
Copyright 2001-04 John Cowan under GNU GPL 1

UNICODE ATE
MY BRAIN

John Cowan
Reuters Health Information

Copyright 2001-04 John Cowan under GNU GPL 2

Copyright

• Copyright © 2001 John Cowan
• Licensed under the GNU General Public License
• ABSOLUTELY NO WARRANTIES; USE AT YOUR

OWN RISK
• Portions written by Tim Bray; used by permission
• Title devised by Smarasderagd; used by permission
• Black and white for readability

Copyright 2001-04 John Cowan under GNU GPL 3

Abstract

 Unicode, the universal character set, is one of the
foundation technologies of XML. However, it is not as
widely understood as it should be, because of the
unavoidable complexity of handling all of the world's
writing systems, even in a fairly uniform way. This
tutorial will provide the basics about using Unicode and
XML to save lots of money and achieve world
domination at the same time.

Copyright 2001-04 John Cowan under GNU GPL 4

Roadmap
• Brief introduction (4 slides)
• Before Unicode (16 slides)
• The Unicode Standard (25 slides)
• Encodings (11 slides)
• XML (10 slides)
• The Programmer's View (27 slides)
• Points to Remember (1 slide)

Copyright 2001-04 John Cowan under GNU GPL 5

How Many Different
Characters?

a A à á â ã ä å ā ă ą

a a a a a a a a a a a

Copyright 2001-04 John Cowan under GNU GPL 6

How Computers Do Text

• Characters in computer storage are
represented by “small” numbers

• The numbers use a small number of
bits: from 6 (BCD) to 21 (Unicode) to 32
(wchar_t on some Unix boxes)

• Design choices:
– Which numbers encode which characters
– How to pack the numbers into bytes

Copyright 2001-04 John Cowan under GNU GPL 7

Where Does XML Come In?

• XML is a textual data format
• XML software is required to handle all

commercially important characters in
the world; a promise to “handle XML”
implies a promise to be international

• Applications can do what they want;
monolingual applications can mostly
ignore internationalization

Copyright 2001-04 John Cowan under GNU GPL 8

$$$ £££ ¥¥¥

• Extra cost of building-in
internationalization to a new computer
application: about 20% (assuming XML
and Unicode).

• Extra cost of retrofitting
internationalization into a monolingual
application: about 100%.

Copyright 2001-04 John Cowan under GNU GPL 9

BEFORE UNICODE

Copyright 2001-04 John Cowan under GNU GPL 10

The Mess

• Each commercial culture developed its
own way of representing characters

• The leaders in computing technology
ignored the issue for much too long

• Data that had to cross cultural
boundaries needed to be lowest-
common-denominator or risk garbling

Copyright 2001-04 John Cowan under GNU GPL 11

Character Sets

• Mappings between characters (for
people) and code numbers (for
computers)

• Also called “code pages”
• There are hundreds of them in use
• Neither ASCII nor Windows-1252 is

universally used

Copyright 2001-04 John Cowan under GNU GPL 12

ASCII

• A 7-bit character set, with 33 control
characters, a space, and 94 printing
characters

• An extension of the traditional U.S.
typewriter keyboard

• Serves basic U.S. needs only

Copyright 2001-04 John Cowan under GNU GPL 13

ISO 646-xx

• International version is just ASCII
• National versions replaced some ASCII

characters with letters
Hello.c:

main(int argc, char *argv[]) {
 printf("Hello, world!\n");
}

Copyright 2001-04 John Cowan under GNU GPL 14

ISO 646-xx

• International version is just ASCII
• National versions replaced some ASCII

characters with letters
Hello.c in ISO-646-DK:

main(int argc, char *argvÆÅ) æ
 printf("Hello, world!Øn");
ã

Copyright 2001-04 John Cowan under GNU GPL 15

ISO 8859-1 (Latin-1)

• An 8-bit upward compatible extension
of ASCII

• Adds 96 additional characters
• Handles most Western European

languages
• Windows-1252 adds 27 further

characters

Copyright 2001-04 John Cowan under GNU GPL 16

Alphabet Soup

• Latin-1 can’t do it all
• Central and Eastern European

languages need Latin-2, which is only
partly compatible

• Other languages need other parts of
ISO 8859: Latin-3, Latin-4, Latin-5, …
Latin-10.

Copyright 2001-04 John Cowan under GNU GPL 17

ISO 8859: Mixed Alphabets

• These character sets are ASCII in the
lower part, some other script in the
higher part:
– Greek, Russian, Hebrew, Arabic, Thai

• There is a Windows code page for
each, typically not compatible

Copyright 2001-04 John Cowan under GNU GPL 18

Global Diversity

• How international text (Greek, in this
case) interacts with non-international
applications

• Greek is a simple case: it can be
handled by an ISO 8859 part

• Other languages make life far more
difficult, as we shall see!

Copyright 2001-04 John Cowan under GNU GPL 19

Excerpt from a
 Greek-language Home Page

Τυγχάνω ερευνητής στο κέντρο Thesaurus
Linguae Graecae (Θησαυρός Γλώσσης της
Ελληνικής), του Πανεπιστημείου της
Καλιφορνίας στο Irvine --- και συνάμα
(όπως φυσικά θα σας αποδείξουν και οι
σελίδες μου) πρόσωπο ουχί ελλάσονος
ενδιαφέροντος!

Copyright 2001-04 John Cowan under GNU GPL 20

The Latin-1-only View

Ôõã÷Üíù åñåõíçôÞò óôï êÝíôñï Thesaurus
Linguae Graecae (Èçóáõñüò Ãëþóóçò ôçò
ÅëëçíéêÞò), ôïõ Ðáíåðéóôçìåßïõ ôçò
Êáëéöïñíßáò óôï Irvine --- êáé óõíÜìá
(üðùò öõóéêÜ èá óáò áðïäåßîïõí êáé ïé
óåëßäåò ìïõ) ðñüóùðï ïõ÷ß åëëÜóïíïò
åíäéáöÝñïíôïò!

Copyright 2001-04 John Cowan under GNU GPL 21

Frangovlakhika

Tugxanw ereunhths sto kentro Thesaurus
Linguae Graecae (Qhsauros Glwsshs ths
Ellhnikhs), tou Panepisthmeiou ths
Kalifornias sto Irvine -- kai sunama (opws
fusika qa sas apodeijoun kai oi selides
mou) proswpo ouxi ellasonos
endiaferontos!

Copyright 2001-04 John Cowan under GNU GPL 22

(what he said)

I am a research associate at the
Thesaurus Linguae Graecae in the
University of California at Irvine, USA ---
and, as this node will no doubt prove to
you, an extremely interesting personage!

Copyright 2001-04 John Cowan under GNU GPL 23

Problems of Specific Scripts

• Middle Eastern languages are written
right-to-left, but must mix correctly with
left-to-right text, either Latin or numbers

• South Asian languages have vowel
marks that are sometimes written
before (but always stored and
pronounced after) the consonants

Copyright 2001-04 John Cowan under GNU GPL 24

Problems of Specific Scripts

• East Asian writing systems use the
huge (more than 50,000) set of
Chinese characters or hanzi, often in
combination with local scripts, large or
small

• Go buy CJKV Information Processing
by Ken Lunde (O’Reilly) if you care
about the details

Copyright 2001-04 John Cowan under GNU GPL 25

The Possibilities
• With ISO 8859, you can handle French

or Hebrew or Greek,
• or, you can use JIS and handle

Japanese, English, and Russian,
• or, you can use Big5 and handle

Chinese and English…
• ISO 2022 allows mixing and matching

at the cost of enormous complexity

Copyright 2001-04 John Cowan under GNU GPL 26

THE UNICODE STANDARD

Copyright 2001-04 John Cowan under GNU GPL 27

Mini-Roadmap

• Principles I
• Principles II
• Conformance
• Unicode Map

Copyright 2001-04 John Cowan under GNU GPL 28

Principles I

• 21-bit character codes
• Efficiency
• Characters, not glyphs
• Well-defined semantics
• Plain text

Copyright 2001-04 John Cowan under GNU GPL 29

Character Codes

• Unicode 4.0 has 57,129 16-bit
characters out of a total maximum of
63,470

• A further 45,718 rare or archaic
characters are encoded with two
consecutive 16-bit code units from
reserved ranges (called "surrogates")

Copyright 2001-04 John Cowan under GNU GPL 30

Efficiency

• No special escape or shift characters
required

• All representations of Unicode are self-
synchronizing and can be randomly
accessed

• Formatting characters are kept to a
minimum

Copyright 2001-04 John Cowan under GNU GPL 31

Characters vs. Glyphs

• Character: the smallest component of
written language that has semantic
value.

• Glyph: represents the shape of a
character when rendered or displayed.

• Fonts contain glyphs, not characters

Copyright 2001-04 John Cowan under GNU GPL 32

Characters vs. Glyphs

• Latin A and Greek A (alpha) are distinct
characters with the same glyph

• Arabic letters need up to four glyphs
(initial, medial, final, isolated)

• "f" plus "i" is rendered with a single
merged glyph in fine typesetting

Copyright 2001-04 John Cowan under GNU GPL 33

Well-defined Semantics

• Tables generated by the Unicode
Consortium give the properties of
characters

• Letter, number, punctuation mark,
symbol, diacritic, whitespace …

• Case mapping, Arabic shaping,
normalization ...

Copyright 2001-04 John Cowan under GNU GPL 34

Plain Text

• Unicode encodes just enough
information for bare legibility

• Plain text is public, standardized, and
universally readable

• SGML, HTML, XML are suitable “fancy
text” standards to supply structure and
formatting to Unicode plain text

Copyright 2001-04 John Cowan under GNU GPL 35

Principles II

• Logical ordering
• Unification
• Dynamic composition
• Equivalence
• Convertibility

Copyright 2001-04 John Cowan under GNU GPL 36

Logical Ordering

• With one minor exception, characters
are represented in Unicode in logical
order (the order they are typed or
spoken).

• Unicode provides a table-driven
algorithm for reordering text into proper
reading order, including mixed
directions

Copyright 2001-04 John Cowan under GNU GPL 37

Unification

• “A difference that makes no difference
is no difference.” --Spock of Vulcan

• If characters look the same, and are
from different source standards, they
are a single Unicode character

• Common letters, punctuation marks,
symbols, and diacritics are unified

Copyright 2001-04 John Cowan under GNU GPL 38

Unification

• Differences in language, font, size, and
positioning are not represented

• Identical-looking characters (a, alpha)
from different scripts are not unified

• Characters that were distinct in a major
national or industry standard are kept
distinct for round-tripping purposes

Copyright 2001-04 John Cowan under GNU GPL 39

Han Unification

• Chinese, Japanese, Korean all use the
3000-year-old Chinese characters
(hanzi, kanji, hanja)

• Each national character set encodes
the characters in its own way

• If it looks similar and is historically the
same, Unicode unifies it!

Copyright 2001-04 John Cowan under GNU GPL 40

Han Unification
• Unicode orders Han characters using

the traditional Kang Xi dictionary and
other dictionaries

• Language differences, which control
the choice of fonts, are expressed by a
higher-level protocol

• Simplified and traditional characters
are not unified in Unicode

Copyright 2001-04 John Cowan under GNU GPL 41

Dynamic Composition

• There is no character LATIN CAPITAL
LETTER Q WITH CIRCUMFLEX

• It can be represented as LATIN
CAPITAL LETTER Q followed by
U+0302 COMBINING CIRCUMFLEX

Copyright 2001-04 John Cowan under GNU GPL 42

Dynamic Composition

• COMBINING CIRCUMFLEX is not the
same character as ASCII “^”

• Fonts can have a precomposed glyph
for Q WITH CIRCUMFLEX

Copyright 2001-04 John Cowan under GNU GPL 43

Equivalence

• Different ways of representing the
same characters are equally valid

• Normalization forms allow documents
to be compared easily by suppressing
irrelevant encoding differences

Copyright 2001-04 John Cowan under GNU GPL 44

Convertibility

• Characters in other character sets can
be converted to and from Unicode,
usually 1:1

• ASCII and Latin-1 map codepoint for
codepoint

• Conversions done by mapping tables

Copyright 2001-04 John Cowan under GNU GPL 45

Unicode General Categories

• Letters: upper, lower, title, modifier,
other (syllables, ideographs, etc.)

• Numbers: digit, letter, other
• Punctuation: connector, dash, open,

close, initial-quote, final-quote, other
• Marks: non-spacing, enclosing, other

Copyright 2001-04 John Cowan under GNU GPL 46

Unicode General Categories

• Symbols: math, currency, modifier,
other

• Separators: space, line, paragraph
• Other: control, format, surrogate,

private-use

Copyright 2001-04 John Cowan under GNU GPL 47

Unicode Map
Basic Multilingual Plane

• U+0xxx: ASCII, Latin, Greek, Cyrillic, Armenian,
Hebrew, Arabic, Syriac, Thaana, Indic scripts, Thai,
Lao, Tibetan

• U+1xxx: Myanmar, Georgian, Hangul, Ethiopic,
Cherokee, Canadian Aboriginal, Ogham, Runic,
Philippine scripts, Khmer, Mongolian, Limbu, Tai Le,
Extended Latin, Extended Greek

• U+2xxx: Symbols (punctuation, super/subscripts,
currency, letter-like, numerical, arrows, math,
technical, OCR, boxes, dingbats, Braille), CJK radicals

Copyright 2001-04 John Cowan under GNU GPL 48

Unicode Map
Basic Multilingual Plane

• U+3xxx: CJK symbols, Hiragana, Katakana, Bopomofo
• U+3400 to U+9FFF: CJK Unified Ideographs
• U+A000 to U+D7A3; Yi, Hangul Syllables
• U+D800 to U+DFFF; Surrogates (no characters)
• U+E000 to U+F8FF; Private Use
• U+Fxxx: CJK Compatibility Ideographs, Presentation

Forms, Halfwidth/Fullwidth

Copyright 2001-04 John Cowan under GNU GPL 49

Unicode Map
"Astral Planes"

• U+1xxxx: Archaic scripts (Linear B, Old Italic, Gothic,
Ugaritic, Deseret, Shavian, Osmanya; more to come),
math alphabets, music symbols (Western and
Byzantine)

• U+2xxxx: Ultra-rare and specialized CJK ideographs
• U+30000 to U+DFFFF: Reserved
• U+Exxxx: Tag characters (not for XML)
• U+Fxxxx and U+10xxxx: Private Use

Copyright 2001-04 John Cowan under GNU GPL 50

ENCODINGS

Copyright 2001-04 John Cowan under GNU GPL 51

Pre-Unicode

• ASCII is a 7-bit encoding for about 100
characters

• ISO-8859-1 is an 8-bit encoding for
about 200 characters

• Shift-JIS is a mixed 8/16-bit encoding
for about 8,000 characters

• How to best encode Unicode's
1,114,112 possible codepoints?

Copyright 2001-04 John Cowan under GNU GPL 52

Three Unicode Encodings

• UTF-16: 16-bit code units
• UTF-8: 8-bit code units
• UTF-32: 32-bit code units
• All have equal representation power
• All have advantages and

disadvantages

Copyright 2001-04 John Cowan under GNU GPL 53

UTF-16

• Each BMP character is represented by
the obvious 16-bit code unit

• Other characters are represented by
two consecutive 16-bit code units

• "A" is 0041
• Alpha is 0391
• Gothic Ahsa (U+10330) is D800 DB30

Copyright 2001-04 John Cowan under GNU GPL 54

UTF-16 Byte Ordering

• By default, Unicode uses big-endian
• This can be overridden by local

conventions (e.g. on Windows)
• U+FEFF, the Byte Order Mark or BOM,

can be placed at the beginning of a file
to unambiguously indicate the byte
order, as U+FFFE does not exist

Copyright 2001-04 John Cowan under GNU GPL 55

UTF-8

• Uses 1, 2, 3, or 4 bytes to encode a
character

• No byte-ordering issue
• "A" is 41 (same as ASCII!)
• Alpha is CE 91
• Katakana "A" is E3 82 A2
• Gothic Ahsa is F0 90 8C B0

Copyright 2001-04 John Cowan under GNU GPL 56

UTF-8 BOM

• UTF-8 does not need a BOM to
determine byte order

• BOM byte sequence (EF BB BF) may
still be useful in auto-detecting UTF-8

• Windows 2K and XP Notepad always
generates it

Copyright 2001-04 John Cowan under GNU GPL 57

UTF-32

• Encode each Unicode code point
directly as 4 bytes

• Same byte ordering issues as UTF-16

Copyright 2001-04 John Cowan under GNU GPL 58

Advantages of UTF-16

• Almost fixed-width encoding (non-BMP
characters are expected to be rare in
most documents)

• As compact as national CJK encodings
(UTF-8 costs 50% more)

• Good compromise between space and
ease of use

Copyright 2001-04 John Cowan under GNU GPL 59

Advantages of UTF-8

• Fully ASCII-compatible, including
control characters (but not Latin-1
compatible)

• First byte of any character indicates the
number of trailing bytes to follow

• Sortable, searchable, compressible
with 8-bit algorithms

Copyright 2001-04 John Cowan under GNU GPL 60

Advantages of UTF-32

• Guaranteed fixed-width encoding
• Suitable for internal rather than external

(file or network) use

Copyright 2001-04 John Cowan under GNU GPL 61

SCSU

• Not a UTF, but a compression method
• ASCII-compatible (but not ASCII-

control-character compatible)
• Universal decoding, source-specific

encoding
• Uses about the same space as native

8-bit or 16-bit encodings

Copyright 2001-04 John Cowan under GNU GPL 62

BOCU-1

• A different compression method
• Not compatible with anything else
• Universal decoding and encoding
• Uses about the same space as native

8-bit or 16-bit encodings

Copyright 2001-04 John Cowan under GNU GPL 63

XML and Unicode

Copyright 2001-04 John Cowan under GNU GPL 64

Larry Wall says:

"An XML document knows what
encoding it’s in."

Copyright 2001-04 John Cowan under GNU GPL 65

Choices, Choices...

• In UTF-8
• In UTF-16
• Something else
• All XML processors required to handle

UTF-8 and UTF-16
• Most of them also handle at least ASCII

and ISO-8859-1

Copyright 2001-04 John Cowan under GNU GPL 66

UTF-8
• Given no other information, an XML

document must be in UTF-8
• ASCII text is also UTF-8 text, so pure

ASCII XML docs are fine as is
• á & friends aren’t ASCII, though
• Variant approach: use ASCII, plus

character references for everything
else: for example, á is a

Copyright 2001-04 John Cowan under GNU GPL 67

UTF-16

• Requires either a Byte Order Mark
(which is not considered part of the
XML document)...

• … or else an encoding declaration:
<?xml version="1.0"

encoding="UTF-16"?>

Copyright 2001-04 John Cowan under GNU GPL 68

Declare It Yourself

• Start the document with an encoding
declaration

• This lets the processor figure out
what’s going on:

<?xml version="1.0"
encoding="ISO-8859-1"?>

Copyright 2001-04 John Cowan under GNU GPL 69

Deus Ex Machina

• Tell the processor what the encoding is
outside the document

• Most common way is with a
Content-Type: header

• Takes precedence over any encoding
declaration within the XML document
(but don't rely on this!)

Copyright 2001-04 John Cowan under GNU GPL 70

Higher Levels of XML

• Higher levels don't really care how you
do encoding

• Remember that character references
are always Unicode code points

• A is "A"
• Α is Alpha
• 𐌰 is Gothic Ahsa

Copyright 2001-04 John Cowan under GNU GPL 71

Early Uniform Normalization

• On the Web, document creators must
normalize text (including HTML, XML)
to avoid multiple spellings, signature
issues

• Text in non-Unicode encodings is
typically already normalized

• Details still being finalized

Copyright 2001-04 John Cowan under GNU GPL 72

XML Names

• XML names (element type names,
attribute names, enumerated attribute
values, processing instruction targets,
notation names) are based on Unicode
2.0 identifiers

• Generally, the first character must be a
letter; others may be letters or digits

• Any character can appear in content

Copyright 2001-04 John Cowan under GNU GPL 73

XML 1.1

• Extends XML names to make use of
the full Unicode repertoire, except for
defined exceptions

• Relies on the document author to
choose sensible names.

• Adds NEL (U+0085) as a line end for
IBM mainframe compatibility

Copyright 2001-04 John Cowan under GNU GPL 74

THE PROGRAMMER'S VIEW

Copyright 2001-04 John Cowan under GNU GPL 75

C or C++

• If you use UTF-8, you’ll be able to use
strcmp() and strlen() and so on

• If you use wchar_t (or MSTR in
Visual Studio) you’ll be able to use
UTF-16

• Popular XML processors will give you
either

Copyright 2001-04 John Cowan under GNU GPL 76

Java

• The char type is 16 bits and pretty well
forces UTF-16 down your throat
internally

• Java can convert to and from almost
anything externally

• All XML processors give you native
UTF-16 strings

Copyright 2001-04 John Cowan under GNU GPL 77

A Java Gotcha

• Avoid the Java methods
DataInputStream.readUTF and
DataOutputStream.writeUTF;
 they are only for binary string I/O

• Instead, create InputStreamReader
or OutputStreamWriter objects with
UTF-8 encodings

Copyright 2001-04 John Cowan under GNU GPL 78

JavaScript

• (including JScript, ECMAScript, etc.)
• Strings are UTF-16 internally
• I/O is outside the scope of the

language

Copyright 2001-04 John Cowan under GNU GPL 79

Perl

• It just tries to do the right thing (using
UTF-8 internally)

• XML::Parser (using James Clark's
Expat) reads several encodings,
delivers UTF-8

• Getting better all the time

Copyright 2001-04 John Cowan under GNU GPL 80

Mozilla

• Also uses the Expat parser
• Delivers UTF-16 internally

Copyright 2001-04 John Cowan under GNU GPL 81

International Components for
Unicode (ICU)

• An Open Source C/C++ library that
"does it all"

• Java version supplements native library
• Under active development by IBM and

the programmer community
• The gold standard for supporting

internationalization

Copyright 2001-04 John Cowan under GNU GPL 82

ICU Features

• All components multi-thread safe
• Full Unicode string manipulation
• Complete locale support: more than

170 locales
• Fast and flexible character set

conversion
• Efficient data loading mechanism

Copyright 2001-04 John Cowan under GNU GPL 83

ICU Features
• Hierarchical resource bundles with

flexible data storage mechanism
• Extensive calendar and timezone

support
• Date, time, currency, number and

message formatting
• Locale-sensitive sorting
• Locale-sensitive text boundary detection

Copyright 2001-04 John Cowan under GNU GPL 84

ICU Features

• Customizable transliteration interface
• Unicode text compression algorithm
• Fast and compliant Unicode Bidi

algorithm
• Most up-to-date Unicode support

(including normalization)
• All APIs support UTF-16

Copyright 2001-04 John Cowan under GNU GPL 85

ICU/J Features

• Advanced text boundary detection
• Hebrew, Islamic, Japanese, Thai

calendar support
• Spelled-out numbers
• Normalization, transliteration, Unicode

compression

Copyright 2001-04 John Cowan under GNU GPL 86

Think Strings, Not Characters

• APIs should be designed around
strings, not characters.

• Transformations often produce more or
fewer characters in the output than in
the input (uppercase ß is SS)

• Context is often critical: are we at a line
or word boundary?

Copyright 2001-04 John Cowan under GNU GPL 87

What is a String?

• In the C culture, a string is a bunch of
bytes delimited by a 00 byte

• That means UTF-16 sequences are not
really strings to C libraries

• UTF-8 shines here, because it is
culturally compatible with C strings

Copyright 2001-04 John Cowan under GNU GPL 88

What is a String?

• In higher-level languages, a string is an
object: the internal representation can
be hidden

• But it is important to note how the string
indexes itself:
– actual characters?
– UTF-16 codepoints?

Copyright 2001-04 John Cowan under GNU GPL 89

Sets and Tables

• Many character algorithms require
tables indexed by a character

• An important special case: a set of
Unicode characters (equivalent to a
table with values 0 and 1)

• For 7-bit or 8-bit sets, a simple array is
reasonable

Copyright 2001-04 John Cowan under GNU GPL 90

Two-level Tables

• Many rows (256 codepoints) have
similar or identical properties

• Entries in a global table can be a single
value or point to a shared 256-entry
sub-table

• Most entries tend to stay paged out
• Can also use 64-entry sub-tables

Copyright 2001-04 John Cowan under GNU GPL 91

Inversion List
• Storing a set of Unicode characters as

a list of integers
• Odd entries give starts, even entries

give ends of ranges
• Binary search quickly determines

membership
• Union, intersection, negation are fast

and easy

Copyright 2001-04 John Cowan under GNU GPL 92

Latin Letters Inversion List
(only 20 entries)

0041 005B 0222 0234
0061 007B 1E00 1E9C
00C0 00D7 1EA0 1EFA
00D8 00F7 FF21 FF3B
00F8 0220 FF41 FF5B

Copyright 2001-04 John Cowan under GNU GPL 93

SSGO
• Used internally by Mozilla
• Binary search through 6-byte Start,

Size, Gap, Offset (for mapping) records
• Gap is 1 if every other codepoint

belongs to the set
• Optimizations: fast-paths ASCII, skips

unwanted blocks, provides cache

Copyright 2001-04 John Cowan under GNU GPL 94

Storing Basic Unicode
Properties in 32 Bits

• 5 bits for General Category
• 4 bits for bidirectional category
• 1 bit for bidirectional mirroring
• Remaining bits are category-sensitive:

– Combining category for marks
– Numeric value for numbers
– Offset to opposite case for letters

Copyright 2001-04 John Cowan under GNU GPL 95

Fast-pathing the BMP

• Almost all characters in running text will
be in the BMP, with rare exceptions
(text entirely in an archaic script, e.g.)

• It is worthwhile to optimize for the 16-bit
case, especially in UTF-16 contexts

• Most BMP characters are below the
surrogate range

Copyright 2001-04 John Cowan under GNU GPL 96

Fast-pathing ASCII

• It is worthwhile to optimize for the ASCII
case, especially in UTF-8 environments

• If most characters are ASCII, treat
them in the main loop and special-case
everything else

Copyright 2001-04 John Cowan under GNU GPL 97

Ternary Search Trees
• Store long Unicode strings in tables

without hashing
• Compromise between binary trees

(space-efficient) and tries (time-
efficient)

• Handle "don't care" matching smoothly

Copyright 2001-04 John Cowan under GNU GPL 98

Culturally Correct Sorting

• Unicode binary code point order will not
produce good results!

• International standards require at least
a 3-level algorithm:
– basic letters (not in codepoint order)
– diacritics
– upper vs. lower case

Copyright 2001-04 John Cowan under GNU GPL 99

Sort Tailoring

• Different cultures have different rules
• Sorting rules depend on the user, not

the source of data (Swedish names
should be sorted English-style for an
English user, not Swedish-style)

• ICU and other libraries have tailoring
rules to support culture-specific rules

Copyright 2001-04 John Cowan under GNU GPL 100

Matching, Indexing, Selecting

• The same rules apply as for sorting
• Matching may not be usable if it is

strict; when matching directly from the
user, allow for missing diacritics and
other things

Copyright 2001-04 John Cowan under GNU GPL 101

POINTS TO REMEMBER

Copyright 2001-04 John Cowan under GNU GPL 102

Points to Remember

• If you have to internationalize, this is a
good reason to choose XML

• If you have to use XML, this is a good
reason to internationalize

• Paying for internationalization now is
much cheaper than doing it later

Copyright 2001-04 John Cowan under GNU GPL 103

More Information
http://www.unicode.org

http://www.ccil.org/~cowan/uamb.
{ppt,sxi,pdf}

http://www.ccil.org/~cowan/uamb.html

