gap and the Ri’s are random variables with common
distribution 0 < R ≤ 1/g0 that are independent of each
other and the applicants’ true quality scores; the case
R = 1 corresponds to the model analyzed in Section 3.
This model is somewhat artificial, but it captures the
idea that there may be noise in our observations of our
quality scores.

Going through the same calculations as in the proof
of Lemma 3.1 now tells us that, given Gs ≤ g0, the

conditional joint distribution of the Gi’s for i > s is
the same as if Gi = Gs

∏i
j=s+1

(
1− 1−RjUj

j

)
, where

the Uj ’s are independent Unif(0, 1) random variables
that are also independent of the Rj ’s. We can use this
formula to prove analogues of the results in Section 3.

6.4 Hiring and Firing Another natural extension
to the hiring problem would be to allow a firing strat-
egy, in order to remove the low performers.2 Intuitively,
a good firing strategy should allow the company to op-
timize the tradeoff between increasing its employees’
average quality and reducing their number. Unfortu-
nately, most natural combinations of hiring and firing
strategies seem difficult to analyze, because they intro-
duce challenging dependencies among employee quality
scores. We can, however, partially analyze an important
class of firing strategies in conjunction with hiring above
the median. These strategies are generalizations of the
(in)famous rank-and-yank system (sometimes, and per-
haps more properly, called the vitality curve system),
used extensively by Jack Welch at General Electric [17].

The basic tenet of the rank-and-yank system is that
employees should be periodically ranked and those near
the bottom should be fired. The key (and most con-
troversial) detail of this system is that the fraction of
employees fired is fixed in advance, without regard to
any absolute or overall measurements of the employ-
ees’ qualities or performance. Such a strategy is easily
modeled in the context of hiring above the median ex-
amined in Section 4, assuming that quality scores do
not change over time. Indeed, if candidates’ quality
scores are independent Unif(0, 1) random variables and
we condition on having 2k + 1 employees with median
quality score M at some particular time, then the dis-
tribution of the top k employees’ quality scores is the
same as the order statistics of k independent Unif(M, 1)
random variables. Thus, if we were to fire the bottom
2j ≤ 2k employees at this time, the conditional distri-
bution of the resulting median of the employees’ quality
scores would be the same as the distribution of the jth
smallest of k independent Unif(M, 1) random variables,
which is 1− (1−M)Beta(k − j, j + 1).

With this in mind, we consider the following variant
of hiring above the median in conjunction rank-and-
yank firing. We start with one employee with some fixed
quality 0 < q < 1, and we fix some firing parameter
0 < f < 1. Whenever we have 2k + 1 employees, we
first hire the next two applicants whose quality scores

2It is interesting to note that under our simple model, the
lowest performers are always the ones with the most seniority.
Hence there may be some truth to the essentially universally held
belief that you are better than your boss.



are above the current median of the current employees’
quality scores, giving a total of 2k + 3 employees. If
(2k + 2)f is an even integer, we then fire the (2k + 2)f
employees with lowest quality scores. (Note that the
number of employees is always odd, so there is no
ambiguity in determining the median. Also, if f = 0,
the model is exactly the same as the one studied in
Section 4.)

Let G′′t and n(t) denote the gap and number of
employees after t iterations of this process, so that G′′0 =
g = 1 − q and n(0) = 1. For convenience, let m(t) =
(n(t) − 1)/2 and let r(t) denote the (deterministic)
number of employees fired during the t-th iteration.
Then by the argument above, we immediately have a
natural analogue to Lemma 4.1.

Lemma 6.1. For t ≥ 1, the conditional distribution
of G′′t given everything that occurs in the first t − 1
iterations of the process is the same as G′′t−1Beta(m(t−
1) + 2− r(t), r(t) + 1).

This lemma provides a starting point from which
more detailed analyses of rank-and-yank strategies
could proceed.

7 Conclusions
We have introduced the hiring problem, a mathemat-
ical model for decision making under uncertainty re-
lated to the secretary problem. We have also introduced
and analyzed the behavior of Lake Wobegon strategies,
where one hires new applicants that lie above the mean
or the median of the current employees. These simple
scenarios already provide rich mathematical structures,
with connections to lognormal distributions, weak con-
vergence results, and nonintuitive differences between
the mean and median. Furthermore, the large num-
ber of possible variations and extensions suggests that
there are many more interesting connections and devel-
opments yet to make.
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