
Copyright 2003-05 John Cowan under the GNU GPL
1

Describing Document
Types: The Schema
Languages of XML

Part 1
John Cowan

Copyright 2003-05 John Cowan under the GNU GPL
2

Copyright
• Copyright © 2003-05 John Cowan
• Licensed under the GNU General Public License
• ABSOLUTELY NO WARRANTIES; USE AT YOUR

OWN RISK
• Portions written by James Clark; used by permission
• Black and white for readability
• The Gentium font available at

http://www.sil.org/~gaultney/gentium

Copyright 2003-05 John Cowan under the GNU GPL
3

Abstract
This tutorial will teach you the basics of several XML
schema languages: DTDs, RELAX NG, Schematron,
and W3C XML Schema. You will end up
understanding the principles of each and their
advantages and disadvantages in various applications.

Prerequisites: An understanding of basic XML
concepts. Knowledge of any XML or SGML schema
languages is helpful but certainly not a requirement.

Copyright 2003-05 John Cowan under the GNU GPL
4

Part 1 Abstract
In this part of the tutorial you will learn how to use the
RELAX NG schema language, one of the principal
schema languages for XML. RELAX NG allows easy
and intuitive descriptions of just what is and what is not
allowed in an XML document. It is simple enough to
learn in a few hours, and rich and flexible enough to
support the design and validation of every kind of
document from the very simple to the very complex.

We will also review DTDs, and talk briefly about
Schematron (a rules-based schema language) and
NVDL (a meta-schema language for compound
documents).

Copyright 2003-05 John Cowan under the GNU GPL
5

Roadmap
• Review of DTDs

(17)
• RELAX NG goals

(21)
• Invoice

example(10)
• Basic Patterns

(13)

• More Patterns (13)
• Datatypes (11)
• Tools (14)
• NVDL (4)
• Schematron (12)

Copyright 2003-05 John Cowan under the GNU GPL
6

REVIEW OF DTDS

Copyright 2003-05 John Cowan under the GNU GPL
7

DTDs and documents

• DTDs can appear within a document,
outside a document, or both

• The DOCTYPE declaration specifies a
DTD

• Internal subset:
<!DOCTYPE root [[...]]>

• External subset:
<!DOCTYPE root SYSTEM
"http://...">

• External before internal

Copyright 2003-05 John Cowan under the GNU GPL
8

Functions of the DTD

• Document validation
• Default values for missing attributes
• Entity declaration and replacement
• Document documentation

Copyright 2003-05 John Cowan under the GNU GPL
9

ELEMENT declarations

• Specify what all the elements that share
a common name can contain (the
content model)

• No direct support for namespaces
• Elements can contain

– Nothing
– Text only
– Text and child elements
– Just child elements

Copyright 2003-05 John Cowan under the GNU GPL
10

ELEMENT declaration syntax

• Empty:
 <!ELEMENT name EMPTY>

• Text only:
 <!ELEMENT name (#PCDATA)>

• Text and child elements:
 <!ELEMENT name
 (#PCDATA|elem1|elem2|...)*>

Copyright 2003-05 John Cowan under the GNU GPL
11

Element content models
• Sequence of child elements:

 <!ELEMENT name (ch1, ch2)>
• Choice between child elements:

 <!ELEMENT name (ch1|ch2)>
• Sequence of optional child elements:

 <!ELEMENT name
 (ch?, ch2?, ch3?)>

Copyright 2003-05 John Cowan under the GNU GPL
12

Element content models
• Repeated child elements (zero or more):

 <!ELEMENT name (child*)>
• Repeated child elements (one or more):

 <!ELEMENT name (child+)>
• Any of these possibilities can be freely

combined

Copyright 2003-05 John Cowan under the GNU GPL
13

Element content models
• Choice between sequences:
((a, b) | (c, d)

• Sequence of choices:
((a | b), (c | d))

• Optional sequence:
(a, b, c)?

• You cannot mix , and | in one list; use
parentheses to disambiguate

Copyright 2003-05 John Cowan under the GNU GPL
14

Restrictions on content models
• A mixed model cannot constrain how

many times or in what order the child
elements appear, only which elements
are allowed

• An element-only content model requires
that each child element in the instance
match exactly one part of the content
model
– (A?, A?) is not a legal content model

Copyright 2003-05 John Cowan under the GNU GPL
15

Element wildcard

• <!ELEMENT name ANY> specifies an
element that can contain any child
elements declared elsewhere in the DTD

• May include text as well
• Cannot include undeclared elements

Copyright 2003-05 John Cowan under the GNU GPL
16

ATTLIST declarations

• Declares the allowed attributes of an
element

• <!ATTLIST ename
 attr1 type1 default1
 attr2 type2 default2
 ...>

Copyright 2003-05 John Cowan under the GNU GPL
17

ATTLIST declarations

• Any number of attributes for a single
element type may be declared in a single
ATTLIST

• Any number of ATTLIST declarations
may be used for a given element type

• The typical case: one ATTLIST per
element type

Copyright 2003-05 John Cowan under the GNU GPL
18

Attribute types
• DTDs support only a few attribute types
• CDATA: no constraints
• ID: an identifier for the element
• IDREF : must match some element's ID
• NMTOKEN : a name or number

Copyright 2003-05 John Cowan under the GNU GPL
19

Attribute types

• IDREFS: one or more space-separated
element IDs

• NMTOKENS: one or more space-
separated names or numbers

• Enumerated tokens: value must be one

Copyright 2003-05 John Cowan under the GNU GPL
20

Attribute defaults
• Specific value required (supplied by

parser):
 #FIXED "value"

• Attribute required but no specific value:
 #REQUIRED

• Attribute not required, default value:
 "value"

• Attribute not required, no default value:
 #IMPLICIT

Copyright 2003-05 John Cowan under the GNU GPL
21

ENTITY declarations

• Declare a name for text to be inserted
into a document

• Entity references are of the form &name;
• The text is typically just one character

long
• There is a long list of ISO-standardized

character names
• General entities have no equivalents in

other schema languages

Copyright 2003-05 John Cowan under the GNU GPL
22

Parameter entity declarations
• Declare a name for text (a single string

or a whole file) to be inserted into a DTD;
• Allow parameterization of DTDs through

included/ignored sections
• A trick involving parameter entities

makes it possible to handle namespace
prefixes

• Various specialized rules make
parameter entities difficult to use

Copyright 2003-05 John Cowan under the GNU GPL
23

Obsolescent features
• Unparsed entities

– Non-XML objects
– Declared by <!ENTITY ...> declarations
– Referred to by attributes of type ENTITY or
ENTITIES

• NOTATION declarations
– Specifies type of an unparsed entity
– Specifies type of a text-only element using

attributes of type NOTATION

Copyright 2003-05 John Cowan under the GNU GPL
24

RELAX NG GOALS

Copyright 2003-05 John Cowan under the GNU GPL
25

"DTDs on warp drive"

• An evolution/generalization of DTDs
• Shares the same basic paradigm
• Based on experience with SGML, XML
• Adds and subtracts features from DTDs
• DTDs can be automatically converted

Copyright 2003-05 John Cowan under the GNU GPL
26

Reusable knowledge
• Experts in designing SGML and XML

DTDs will find their skills transfer easily
• Design patterns commonly used in XML

DTDs can be reused
• Much more mature than if based on a

completely new and different paradigm
• Higher degree of confidence in its

design is possible

Copyright 2003-05 John Cowan under the GNU GPL
27

Easy to learn and use

• Allows schemas to be patterned after
the structure of the documents they
describe

• Allows definitions to be composed from
other definitions in a variety of ways

• Treats attributes and elements as
uniformly as possible

Copyright 2003-05 John Cowan under the GNU GPL
28

Namespaces

• DTDs are namespace-blind
• RELAX NG fully supports namespaces

for elements and attributes
• Namespace support is purely syntactic,

not tied to one schema per namespace
• Name classes support “any name” and

“any name in specified namespace”

Copyright 2003-05 John Cowan under the GNU GPL
29

Datatyping

• Supports pluggable simple datatype
libraries

• Basic library supports strings and
tokens

• Full XML Schema Part 2 datatypes
available (including facets)

• New libraries can be readily designed
and built as needed.

Copyright 2003-05 John Cowan under the GNU GPL
30

Composability

• Schema languages provide atomic
objects (elements, attributes, text, typed
data) and methods of composing them
(sequence, repetition, choice)

• All RELAX NG atomic objects can be
composed with any available method

• Improves ease of learning, use, power;
decreases complexity

Copyright 2003-05 John Cowan under the GNU GPL
31

Closure

• RELAX NG is closed under union
– If two schemas exist describing two

document types, then a schema describing
the union of the two document types is
trivial to create

– Consequently, the content model of an
element can be context-dependent

Copyright 2003-05 John Cowan under the GNU GPL
32

Two syntaxes, one language

• Provides two interconvertible syntaxes:
– an XML one for processing
– a compact non-XML one for human

authoring
• We will learn the compact syntax
• One example of the XML syntax is

provided to assist in learning it

Copyright 2003-05 John Cowan under the GNU GPL
33

Attributes

• “Elements or attributes?”
– Reasonable people can differ
– Attributes are treated as much like

elements as possible
• Content models include elements as

well as attributes
• Attribute defaulting is not done

Copyright 2003-05 John Cowan under the GNU GPL
34

Non-goal: attribute defaulting

• Attribute defaulting can only be done by
DTDs or W3C XML Schema when the
value does not depend on context

• Sensible attribute defaults often depend
on context (inheritance of xml:lang, e.g.)

• Attribute defaulting is trivial for
transformation languages such as XSLT

Copyright 2003-05 John Cowan under the GNU GPL
35

Non-goal: PSVI

• RELAX NG has no post-validation
infoset enhancement

• Infoset enhancement can be done as a
separate layer

• Sun’s Multi-Schema Validator provides
datatype information

• Separation of concerns promotes
efficiency, flexibility

Copyright 2003-05 John Cowan under the GNU GPL
36

Annotations

• Annotations in the form of elements and
attributes can be interspersed in RELAX
NG schemas for various purposes:
– DTD-style attribute defaults
– documentation
– embedded Java code

• Conforming RELAX NG validators
ignore annotations

Copyright 2003-05 John Cowan under the GNU GPL
37

Mixed content

• SGML had problems with complex
mixed-content models

• XML DTDs tightly restrict mixed-content
models

• RELAX NG allows character content
mixed with any content model

Copyright 2003-05 John Cowan under the GNU GPL
38

Unordered content

• SGML’s & operator allows unordered
content models
– A & B means ((A, B) | (B, A))

• XML DTDs removed & to reduce
implementation complexity

• RELAX NG restores & with
improvements

Copyright 2003-05 John Cowan under the GNU GPL
39

Customization

• Definitions included from another
schema can be overridden

• Multiple definitions from the same or
different schemas can be intelligently
combined
– as if with |
– as if with &

Copyright 2003-05 John Cowan under the GNU GPL
40

A real standard

• Standardized in OASIS by the RELAX
NG Technical Committee

• A major component of ISO DSDL, the
Document Schema Definition
Languages umbrella-standard

Copyright 2003-05 John Cowan under the GNU GPL
41

Non-goal: inheritance

• Inheritance-based schemas only model
single inheritance

• Modeling often requires multiple
inheritance (at least for interfaces)

• Schema languages are really about
syntactic details, not about models

Copyright 2003-05 John Cowan under the GNU GPL
42

Non-goal: identity constraints

• Identity constraints are not supported
• Identity constraints are still a developing

research area
• Different applications have different

requirements from simple to complex
• Some RELAX NG tools support DTD-

style semantics for ID, IDREF(S)

Copyright 2003-05 John Cowan under the GNU GPL
43

Non-goal: schema binding
• There is no standard way for a document to

specify “its schema”
• Receivers often want to verify against agreed-

on schemas, not sender-specified ones
• Documents may be validated against different

schemas for different purposes
• The validation model takes two inputs: a

document and a schema
• Just part of the XML processing issue

Copyright 2003-05 John Cowan under the GNU GPL
44

Interoperability
• You can convert a DTD to RELAX NG,

preserving modularity
• You can author in RELAX NG and

deliver as a DTD or a W3C XML
Schema or both

• RELAX NG allows embedded
Schematron rules

Copyright 2003-05 John Cowan under the GNU GPL
45

Pronunciation

• "Relaxing" is the standard way
• Some people say "relax en gee"

Copyright 2003-05 John Cowan under the GNU GPL
46

AND NOW TO RELAX!

Copyright 2003-05 John Cowan under the GNU GPL
47

Copyright 2003-05 John Cowan under the GNU GPL
48

THE INVOICE EXAMPLE

Copyright 2003-05 John Cowan under the GNU GPL
49

An invoice in XML
<invoice number="640959-0" date="2002-03-12">
 <soldTo>
 <name>Reuters Health Information</name>
 <address>45 West 36th St. New York NY 10018</address>
 </soldTo>
 <shipTo>
 <name>Reuters Health Information</name>
 <address>45 West 36th St. New York NY 10018</address>
 </shipTo>
 <terms>Net 10 days</terms>
 <item ordered="6" shipped="6" unitPrice="7.812">
 Binder, D-ring, 1.5"</item>
 <item ordered="4" shipped="2" backOrdered="2"
 unitPrice="3.44">Fork, Plastic, Heavy, Medium</item>
</invoice>

Copyright 2003-05 John Cowan under the GNU GPL
50

The invoice schema (1)
element invoice {
 attribute number { text },
 attribute date { text },
 element soldTo {
 element name { text },
 element address { text }
 },
 element shipTo {
 element name { text },
 element address { text }
 },

Copyright 2003-05 John Cowan under the GNU GPL
51

The invoice schema (2)
 element terms { text },
 element item {
 attribute unitPrice { text },
 attribute ordered { text },
 attribute shipped { text },
 attribute backOrdered { text }?,
 text
 }*
 }

Copyright 2003-05 John Cowan under the GNU GPL
52

Things to note

• The structure of the schema parallels
the structure of the document

• Element content models include
attributes as well as child elements

• The optional attribute is marked with ?
• text is the equivalent of #PCDATA or

CDATA

Copyright 2003-05 John Cowan under the GNU GPL
53

Things to note

• Commas separate multiple components
of a content model when the
components appear in the given order

• Of course, the order of attributes does
not matter!

• Consequently, attributes can appear in
the schema before, after, or mixed in
with child elements

Copyright 2003-05 John Cowan under the GNU GPL
54

The XML format
<element name="invoice">

 <attribute name="number"/>
 <attribute name="date"/>
 <element name="soldTo">
 <element name="name">
 <text/>
 </element>
 <element name="address">
 <text/>
 </element>
 </element>
 <element name="shipTo">
 <element name="name">
 <text/>
 </element>
 <element name="address">
 <text/>
 </element>
 </element>

 <element name="terms">
 <text/>
 </element>
 <zeroOrMore>
 <element name="item">
 <attribute name=
"unitPrice"/>
 <attribute
name="ordered"/>
 <attribute
name="shipped"/>
 <optional>
 <attribute
name="backOrdered"/>
 </optional>
 </element>
 </zeroOrMore>
</element>

Copyright 2003-05 John Cowan under the GNU GPL
55

Definition form
start = invoice
element invoice {

attribute number { text },
attribute date { text },
soldTo, shipTo, terms, item
}

soldTo = element soldTo { name, address }
shipTo = element shipTo { name, address }
terms = element terms { text }

Copyright 2003-05 John Cowan under the GNU GPL
56

Definition form
item = element item {

 attribute unitPrice { text },
 attribute ordered { text },
 attribute shipped { text },
 attribute backOrdered { text }?,
 text
 }

name = element name { text }
address = element address { text }

Copyright 2003-05 John Cowan under the GNU GPL
57

Definition form notes
• In definition form, there must always be

a definition of start
• You refer to a rule using just its name
• The order of the rules does not matter;

use whatever order makes sense to you
(top-down, bottom-up, alphabetical)

• Rule names are only relevant to the
schema, and never appear in the
document instance

Copyright 2003-05 John Cowan under the GNU GPL
58

Three schema designs
• "Russian Doll": a single pattern for the

whole document
• "Salami Slice": one definition for each

differently-named element (DTD style)
• "Venetian Blind": one definition for each

pattern specifying the content of an
element, plus one for the document
element

Copyright 2003-05 John Cowan under the GNU GPL
59

Venetian Blind schema
start = element invoice {invoice}
invoice =

attribute number { text },
attribute date { text },
element soldTo { name-addr },
element shipTo { name-addr },
element terms { text },
element item { item }*

Copyright 2003-05 John Cowan under the GNU GPL
60

Venetian Blind schema
item =

attribute unitPrice { text },
attribute ordered { text },
attribute shipped { text },
attribute backOrdered { text }?,
text

name-addr =
element name { text },
element address { text }

Copyright 2003-05 John Cowan under the GNU GPL
61

BASIC PATTERNS

Copyright 2003-05 John Cowan under the GNU GPL
62

Patterns

• Patterns are the basic building blocks of
RELAX NG schemas and rules

• Some kinds of patterns can contain sub-
patterns enclosed in braces ({ … })

Copyright 2003-05 John Cowan under the GNU GPL
63

Element patterns

• Syntax: element name { … }
• The content model (child elements and

attributes) is contained within the braces
• Content models consist of one or more

patterns

Copyright 2003-05 John Cowan under the GNU GPL
64

Attribute patterns

• Syntax: attribute name { … }
• The content model is contained within

the braces
• Content models consist of one or more

patterns
• You can't have child elements or

attributes within attributes, of course!

Copyright 2003-05 John Cowan under the GNU GPL
65

Attribute patterns

• So what patterns can be inside
attributes?
– The text pattern - equivalent to CDATA
– Datatypes (details later)
– Literal strings in quotes:
attribute country { "US" }
means the country attribute must have
the value US.

Copyright 2003-05 John Cowan under the GNU GPL
66

Element patterns

• So what patterns can be inside
elements?
– The text pattern - equivalent to #PCDATA
– Datatypes (details later)
– Literal strings in quotes:
element country { "US" }
means the country element must have
the content US.

Copyright 2003-05 John Cowan under the GNU GPL
67

The text pattern

• Matches any amount of arbitrary text,
possibly broken up by child elements

• Equivalent to #PCDATA in elements or
CDATA in attributes

• text*, text?, text+ all mean the
same as text

Copyright 2003-05 John Cowan under the GNU GPL
68

Namespaces
• To declare elements and attributes in

namespaces, use QNames in element
and attribute patterns

• Namespace prefixes are declared like
this:
namespace foo = "(some URI)"

• Namespace declarations must come
first in the schema

Copyright 2003-05 John Cowan under the GNU GPL
69

Default namespaces
• You can declare a namespace for unprefixed

elements (not attributes) like this:default namespace =
"(some URI)"

• If you want the default namespace to have a
prefix too, use:
default namespace foo =

 "(some URI)"

Copyright 2003-05 John Cowan under the GNU GPL
70

Namespaces

Here's an example:

namespace one = "http://example.com/one"
namespace two = "http://example.com/two"
default namespace = "http://example.com"
element para {
 attribute one:class { text },
 attribute two:class { text },
 element line { text }*
 }

Copyright 2003-05 John Cowan under the GNU GPL
71

Choice

• Two patterns separated by | represent
a choice between them; the document
can match one pattern or the other, not
both

• Arbitrary patterns are allowed in a
choice: you can have a choice between
attributes, between elements, or even
between an element and an attribute!

Copyright 2003-05 John Cowan under the GNU GPL
72

Choice

• A useful case:
element data {
 (element id { text } |
 attribute id { text }),
 text
 }

• You cannot mix , and | in one list; use
parentheses to disambiguate

Copyright 2003-05 John Cowan under the GNU GPL
73

Choice

Enumerated values use choice like this:
element font {
 attribute size {
 "10" | "12" | "14" | "16"
 }
}

Copyright 2003-05 John Cowan under the GNU GPL
74

Quantifiers
• You can place an *, ?, or + after any

pattern to allow it to be repeated:
– * means zero or more times
– ? means zero or one times
– + means one or more times

• These mean the same as in DTD
content models, but can be used after
any pattern, not just rule names

Copyright 2003-05 John Cowan under the GNU GPL
75

MORE PATTERNS

Copyright 2003-05 John Cowan under the GNU GPL
76

Interleave

• Interleave is a cross between choice
and sequence

• When patterns are combined with &,
they all must appear but it can be in any
order (as in SGML) …

• … or even mixed together!

Copyright 2003-05 John Cowan under the GNU GPL
77

Interleave
• So this schema ...
element head {
 element meta { empty }* &
 element title { text }
 }

• … matches a head element that has
any number of meta child elements
(including zero) and a required title
child element mixed in anywhere.

Copyright 2003-05 John Cowan under the GNU GPL
78

Interleave
• Note: In the case of attributes,

sequence and interleave are the same
thing, because attributes don't have
ordering

• So you can use either , or & according
to what is the most convenient

• The pattern mixed { ... } is a synonym
for (text & (...))

Copyright 2003-05 John Cowan under the GNU GPL
79

Multiple element and
attribute patterns

• An element or attribute pattern with
multiple names separated by | matches
elements bearing any of those names:
element h1|h2|h3|h4|h5|h6
{ heading.model }

Copyright 2003-05 John Cowan under the GNU GPL
80

Element wildcards

• An element pattern with * instead of a
name matches an element with any
name

• To match any name in a particular
namespace, use foo:* where foo is
the prefix declared for the namespace

• To match any name except foo and
bar, use * - (foo|bar)

Copyright 2003-05 John Cowan under the GNU GPL
81

Attribute wildcards
• Attribute wildcards are declared just like

element wildcards
• An attribute wildcard pattern must be

followed by * or +
• It makes no sense to specify an element

with "just one wildcard attribute"

Copyright 2003-05 John Cowan under the GNU GPL
82

ANY?

• There is no built-in ANY content model,
corresponding to empty for empty
content models or notAllowed for
forbidden models

• Here’s how it can be done:
ANY = element * {
 attribute * {text}*
 & text & ANY*
}

Copyright 2003-05 John Cowan under the GNU GPL
83

Multiple schemas

• external incorporates one pattern
document into another

• include incorporates one set of rules
into another, and allows for overriding
any of the included rules by name
– In particular, overriding the start rule

is usually necessary
• Rules with identical names can also be

combined by choice or by interleave

Copyright 2003-05 John Cowan under the GNU GPL
84

Context sensitivity

The first paragraph cannot have
footnotes; the remainder can:

start = element doc {first, other*}
first = element para { text }
other = element para {
mixed { element footnote {text}*}

}

Copyright 2003-05 John Cowan under the GNU GPL
85

Restrictions on schemas
• The obvious XML ones: no elements or

attributes within attributes, only one top-
level element, etc. etc.

• Attributes can't have conflicting
definitions in a single element

Copyright 2003-05 John Cowan under the GNU GPL
86

Restrictions on schemas
• Interleave doesn't allow an element with

a given name, or text either, to be used
in more than one interleaved subpattern

• The following are illegal:
– (a, b, c) & (a, d, e)
– (

Copyright 2003-05 John Cowan under the GNU GPL
87

A few lexical details
• Strings (used as values and parameter

values) can be wrapped in double quotes
or single quotes

• Multi-line strings are wrapped in """ or
''' (as in Python)

• Rule names that are the same as
syntactic keywords must be preceded by
\

Copyright 2003-05 John Cowan under the GNU GPL
88

Comments

• Ordinary comments begin with #
• Documentation comments begin with
and are copied (in groups) into the
XML syntax as a:documentation
elements

• The a: prefix represents the
namespace of the DTD Compatibility
extension to RELAX NG

Copyright 2003-05 John Cowan under the GNU GPL
89

DATATYPES

Copyright 2003-05 John Cowan under the GNU GPL
90

Datatypes

• A type is a named set of values
• An datatype provides a standardized,

machine-checkable representation of a
type

Copyright 2003-05 John Cowan under the GNU GPL
91

Schema datatypes
• DTDs have only a few datatypes for

attributes and only one datatype for
elements

• XML Schema provides a long, but fixed,
list of datatypes

• RELAX NG can work with any datatype
library, including the XSD (XML Schema
Datatypes) library

Copyright 2003-05 John Cowan under the GNU GPL
92

RELAX NG datatypes
• Datatype patterns are written using

QNames
• This use of QNames can't be confused

with QNames for elements or attributes,
because those are only recognized after
the words element and attribute

• The built-in datatypes string and
token don’t have prefixes and are
recognized by all implementations

Copyright 2003-05 John Cowan under the GNU GPL
93

Declaring datatype libraries

• A prefix is declared like this:
datatypes lib = "(some URI)"

• Datatype library declarations must come
first

• RELAX NG processors recognize a
system-dependent list of datatype
library URIs

Copyright 2003-05 John Cowan under the GNU GPL
94

Useful datatypes

• The xsd prefix is predeclared for XML
Schema Datatypes

• xsd:integer represents an integer of
arbitrary length

• There are xsd: equivalents for all the
DTD attribute types (ID, IDREF, etc.)

• We'll discuss all the xsd types later.

Copyright 2003-05 John Cowan under the GNU GPL
95

Typed values

• "0" and token "0" match a “0”
character with possible surrounding
whitespace

• string "0" matches a “0” character
exactly

• xsd:integer "0" matches “0” or “00”
or “000” or “-0” or ...

Copyright 2003-05 John Cowan under the GNU GPL
96

Simple and complex content
• Element patterns containing a datatype

or a value (or a list) specify simple
content

• Element patterns containing child
elements or text or both specify complex
content

• No element pattern can contain both
– A choice between simple and complex

content is legal

Copyright 2003-05 John Cowan under the GNU GPL
97

Datatype exceptions

• xsd:nonNegativeInteger and
xsd:nonPositiveInteger are
existing types

• How do we say “non-zero integer”?xsd:integer - xsd:integer "0"
• We can likewise express a string that is

not a name:xsd:string - xsd:Name

Copyright 2003-05 John Cowan under the GNU GPL
98

Parameters
• Parameters restrict the values of datatypes
• Each datatype has specific parameters are

legal with it
• An integer between 0 and 999 inclusive:

xsd:integer {
 minInclusive = "0"
 maxInclusive = "999"
}

Copyright 2003-05 John Cowan under the GNU GPL
99

Lists

• List patterns specify that simple content
is to be divided by whitespace into
tokens

• The pattern list {xsd:integer*}
matches a list of zero or more white-
space-separated integers

• This example needs * because list
itself does not imply repetition

Copyright 2003-05 John Cowan under the GNU GPL
100

Lists

• The pattern

list {(xsd:integer, token)+}

matches the string

"32 foo 45 bar 76 baz"
• Lists within lists are not allowed

Copyright 2003-05 John Cowan under the GNU GPL
101

TOOLS

Copyright 2003-05 John Cowan under the GNU GPL
102

The Jing validator

• Written by James Clark, principal author
of RELAX NG

• Java based command-line tool
– Validates schemas
– Validates documents against schemas

• Accepts either compact or XML syntax
• Optionally enforces DTD ID/IDREF

Copyright 2003-05 John Cowan under the GNU GPL
103

The Jing validator

• Also usable as a validation library within
a Java program

• Provides JAXP (Sun-standard) interface
• Provides native interface
• Validates against other schema

languages:
– W3C XML Schema
– Schematron
– Namespace Routing Language

Copyright 2003-05 John Cowan under the GNU GPL
104

The Trang translator

• Another James Clark product
• Translates schemas:

– Input: XML syntax, compact syntax, DTDs
– Output: XML syntax, compact syntax,

DTDs, W3C XML Schema
• Output schemas may be looser than the

input schema (accept a superset of
what the input accepts)

• DTD and W3C XML Schema output is
imperfect

Copyright 2003-05 John Cowan under the GNU GPL
105

Sun RELAX NG translator

• Translates other schema languages into
RELAX NG in XML syntax:
– DTDs
– RELAX Core/Namespace
– TREX (predecessor of RELAX NG)
– Subset of XML Schema

• Does not preserve schema structure

Copyright 2003-05 John Cowan under the GNU GPL
106

Instance to schema
• InstanceToSchema generates a RELAX

NG schema from one or more XML
instances

• Examplotron (www.examplotron.org) is a
schema language that resembles an
instance with optional annotations and is
translated into RELAX NG

Copyright 2003-05 John Cowan under the GNU GPL
107

Sun Multi-Schema Validator

• By Kohsuke KAWAGUCHI, a major
RELAX NG contributor

• Validates documents (command-line or
library) using any schema language
supported by the Sun RELAX NG
Translator

• Also handles stand-alone or embedded
Schematron rules

Copyright 2003-05 John Cowan under the GNU GPL
108

Validation in .NET

• Tenuto is a C# implementation of
validation for the Common Language
Runtime environment

• Supports XML syntax, XSD library
• Does not support ID/IDREF semantics
• RelaxngValidatingReader is an

unrelated implementation of
XMLReader that validates input against
a RELAX NG schema

Copyright 2003-05 John Cowan under the GNU GPL
109

The Bali validator generator
• Accepts a RELAX NG schema and

generates special-purpose code to
validate documents against that
particular schema

• The generated validator is faster and
smaller than a general-purpose validator

• Generates Java, C++, or C#

Copyright 2003-05 John Cowan under the GNU GPL
110

The VBRELAXNG validator

• A validator for the XML syntax written in
Visual Basic 6.0

• Provides validation as an ActiveX
control

• Requires MSXML 4.0 parser
• Topologi Schematron Validator uses

this control

Copyright 2003-05 John Cowan under the GNU GPL
111

The RelaxNGCC compiler

• Accepts a subset of RELAX NG (no
ambiguous grammars) with annotations;
RelaxMeter tool checks for ambiguities

• Compiles specified RELAX NG rules
into Java classes

• Embedded Java code can refer to the
values matched by datatype, text, and
list patterns

• Analogous to JavaCC

Copyright 2003-05 John Cowan under the GNU GPL
112

The RelaxNGCC compiler

• The generated code requires a source
of SAX events (typically a parser)

• Objects of the generated classes are
data bindings for RELAX NG rules
considered as types

• The killer app for RELAX NG?

Copyright 2003-05 John Cowan under the GNU GPL
113

The RELAXER compiler
• Generates Java objects from RELAX NG

schemas without embedded code
• Imposes slightly different restrictions on

schemas (weaker if DOM available)
• Provides serialization from Java as well

as parsing to Java
• Analogous to JAXB
• The killer app for RELAX NG?

Copyright 2003-05 John Cowan under the GNU GPL
114

Editors
• oXygen and Topologi editors validate

against RELAX NG schemas
• xmloperator and an Emacs mode allow

editing guided by a RELAX NG schema
• Vim syntax coloring for writing schemas

in the compact syntax

Copyright 2003-05 John Cowan under the GNU GPL
115

The libxml2 library
• Provides parsing and (RELAX NG)

validation services for C programs
• Packaged with xmllint, an XML parser

and RELAX NG validator
• Part of the GNOME desktop, but

available separately

Copyright 2003-05 John Cowan under the GNU GPL
116

NAMESPACE-BASED
VALIDATION DISPATCHING

LANGUAGE

Copyright 2003-05 John Cowan under the GNU GPL
117

What it is

• An NVDL schema specifies how to divide
a document into parts and apply multiple
subschemas to them

• Basically it's a map between namespace
names and schema URIs

• Implementations aren't stable yet, but the
concepts are important

Copyright 2003-05 John Cowan under the GNU GPL
118

How it works

• The document is carved up into subtrees
whose elements have a common
namespace name

• The subschema associated with that
name is used to validate the subtree

• Subschemas can be in any schema
language including XML Schema and
even DTD

Copyright 2003-05 John Cowan under the GNU GPL
119

Concurrent validation

• Multiple schemas can be applied to a
subtree to cause concurrent validation

• Example: XHTML validation with RELAX
NG requires a check that no a element
has another a element as its ancestor

• A small schema that must fail validation
can be used to enforce this limtation

Copyright 2003-05 John Cowan under the GNU GPL
120

Other features

• A subordinate namespace can be
attached to a superior namespace so
that they will be validated together by the
superior namespace's schema

• Attribute-only schemas can be supported
using a dummy element name

• Validation can begin at a specific
element specified by a small subset of
XPath

Copyright 2003-05 John Cowan under the GNU GPL
121

Tools
• Currently there are only a few validators
• Jing actually validates Namespace

Routing Language, an earlier version of
NVDL

• This situation should improve

Copyright 2003-05 John Cowan under the GNU GPL
122

THE SCHEMATRON

Copyright 2003-05 John Cowan under the GNU GPL
123

Rule-based validation
• Grammars can't do it all
• The Schematron allows you to write rules

that test almost anything about a
document

• Schematron implementations display
natural-language diagnostics when:
– An assertion is violated
– The schema specifies a report

Copyright 2003-05 John Cowan under the GNU GPL
124

An invoice in XML
<invoice number="640959-0" date="2002-03-12">
 <soldTo>
 <name>Reuters Health Information</name>
 <address>45 West 36th St. New York NY 10018</address>
 </soldTo>
 <shipTo>
 <name>Reuters Health Information</name>
 <address>45 West 36th St. New York NY 10018</address>
 </shipTo>
 <terms>Net 10 days</terms>
 <item ordered="6" shipped="6" unitPrice="7.812">
 Binder, D-ring, 1.5"</item>
 <item ordered="4" shipped="2" backOrdered="2"
 unitPrice="3.44">Fork, Plastic, Heavy, Medium</item>
</invoice>

Copyright 2003-05 John Cowan under the GNU GPL
125

Schematron example (1)
<schema xmlns="http://www.ascc.net/xml/schematron">
 <pattern>
 <rule context="/invoice">
 <assert test="soldTo/name = shipTo/name">Sold-to and
ship-to names must match.</assert>
 </rule>
 </pattern>
...

Copyright 2003-05 John Cowan under the GNU GPL
126

Patterns and rules
• A Schematron pattern is a list of rules to

apply against each element in the
document

• Rules are applied in the order they
appear

• Only the first successful rule in a pattern
is applied

• Each rule specifies an XSLT pattern in its
context attribute

• Schemas can contain multiple patterns

Copyright 2003-05 John Cowan under the GNU GPL
127

Schematron example (2)
 <pattern>
 <rule context="/invoice/item">
 <report test="@ordered = @shipped" diagnostic="d1">
 <emph>Partial shipment</emph></assert>
 <report test="true()">Complete shipment.</report>
 </rule>
 </pattern>
 <diagnostics>
 <diagnostic id="d1"><value-of select="@ordered -
@shipped"/> items to follow.</diagnostic>
 </diagnostics>
...

Copyright 2003-05 John Cowan under the GNU GPL
128

Reports vs. assertions
• Both reports and assertions specify an

Xpath expression to test in a test
attribute

• Reports display a message if the test
passes

• Assertions display a message if the test
fails

• The emph element marks up emphatic
parts of the message

Copyright 2003-05 John Cowan under the GNU GPL
129

Diagnostics
• Assertions and reports can use the
diagnostic attribute to point to a
diagnostic element by ID

• Diagnostics are placed in the top-level
diagnostics element

• Diagnostics can contain value-of child
elements to output computed values

Copyright 2003-05 John Cowan under the GNU GPL
130

Internationalization

• diagnostic elements can use an
xml:lang attribute to specify the
language of the diagnostic

• assert and report elements can point
to multiple diagnostics in different
languages

• The diagnostic which matches the locale
will be used and the rest ignored

Copyright 2003-05 John Cowan under the GNU GPL
131

Namespaces

• The top-level ns element has prefix
and uri attributes with the obvious
meanings

• This specifies the mapping used inside
the Xpaths; unprefixed names are in no
namespace, as usual

• Direct namespace declarations in the
schema may also work but are
implementation-dependent

Copyright 2003-05 John Cowan under the GNU GPL
132

Phases
• A single schema can contain multiple

phases
• At run-time a phase is chosen and only

the patterns that are active in that phase
are considered

• A pattern may be active in multiple
phases

• A phase element specifies a phase
using active child elements that point
to pattern elements by ID.

Copyright 2003-05 John Cowan under the GNU GPL
133

Other features

• The include element brings in
externally stored schema portions

• The title and p elements allow
embedded documentation

• Elements and attributes from foreign
namespaces are allowed

• The let element binds a variable for use
in XPath (ISO extension)

Copyright 2003-05 John Cowan under the GNU GPL
134

Abstract rules and patterns
• ISO extensions not yet implemented by

most Schematron systems
• Abstract rules are ignored, but ordinary

rules can inherit assertions and report
elements from them

• Abstract patterns are ignored, but
concrete patterns can inherit rules from

Copyright 2003-05 John Cowan under the GNU GPL
135

MORE INFORMATION
http://www.relaxng.org
http://www.dsdl.org

http://www.schematron.com
http://www.ccil.org/~cowan/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135

