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Abstract
This tutorial will teach you the basics of several XML 
schema languages: DTDs, RELAX NG, Schematron, 
and W3C XML Schema.  You will end up 
understanding the principles of each and their 
advantages and disadvantages in various applications.

Prerequisites: An understanding of basic XML 
concepts. Knowledge of any XML or SGML schema 
languages is helpful but certainly not a requirement.
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Part 1 Abstract
In this part of the tutorial you will learn how to use the 
RELAX NG schema language, one of the principal 
schema languages for XML.   RELAX NG allows easy 
and intuitive descriptions of just what is and what is not 
allowed in an XML document.  It is simple enough to 
learn in a few hours, and rich and flexible enough to 
support the design and validation of every kind of 
document from the very simple to the very complex.

We will also review DTDs, and talk briefly about 
Schematron (a  rules-based schema language) and 
NVDL (a meta-schema language for compound 
documents).
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Roadmap
• Review of DTDs 

(17)
• RELAX NG goals 

(21)
• Invoice 

example(10)
• Basic Patterns 

(13)

• More Patterns (13)
• Datatypes (11)
• Tools (14)
• NVDL (4)
•  Schematron (12)
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REVIEW OF DTDS
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DTDs and documents

• DTDs can appear within a document, 
outside a document, or both

• The DOCTYPE declaration specifies a 
DTD

• Internal subset:
<!DOCTYPE root [[ ... ]]>

• External subset:
<!DOCTYPE root SYSTEM 
"http://...">

• External before internal
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Functions of the DTD

• Document validation
• Default values for missing attributes
• Entity declaration and replacement 
• Document documentation
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ELEMENT declarations

• Specify what all the elements that share 
a common name can contain (the 
content model)

• No direct support for namespaces
• Elements can contain

– Nothing
– Text only
– Text and child elements
– Just child elements
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ELEMENT declaration syntax

• Empty:
     <!ELEMENT name EMPTY>

• Text only:
  <!ELEMENT name (#PCDATA)>

• Text and child elements:
    <!ELEMENT name
   (#PCDATA|elem1|elem2|...)*>
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Element content models
• Sequence of child elements:

    <!ELEMENT name (ch1, ch2)>
• Choice between child elements:

    <!ELEMENT name (ch1|ch2)>
• Sequence of optional child elements:

    <!ELEMENT name
   (ch?, ch2?, ch3?)>
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Element content models
• Repeated child elements (zero or more):

  <!ELEMENT name (child*)>
• Repeated child elements (one or more):

    <!ELEMENT name (child+)>
• Any of these possibilities can be freely 

combined
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Element content models
• Choice between sequences:
((a, b) | (c, d)

• Sequence of choices:
((a | b), (c | d))

• Optional sequence:
(a, b, c)?

• You cannot mix  , and | in one list; use 
parentheses to disambiguate
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Restrictions on content models
• A mixed model cannot constrain how 

many times or in what order the child 
elements appear, only which elements 
are allowed

• An element-only content model requires 
that each child element in the instance 
match exactly one part of the content 
model
– (A?, A?) is not a legal content model
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Element wildcard

• <!ELEMENT name ANY> specifies an 
element that can contain any child 
elements declared elsewhere in the DTD

• May include text as well
• Cannot include undeclared elements
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ATTLIST declarations

• Declares the allowed attributes of an 
element

• <!ATTLIST ename
    attr1 type1 default1
    attr2 type2 default2
    ...>
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ATTLIST declarations

• Any number of attributes for a single 
element type may be declared in a single 
ATTLIST

• Any number of ATTLIST declarations 
may be used for a given element type

• The typical case: one ATTLIST per 
element type



Copyright 2003-05 John Cowan under the GNU GPL
18

Attribute types
• DTDs support only a few attribute types
• CDATA: no constraints
• ID: an identifier for the element
• IDREF : must match some element's ID
• NMTOKEN : a name or number
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Attribute types

• IDREFS: one or more space-separated 
element IDs

• NMTOKENS: one or more space-
separated names or numbers

• Enumerated tokens: value must be one



Copyright 2003-05 John Cowan under the GNU GPL
20

Attribute defaults
• Specific value required (supplied by 

parser):
   #FIXED "value"

• Attribute required but no specific value:
   #REQUIRED

• Attribute not required, default value:
   "value"

• Attribute not required, no default value:
   #IMPLICIT
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ENTITY declarations

• Declare a name for text to be inserted 
into a document

• Entity references are of the form &name;
• The text is typically just one character 

long
• There is a long list of ISO-standardized 

character names
• General entities have no equivalents in 

other schema languages
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Parameter entity declarations
• Declare a name for text (a single string 

or a whole file) to be inserted into a DTD; 
• Allow parameterization of DTDs through 

included/ignored sections
• A trick involving parameter entities 

makes it possible to handle namespace 
prefixes

• Various specialized rules make 
parameter entities difficult to use
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Obsolescent features
• Unparsed entities

– Non-XML objects
– Declared by <!ENTITY ...> declarations
– Referred to by attributes of type ENTITY or 
ENTITIES

• NOTATION declarations
– Specifies type of an unparsed entity
– Specifies type of a text-only element using 

attributes of type NOTATION
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RELAX NG GOALS
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"DTDs on warp drive"

• An evolution/generalization of DTDs
• Shares the same basic paradigm
• Based on experience with SGML, XML
• Adds and subtracts features from DTDs 
• DTDs can be automatically converted
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Reusable knowledge
• Experts in designing SGML and XML 

DTDs will find their skills transfer easily 
• Design patterns commonly used in XML 

DTDs can be reused
• Much more mature than if based on a 

completely new and different paradigm
• Higher degree of confidence in its 

design is possible
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Easy to learn and use

• Allows schemas to be patterned after 
the structure of the documents they 
describe

• Allows definitions to be composed from 
other definitions in a variety of ways

• Treats attributes and elements as 
uniformly as possible
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Namespaces

• DTDs are namespace-blind
• RELAX NG fully supports namespaces 

for elements and attributes
• Namespace support is purely syntactic, 

not tied to one schema per namespace
• Name classes support “any name” and 

“any name in specified namespace”
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Datatyping

• Supports pluggable simple datatype 
libraries

• Basic library supports strings and 
tokens

• Full XML Schema Part 2 datatypes 
available (including facets)

• New libraries can be readily designed 
and built as needed.
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Composability

• Schema languages provide atomic 
objects (elements, attributes, text, typed 
data) and methods of composing them 
(sequence, repetition, choice)

• All RELAX NG atomic objects can be 
composed with any available method

• Improves ease of learning, use, power; 
decreases complexity
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Closure

• RELAX NG is closed under union
– If two schemas exist describing two 

document types, then a schema describing 
the union of the two document types is 
trivial to create

– Consequently, the content model of an 
element can be context-dependent
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Two syntaxes, one language

• Provides two interconvertible syntaxes:
– an XML one for processing
– a compact non-XML one for human 

authoring
• We will learn the compact syntax 
• One example of the XML syntax is 

provided to assist in learning it
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Attributes

• “Elements or attributes?”
– Reasonable people can differ
– Attributes are treated as much like 

elements as possible
• Content models include elements as 

well as attributes
• Attribute defaulting is not done
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Non-goal: attribute defaulting

• Attribute defaulting can only be done by 
DTDs or W3C XML Schema when the 
value does not depend on context

• Sensible attribute defaults often depend 
on context (inheritance of xml:lang, e.g.)

• Attribute defaulting is trivial for 
transformation languages such as XSLT
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Non-goal: PSVI

• RELAX NG has no post-validation 
infoset enhancement

• Infoset enhancement can be done as a 
separate layer

• Sun’s Multi-Schema Validator provides 
datatype information

• Separation of concerns promotes 
efficiency, flexibility
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Annotations

• Annotations in the form of elements and 
attributes can be interspersed in RELAX 
NG schemas for various purposes:
– DTD-style attribute defaults
– documentation
– embedded Java code

• Conforming RELAX NG validators 
ignore annotations
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Mixed content

• SGML had problems with complex 
mixed-content models 

• XML DTDs tightly restrict mixed-content 
models

• RELAX NG allows character content 
mixed with any content model
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Unordered content

• SGML’s & operator allows unordered 
content models
– A & B means ((A, B) | (B, A))

• XML DTDs removed & to reduce 
implementation complexity

• RELAX NG restores & with 
improvements
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Customization

• Definitions included from another 
schema can be overridden

• Multiple definitions from the same or 
different schemas can be intelligently 
combined
– as if with |
– as if with &
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A real standard

• Standardized in OASIS by the RELAX 
NG Technical Committee

• A major component of ISO DSDL, the  
Document Schema Definition 
Languages umbrella-standard
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Non-goal: inheritance

• Inheritance-based schemas only model 
single inheritance

• Modeling often requires multiple 
inheritance (at least for interfaces)

• Schema languages are really about 
syntactic details, not about models
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Non-goal: identity constraints

• Identity constraints are not supported
• Identity constraints are still a developing 

research area
• Different applications have different 

requirements from simple to complex
• Some RELAX NG tools support DTD-

style semantics for ID, IDREF(S)
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Non-goal: schema binding
• There is no standard way for a document to 

specify “its schema”
• Receivers often want to verify against agreed-

on schemas, not sender-specified ones
• Documents may be validated against different 

schemas for different purposes
• The validation model takes two inputs: a 

document and a schema
• Just part of the XML processing issue
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Interoperability
• You can convert a DTD to RELAX NG, 

preserving modularity
• You can author in RELAX NG and 

deliver as a  DTD or a W3C XML 
Schema or both

• RELAX NG allows embedded 
Schematron rules
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Pronunciation

• "Relaxing" is the standard way
• Some people say "relax en gee"
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AND NOW TO RELAX!
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THE INVOICE EXAMPLE
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An invoice in XML
<invoice number="640959-0" date="2002-03-12">
  <soldTo>
    <name>Reuters Health Information</name>
    <address>45 West 36th St. New York NY 10018</address>
  </soldTo>
  <shipTo>
    <name>Reuters Health Information</name>
    <address>45 West 36th St. New York NY 10018</address>
  </shipTo>
  <terms>Net 10 days</terms>
  <item ordered="6" shipped="6" unitPrice="7.812">
     Binder, D-ring, 1.5"</item>
  <item ordered="4" shipped="2" backOrdered="2"
     unitPrice="3.44">Fork, Plastic, Heavy, Medium</item>
</invoice>
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The invoice schema (1)
element invoice {
  attribute number { text },
  attribute date { text },
  element soldTo {
    element name { text },
    element address { text }
    },
  element shipTo {
    element name { text },
    element address { text }
    },
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The invoice schema (2)
  element terms { text },
  element item {
    attribute unitPrice { text },
    attribute ordered { text },
    attribute shipped { text },
    attribute backOrdered { text }?,
    text
    }*
 }
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Things to note

• The structure of the schema parallels 
the structure of the document

• Element content models include 
attributes as well as child elements

• The optional attribute is marked with ?
• text is the equivalent of #PCDATA or 

CDATA
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Things to note

• Commas separate multiple components 
of a content model when the 
components appear in the given order

• Of course, the order of attributes does 
not matter!

• Consequently, attributes can appear in 
the schema before, after, or mixed in 
with child elements



Copyright 2003-05 John Cowan under the GNU GPL
54

The XML format
<element name="invoice">

 <attribute name="number"/>
 <attribute name="date"/>
 <element name="soldTo">
   <element name="name">
     <text/>
   </element>
   <element name="address">
     <text/>
   </element>
 </element>
 <element name="shipTo"> 
   <element name="name">
     <text/>
   </element>
   <element name="address">
     <text/>
   </element>
 </element>

 <element name="terms">
   <text/>
 </element>
 <zeroOrMore>
   <element name="item">
     <attribute name= 
"unitPrice"/>
     <attribute 
name="ordered"/>
     <attribute 
name="shipped"/>
     <optional>
       <attribute 
name="backOrdered"/>
     </optional>
   </element>
 </zeroOrMore>
</element> 
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Definition form
start = invoice
element invoice {

attribute number { text },
attribute date { text },
soldTo, shipTo, terms, item
}

soldTo = element soldTo { name, address }
shipTo = element shipTo { name, address }
terms = element terms { text }
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Definition form
item = element item {

  attribute unitPrice { text },
  attribute ordered { text },
  attribute shipped { text },
  attribute backOrdered { text }?,
  text
  }

name = element name { text }
address = element address { text }
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Definition form notes
• In definition form, there must always be 

a definition of start
• You refer to a rule using just its name
• The order of the rules does not matter; 

use whatever order makes sense to you 
(top-down, bottom-up, alphabetical)

• Rule names are only relevant to the 
schema, and never appear in the 
document instance
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Three schema designs
• "Russian Doll": a single pattern for the 

whole document
• "Salami Slice": one definition for each 

differently-named element (DTD style)
• "Venetian Blind": one definition for each 

pattern specifying the content of an 
element, plus one for the document 
element
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Venetian Blind schema
start = element invoice {invoice}
invoice =

attribute number { text },
attribute date { text },
element soldTo { name-addr },
element shipTo { name-addr },
element terms { text },
element item { item }*
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Venetian Blind schema
item =

attribute unitPrice { text },
attribute ordered { text },
attribute shipped { text },
attribute backOrdered { text }?,
text

name-addr = 
element name { text },
element address { text }
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BASIC PATTERNS
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Patterns

• Patterns are the basic building blocks of 
RELAX NG schemas and rules

• Some kinds of patterns can contain sub-
patterns enclosed in braces ({ … })
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Element patterns

• Syntax: element name { … }
• The content model (child elements and 

attributes) is contained within the braces
• Content models consist of one or more 

patterns
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Attribute patterns

• Syntax: attribute name { … }
• The content model is contained within 

the braces
• Content models consist of one or more 

patterns
• You can't have child elements or 

attributes within attributes, of course!
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Attribute patterns

• So what patterns can be inside 
attributes?
– The text pattern - equivalent to CDATA
– Datatypes (details later)
– Literal strings in quotes:
attribute country { "US" }
means the country attribute must have 
the value US.
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Element patterns

• So what patterns can be inside 
elements?
– The text pattern - equivalent to #PCDATA
– Datatypes (details later)
– Literal strings in quotes:
element country { "US" }
means the country element must have 
the content US.



Copyright 2003-05 John Cowan under the GNU GPL
67

The text pattern

• Matches any amount of arbitrary text, 
possibly broken up by child elements

• Equivalent to #PCDATA in elements or 
CDATA in attributes

• text*, text?, text+ all mean the 
same as text
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Namespaces
• To declare elements and attributes in 

namespaces, use QNames in element 
and attribute patterns

• Namespace prefixes are declared like 
this:
namespace foo = "(some URI)"

• Namespace declarations must come 
first in the schema
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Default namespaces
• You can declare a namespace for unprefixed 

elements (not attributes) like this:default namespace =
"(some URI)"

• If you want the default namespace to have a 
prefix too, use:
default namespace foo =

 "(some URI)"
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Namespaces

Here's an example:

namespace one = "http://example.com/one"
namespace two = "http://example.com/two"
default namespace = "http://example.com"
element para {
  attribute one:class { text },
  attribute two:class { text },
  element line { text }*
  }
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Choice

• Two patterns separated by | represent 
a choice between them; the document 
can match one pattern or the other, not 
both

• Arbitrary patterns are allowed in a 
choice: you can have a choice between 
attributes, between elements, or even 
between an element and an attribute!
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Choice

• A useful case:
element data {
  (element id { text } |
   attribute id { text }),
  text
  }

• You cannot mix , and | in one list; use 
parentheses to disambiguate
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Choice

Enumerated values use choice like this:
element font {
  attribute size {
    "10" | "12" | "14" | "16"
  }
}
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Quantifiers
• You can place an *, ?, or + after any 

pattern to allow it to be repeated:
– * means zero or more times
– ? means zero or one times
– + means one or more times

• These mean the same as in DTD 
content models, but can be used after 
any pattern, not just rule names
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MORE PATTERNS
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Interleave

• Interleave is a cross between choice 
and sequence

• When patterns are combined with &, 
they all must appear but it can be in any 
order (as in SGML) …

• … or even mixed together!
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Interleave
• So this schema ...
element head {
  element meta { empty }* &
  element title { text }
  }

• … matches a head element that has 
any number of meta child elements 
(including zero) and a required title 
child element mixed in anywhere.
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Interleave
• Note: In the case of attributes, 

sequence and interleave are the same 
thing, because attributes don't have 
ordering

• So you can use either , or & according 
to what is the most convenient

• The pattern mixed { ... } is a synonym 
for (text & ( ... ))
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Multiple element and
attribute patterns

• An element or attribute pattern with 
multiple names separated by | matches 
elements bearing any of those names:
element h1|h2|h3|h4|h5|h6 
{ heading.model }
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Element wildcards

• An element pattern with * instead of a 
name matches an element with any 
name

• To match any name in a particular 
namespace, use foo:* where foo is 
the prefix declared for the namespace

• To match any name except foo and 
bar, use * - (foo|bar)
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Attribute wildcards
• Attribute wildcards are declared just like 

element wildcards
• An attribute wildcard pattern must be 

followed by * or +
• It makes no sense to specify an element 

with "just one wildcard attribute"
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ANY?

• There is no built-in ANY content model, 
corresponding to empty for empty 
content models or notAllowed for 
forbidden models

• Here’s how it can be done:
ANY = element * {
  attribute * {text}*
  & text & ANY*
}
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Multiple schemas

• external incorporates one pattern 
document into another

• include incorporates one set of rules 
into another, and allows for overriding 
any of the included rules by name
– In particular, overriding the start rule 

is usually necessary
• Rules with identical names can also be 

combined by choice or by interleave
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Context sensitivity

The first paragraph cannot have 
footnotes; the remainder can:

start = element doc {first, other*}
first = element para { text }
other = element para {
mixed { element footnote {text}*}

}
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Restrictions on schemas
• The obvious XML ones: no elements or 

attributes within attributes, only one top-
level element, etc. etc.

• Attributes can't have conflicting 
definitions in a single element
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Restrictions on schemas
• Interleave doesn't allow an element with 

a given name, or text either, to be used 
in more than one interleaved subpattern

• The following are illegal:
– (a, b, c) & (a, d, e)
– (



Copyright 2003-05 John Cowan under the GNU GPL
87

A few lexical details
• Strings (used as values and parameter 

values) can be wrapped in double quotes 
or single quotes

• Multi-line strings are wrapped in """ or 
''' (as in Python)

• Rule names that are the same as 
syntactic keywords must be preceded by 
\
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Comments

• Ordinary comments begin with #
• Documentation comments begin with 
## and are copied (in groups) into the 
XML syntax as a:documentation 
elements

• The a: prefix represents the 
namespace of the DTD Compatibility 
extension to RELAX NG
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DATATYPES
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Datatypes

• A type is a named set of values
• An datatype provides a standardized, 

machine-checkable representation of a 
type
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Schema datatypes
• DTDs have only a few datatypes for 

attributes and only one datatype for 
elements

• XML Schema provides a long, but fixed, 
list of datatypes

• RELAX NG can work with any datatype 
library, including the XSD (XML Schema 
Datatypes) library
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RELAX NG datatypes
• Datatype patterns are written using 

QNames
• This use of QNames can't be confused 

with QNames for elements or attributes, 
because those are only recognized after 
the words element and attribute

• The built-in datatypes string and 
token don’t have prefixes and are 
recognized by all implementations
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Declaring datatype libraries

• A prefix is declared like this:
datatypes lib = "(some URI)"

• Datatype library declarations must come 
first

• RELAX NG processors recognize a 
system-dependent list of datatype 
library URIs
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Useful datatypes

• The xsd prefix is predeclared for XML 
Schema Datatypes

• xsd:integer represents an integer of 
arbitrary length

• There are xsd: equivalents for all the 
DTD attribute types (ID, IDREF, etc.)

• We'll discuss all the xsd types later.
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Typed values

• "0" and token "0" match a “0” 
character with possible surrounding 
whitespace

• string "0" matches a “0” character 
exactly

• xsd:integer "0" matches “0” or “00” 
or “000” or “-0” or ...
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Simple and complex content
• Element patterns containing a datatype 

or a value (or a list) specify simple 
content

• Element patterns containing child 
elements or text or both specify complex 
content

• No element pattern can contain both
– A choice between simple and complex 

content is legal
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Datatype exceptions

• xsd:nonNegativeInteger and 
xsd:nonPositiveInteger are 
existing types

• How do we say “non-zero integer”?xsd:integer - xsd:integer "0"
• We can likewise express a string that is 

not a name:xsd:string - xsd:Name
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Parameters
• Parameters restrict the values of datatypes
• Each datatype has specific parameters are 

legal with it
• An integer between 0 and 999 inclusive:

xsd:integer {
  minInclusive = "0"
  maxInclusive = "999"
}
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Lists

• List patterns specify that simple content 
is to be divided by whitespace into 
tokens

• The pattern list {xsd:integer*} 
matches a list of zero or more white-
space-separated integers

• This example needs * because list 
itself does not imply repetition
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Lists

• The pattern

list {(xsd:integer, token)+} 

matches the string

"32 foo 45 bar 76 baz"
• Lists within lists are not allowed
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TOOLS
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The Jing validator

• Written by James Clark, principal author 
of RELAX NG

• Java based command-line tool
– Validates schemas
– Validates documents against schemas

• Accepts either compact or XML syntax
• Optionally enforces DTD ID/IDREF



Copyright 2003-05 John Cowan under the GNU GPL
103

The Jing validator

• Also usable as a validation library within 
a Java program

• Provides JAXP (Sun-standard) interface
• Provides native interface
• Validates against other schema 

languages:
– W3C XML Schema
– Schematron
– Namespace Routing Language
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The Trang translator

• Another James Clark product
• Translates schemas:

– Input: XML syntax, compact syntax, DTDs
– Output: XML syntax, compact syntax, 

DTDs, W3C XML Schema
• Output schemas may be looser than the 

input schema (accept a superset of 
what the input accepts)

• DTD and W3C XML Schema output is 
imperfect
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Sun RELAX NG translator

• Translates other schema languages into 
RELAX NG in XML syntax:
– DTDs
– RELAX Core/Namespace
– TREX (predecessor of RELAX NG)
– Subset of XML Schema

• Does not preserve schema structure
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Instance to schema
• InstanceToSchema generates a RELAX 

NG schema from one or more XML 
instances

• Examplotron (www.examplotron.org) is a 
schema language that resembles an 
instance with optional annotations and is 
translated into RELAX NG
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Sun Multi-Schema Validator

• By Kohsuke KAWAGUCHI, a major 
RELAX NG contributor

• Validates documents (command-line or 
library) using any schema language 
supported by the Sun RELAX NG 
Translator

• Also handles stand-alone or embedded 
Schematron rules
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Validation in .NET

• Tenuto is a C# implementation of 
validation for the Common Language 
Runtime environment

• Supports XML syntax, XSD library
• Does not support ID/IDREF semantics
• RelaxngValidatingReader is an 

unrelated implementation of 
XMLReader that validates input against 
a RELAX NG schema
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The Bali validator generator
• Accepts a RELAX NG schema and 

generates special-purpose code to 
validate documents against that 
particular schema

• The generated validator is faster and 
smaller than a general-purpose validator

• Generates Java, C++, or C#
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The VBRELAXNG validator

• A validator for the XML syntax written in 
Visual Basic 6.0

• Provides validation as an ActiveX 
control

• Requires MSXML 4.0 parser
• Topologi Schematron Validator uses 

this control
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The RelaxNGCC compiler

• Accepts a subset of RELAX NG (no 
ambiguous grammars) with annotations; 
RelaxMeter tool checks for ambiguities

• Compiles specified RELAX NG rules 
into Java classes

• Embedded Java code can refer to the 
values matched by datatype, text, and 
list patterns

• Analogous to JavaCC
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The RelaxNGCC compiler

• The generated code requires a source 
of SAX events (typically a parser)

• Objects of the generated classes are 
data bindings for RELAX NG rules 
considered as types

• The killer app for RELAX NG?
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The RELAXER compiler
• Generates Java objects from RELAX NG 

schemas without embedded code
• Imposes slightly different restrictions on 

schemas (weaker if DOM available)
• Provides serialization from Java as well 

as parsing to Java
• Analogous to JAXB
• The killer app for RELAX NG?
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Editors
• oXygen and Topologi editors validate 

against RELAX NG schemas
• xmloperator and an Emacs mode allow 

editing guided by a RELAX NG schema
• Vim syntax coloring for writing schemas 

in the compact syntax
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The libxml2 library
• Provides parsing and (RELAX NG) 

validation services for C programs
• Packaged with xmllint, an XML parser 

and RELAX NG validator
• Part of the GNOME desktop, but 

available separately
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NAMESPACE-BASED 
VALIDATION DISPATCHING

LANGUAGE
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What it is

• An NVDL schema specifies how to divide 
a document into parts and apply multiple 
subschemas to them

• Basically it's a map between namespace 
names and schema URIs

• Implementations aren't stable yet, but the 
concepts are important
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How it works

• The document is carved up into subtrees 
whose elements have a common 
namespace name

• The subschema associated with that 
name is used to validate the subtree

• Subschemas can be in any schema 
language including XML Schema and 
even DTD
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Concurrent validation

• Multiple schemas can be applied to a 
subtree to cause concurrent validation

• Example: XHTML validation with RELAX 
NG requires a check that no a element 
has another a element as its ancestor

• A small schema that must fail validation 
can be used to enforce this limtation
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Other features

• A subordinate namespace can be 
attached to a superior namespace so 
that they will be validated together by the 
superior namespace's schema

• Attribute-only schemas can be supported 
using a dummy element name

• Validation can begin at a specific 
element specified by a small subset of 
XPath
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Tools
• Currently there are only a few validators
• Jing actually validates Namespace 

Routing Language, an earlier version of 
NVDL

• This situation should improve
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THE SCHEMATRON
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Rule-based validation
• Grammars can't do it all
• The Schematron allows you to write rules 

that test almost anything about a 
document

• Schematron implementations display 
natural-language diagnostics when:
– An assertion is violated
– The schema specifies a report
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An invoice in XML
<invoice number="640959-0" date="2002-03-12">
  <soldTo>
    <name>Reuters Health Information</name>
    <address>45 West 36th St. New York NY 10018</address>
  </soldTo>
  <shipTo>
    <name>Reuters Health Information</name>
    <address>45 West 36th St. New York NY 10018</address>
  </shipTo>
  <terms>Net 10 days</terms>
  <item ordered="6" shipped="6" unitPrice="7.812">
     Binder, D-ring, 1.5"</item>
  <item ordered="4" shipped="2" backOrdered="2"
     unitPrice="3.44">Fork, Plastic, Heavy, Medium</item>
</invoice>
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Schematron example (1)
<schema xmlns="http://www.ascc.net/xml/schematron">
  <pattern>
    <rule context="/invoice">
     <assert test="soldTo/name = shipTo/name">Sold-to and 
ship-to names must match.</assert>
    </rule>
  </pattern>
...
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Patterns and rules
• A Schematron pattern is a list of rules to 

apply against each element in the 
document

• Rules are applied in the order they 
appear

• Only the first successful rule in a pattern 
is applied

• Each rule specifies an XSLT pattern in its 
context attribute

• Schemas can contain multiple patterns
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Schematron example (2)
  <pattern>
    <rule context="/invoice/item">
     <report test="@ordered = @shipped" diagnostic="d1">
       <emph>Partial shipment</emph></assert>
     <report test="true()">Complete shipment.</report>
    </rule>
  </pattern>
  <diagnostics>
    <diagnostic id="d1"><value-of select="@ordered - 
@shipped"/> items to follow.</diagnostic>
  </diagnostics>
...
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Reports vs. assertions
• Both reports and assertions specify an 

Xpath expression to test in a test 
attribute

• Reports display a message if the test 
passes

• Assertions display a message if the test 
fails

• The emph element marks up emphatic 
parts of the message



Copyright 2003-05 John Cowan under the GNU GPL
129

Diagnostics
• Assertions and reports can use the 
diagnostic attribute to point to a  
diagnostic element by ID

• Diagnostics are placed in the top-level 
diagnostics element

• Diagnostics can contain value-of child 
elements to output computed values



Copyright 2003-05 John Cowan under the GNU GPL
130

Internationalization

• diagnostic elements can use an 
xml:lang attribute to specify the 
language of the diagnostic

• assert and report elements can point 
to multiple diagnostics in different 
languages

• The diagnostic which matches the locale 
will be used and the rest ignored
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Namespaces

• The top-level ns element has prefix 
and uri attributes with the obvious 
meanings

• This specifies the mapping used inside 
the Xpaths; unprefixed names are in no 
namespace, as usual

• Direct namespace declarations in the 
schema may also work but are 
implementation-dependent
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Phases
• A single schema can contain multiple 

phases
• At run-time a phase is chosen and only 

the patterns that are active in that phase 
are considered

• A pattern may be active in multiple 
phases

• A phase element specifies a phase 
using active child elements that point 
to pattern elements by ID.
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Other features

• The include element brings in 
externally stored schema portions

• The title and p elements allow 
embedded documentation

• Elements and attributes from foreign 
namespaces are allowed

• The let element binds a variable for use 
in XPath (ISO extension)
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Abstract rules and patterns
• ISO extensions not yet implemented by 

most Schematron systems
• Abstract rules are ignored, but ordinary 

rules can inherit assertions and report 
elements from them

• Abstract patterns are ignored, but 
concrete patterns can inherit rules from
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MORE INFORMATION
http://www.relaxng.org
http://www.dsdl.org

http://www.schematron.com
http://www.ccil.org/~cowan/
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