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Key words: Adaptive strategies, sequential decisions, dynamic programming,
causal inference

Address for correspondence: S.A. Murphy, Department of Statistics, 4092
Frieze Bldg., University of Michigan, Ann Arbor, MI 48109-1285, USA.



1) Introduction

Dynamic treatment regimes are individually tailored treatments that are
designed to provide treatment to individuals only when and if they need the
treatment. In contrast to classical treatments in which all individuals are
assigned the same level and type of treatment, dynamic treatments explicitly
incorporate the heterogeneity in need for treatment across individuals and
the heterogeneity in need for treatment across time within an individual. In
a dynamic treatment regime, decision rules for how the dosage level and type
should vary with time are specified prior to the beginning of treatment; these
rules are based on time varying measurements of subject-specific need. The
set of decision rules comprise the treatment regime.

Dynamic treatment regimes are also called adaptive strategies (Lavori
and Dawson, 2000) or adaptive interventions (Collins, et al., 2001). When
the treatment is the provision of health information designed to induce im-
provement in health related behaviors, dynamic regimes are called tailored
communications (Kreuter and Strecher, 1996; Kreuter, et al., 2000). Dy-
namic treatment regimes are attractive to public policy makers because they
treat only subjects who show need for treatment, freeing public and private
funds for more intensive treatment of the needy. They hold the promise of
reducing subject noncompliance due to over- or under- treatment (Lavori and
Dawson, 2000; Collins, et al., 2001). These regimes are intended to reduce
negative side-effects due to over-treatment (Bierman, et al., 2001). Dynamic
regimes are used in tailoring health information content so as to provide only
personally relevant information with the idea that this information will be
attended to, thoughtfully processed and thus efficacious (Kreuter, Strecher
and Glassman, 1999).

The goal of this paper is to provide a method for estimating optimal deci-

sion rules; rules that when implemented over a time period will produce the



highest mean response at the end of the time period. The proposed method-
ology will use experimental or observational longitudinal data to construct
estimators of the optimal decision rules. Estimating the effects of dynamic
treatment regimes has been studied at some length by Robins and colleagues
( Robins, 1986, 1989, 1993, 1997; Murphy et al., 2001; van der Laan et al,
2001).

This work is motivated by the Fast Track prevention program. This is an
ongoing randomized trial of a complex preventive intervention versus control.
The intervention was designed to prevent the emergence of and reduce the
level of conduct disorders and drug use in children considered at risk due
to elevated behavior problems in kindergarten (Bierman et al., 1996; CP-
PRG, 1999ab; McMahon et al., 1996). Part of the intervention involved the
implementation of a dynamic treatment regime designed to improve family
functioning. The Fast Track team did not want to provide the highest level
of home visiting to all families. It was thought that providing too many home
visits might be detrimental, increasing risk for family dependency, pejorative
labeling (by self and others) and cause attrition. They decided to implement
a dynamic treatment as follows. At the end of each semester, beginning with
the spring semester of first grade, the family counselor filled out a 6 item
questionnaire composed of questions concerning the quality of parenting and
family functioning. The sum is the family functioning status. The rule for

assigning the number of home visits in the following semester is:
d;(S;) = 16I{S; < 8} +8I{9 < S; <16} +4I{17< S;},j = 1,2,3,4

where S; is the family functioning status taken at the beginning of the jth
semester, with low values indicating greater need. When this pioneering
study was designed there was very little guidance in terms of how one might

formulate the decision rule(s). Collins, Murphy and Bierman, (2001) seek to
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provide qualitative guidance; the goal of this paper is provide quantitative
guidance by exploring methods for estimating good rules.

The ascertainment of optimal dynamic treatment regimes belongs to the
class of sequential or multistage decision problems. We consider dynamic
treatment regimes in which decisions are to be made at set times; in this case
the regime is a set of decision rules, with one rule per time interval. For each
time interval j in {1,2,..., K'}, denote the to-be-made treatment decision by
a; and denote the status (possibly a vector) at the beginning of time interval
J by S;. In general S contains predictors of the response. The jth decision
rule will use the information available at time j and output the treatment
decision, a;. In a redesign of the Fasttrack study one might want to consider
a wide variety of information as part of S including information resulting
from the detailed summer interviews by outside staff, and severity in other
domains such as academic and social skill development, etc. The response
at the end of time interval K is denoted by Y. So the order of occurrence is
S1, a1, Sa, ..., ak, Y. In general we use a bar over a variable to denote that
variable and all past values of the same variable, so a; = (ay, ..., a;).

In many applications an expert provides the multivariate distribution of
(Sk,Y) indexed by the decisions, ai, ..., ax. In this case, one traditionally
uses backward induction (dynamic programming) to find decision rules re-
sulting in a maximal mean response. These arguments are usually expressed

as follows (Bather, 2000; Jordan and Bishop, 2001). Set
JO(SKa ag-1) =sup & [Y|‘§K> OK-1, G/K]
aK

dy(Sk,ak 1) = argsup E [Y‘SK,@KA,GK]
aK

and then for each j:

Ji—5(85,8;-1) = sup E [ Je—j1(8j41,8,)155, 851, a5 (1)

aj



d; (Sj, dj_l) = argsup FE [JKfjfl(Sj—f—la C_lj) |Sj, dj_l, a;

aj
The optimal rules are dj,.. ., dj. It is important to recognize that the place-
ment of @;_; and a; to the right of the | sign is to indicate that these condi-
tional expectations are taken with respect to the multivariate distribution of
(S1, Sa, ...,Sk, Y) indezed by the decisions, a;; a; plays a role similar to
parameters. For example, F [Y|S K, QK 1, aK] is the conditional mean of Y
given Sg indexed by the sequence of the decisions @ it is not the conditional

" k. The equation in (1)

mean of Y given Sk and “other random variables,’
is a finite time version of Bellman’s equation (Bellman, 1957). The func-
tion, Jg_; is usually called the “optimal cost-to-go” from the present state
(S;,a@;-1) over the future intervals of time (Bertsekas & Tsitsiklis, 1996);
we call Jg_; the “optimal benefit-to-go” as we wish to maximize the mean
response rather than minimize the mean cost. Cowell, Dawid, Lauritzen
and Spiegelhalter (1999) describe the backward induction algorithm and also
provide an alternate viewpoint using decision potentials.
For K = 2 the above is use of backwards induction to find:

(d7,d5) = argsup F [E [E [Y\S’Q, a, Gy = dQ(SQ,al)] |S1,a1 = dl(Sl)]] . (2)
dy,d>

The formula for K > 2 is similar but long; see Cowell et al. (ch. 8, 1999).
Statisticians who are unfamiliar with dynamic programming may find the
above objective function obtuse; in the next section we use Rubin’s causal
model to provide an alternate form for the objective function.

Bather (2000) gives a nice introduction to and discussion of these types
of problems (i.e., the multivariate distribution of (Sk,Y) indexed by the de-
cisions, ar is known or can be sampled). Although the steps in the dynamic
programming algorithm are easily described, they are computationally com-

plex due to the alternating steps of maximizing and averaging (Bertsekas &



Tsitsiklis, pg. 3, 1996). These problems are of great interest in the engineer-
ing literature, where the decision rules are called feedback control policies
(Bertsekas & Tsitsiklis, 1996). The wide applicability of dynamic program-
ming in finding optimal decisions combined with the computational difficul-
ties has spawned much research. Indeed the literature for this setting is vast
and spans a number of disciplines including management science, reinforce-
ment learning, medical decision making and statistics. Some recent work by
statisticians in this setting includes Shachter (1986), Owens, Shachter and
Neese, (1997), Cowell, Dawid, Lauritzen and Spiegelhalter (ch.8, 1999) and
Lauritzen and Nilsson (2001) all of whom use operations on influence dia-
grams to ascertain optimal sequential decision rules. Carlin, Kadane and
Gelfand (1998) and Bielza, Miiller and Insua (2001), calculate optimal deci-
sion rules by using Monte Carlo methods to simulate from the known multi-
variate distribution.

Our goal is to propose methodology for estimating the optimal rules when
the multivariate distribution of (Sk,Y) indexed by the decisions, ax is un-
known, but experimental or observational longitudinal data are available. In
order to do this we proceed as follows. First the counterfactual or potential
outcome framework is used to provide a specification of (2), thus providing
an alternate view of the use of dynamic programming in ascertaining optimal
sequential decisions. We use this framework to formulate assumptions that
justify the use of dynamic programming when only experimental or obser-
vational longitudinal data is available. Next we demonstrate that if one’s
goal is to estimate optimal rules, then it is unnecessary to estimate the full
multivariate distribution of the longitudinal data. That is, in section 3, we
model this multivariate distribution with two groups of parameters that vary
independently. The first group of parameters (parameters in the “regret”

functions) will be estimated and used to estimate the optimal rules and the

6



second group of parameters (most of which are infinite dimensional) are nui-
sance parameters. This approach will permit us to make smoothness (i.e.
parametric) assumptions on quantities that are directly relevant for estima-
tion of the optimal rules; we avoid making smoothness assumptions on other
aspects of the data distribution. In section 4 we illustrate a method that
permits one to estimate the parameters in the regret functions without esti-
mating the nuisance parameters. More importantly this method will provide
a computational alternative to the interweaving maximization and averag-
ing steps of the dynamic programming algorithm The last section provides

simulation results that illustrate the proposed method.

2) Potential Outcomes and Dynamic Programming

Neyman (1923) introduced potential outcomes to analyze the causal ef-
fect of time-independent treatments in randomized studies. Rubin (1978)
explicated Neyman’s ideas and extended Neyman’s work to the analysis
of causal effects of time-independent treatments from observational data.
Robins (1986, 1987) proposed a formal theory of causal inference that ex-
tended both Neyman’s and Rubin’s work to assess the direct and indirect
effects of time varying treatments from experimental and observational lon-
gitudinal studies. We use these works to specify our objective and to state
the assumptions.

In the following we define the potential outcomes; these potential out-
comes will be related to the observable data later. We use upper case Ro-
man letters to denote random variables and lower case Roman letters to
denote nonrandom variables. Since in dynamic treatment regimes we only
manipulate or assign treatments, the potential outcomes are indexed only

by treatments. Furthermore, we assume that a subject’s outcomes are not
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influenced by other subjects’ treatments so we index each subject’s poten-
tial outcomes by only his/her treatments (see Cox, 1958; Rubin, 1986 for
a more complete discussion). Thus corresponding to each fixed value of
the treatment vector, ax we conceptualize a potential response denoted by
Y(ax) where Y(ax) is the response at the end of the Kth interval that
a subject would have if he/she followed the treatments, ax. Let Ag be
the collection of all possible K-vectors of treatments decisions. The set
of all potential responses is {Y (@x) : Gk varying in Agx}. The status at
the beginning of time interval j is an intermediate outcome of (past) treat-
ments and thus the set of intermediate outcomes at time j is {S;(a;_1) :
aj_; varying in the first j—1 components of Ag}. Denote all of the subject’s
potential outcomes by Oy, = {S2(a1), ..., Sk-1(Gx—2), Y(ak);ax € Ax}.
The potential outcomes model sheds light on the function to be maxi-

mized in (2) as follows. The mean response for regime d,. .., dg is

E[Y (dk)] = E|Y (ak) S (a @ (3)

a1=d1(S1),...,ax =dx (Sk(ax—1),0K-1)

where a bar over a variable is used to denote that variable and all past values
of the same variable (e.g. Gx = ai,...,ax and Sk(ax_1) = Si, So(ay), ...,

Sk(ag_1)). The optimal rules should maximize this mean. The mean can

be written as a repeated expectation, in particular for K = 2, we have that

E[Y(Jz)]: E

E [E[Y(&Q) 9> (al)]az=d2(52(al),al) Sl] a1=d1(51):| '

As before we may place a; and ay to the right of the | sign to indicate
that these conditional expectations are indexed by the decisions. Then an

alternate version is:

FE |:E I:E[Y(EQN Sg(al), a1, Qo = dQ(SQ(Gll), 0,1)]‘81, a; = dl(Sl)H . (4)



From the similarity between the above display and (2), we see that the dy-
namic programming algorithm, as expected, has the goal of finding the regime
that maximizes the mean response.

Now we connect the potential outcomes with observations in a longitudi-
nal data set and we express (4) in terms of this data. The observable data
for a subject is X={ Si, A1, Sy, ..., Ak, Y} where Ag is the vector of
stochastic treatment decisions. Ag takes values in Agx. We make Robins’
(1997) consistency assumption. That is, we assume that the potential out-
comes are connected to the subject’s data by the equalities, Y = Y (Ak),
Sk = Sk(Ak_1), and so on, including Sy = S5(A;). In the following we use
either Y or Y (Ag) to denote the observed response at the end of time interval
K and either S; or S;(4;) to denote the observed status at the beginning of
time interval j. Thus the observable data are the pretreatment information
(S1) plus the potential outcomes corresponding to the treatment pattern Ag.
Most of a given subject’s potential outcomes are missing; only the potential
outcomes corresponding to the treatment pattern Ax can be observed.

In order to express (4) in terms of the observable data we will need to
make assumptions. To see why consider the following scenario. Suppose
that among individuals with the same past status levels and past treatment
levels, the individuals with treatment Ay = high differ from the individuals
with treatment Ax = low and the reason for this difference is not contained
in the available data. To decide if the decision, high treatment is opti-
mal (i.e. better than the decision low treatment) we compare the average
value of Y for those with Ax = high with the average value of Y for those
with Ax = low. However any apparent difference in the two conditional
means may be due to the difference in composition between the individuals

with treatment Ax = high and the individuals with treatment Ay = low.



That is, Ax may not be conditionally independent of the potential out-
comes, Oy,, conditional on (Skx_1, Ax_1), because there may be unmeasured
“confounders” that determine treatment and are associated with the poten-
tial outcomes. In general assumptions about this distributional relationship
must be used to identify causal effects and thus permit causal inference (for
discussion, see section 11, of Robins, 1997). We make the following indepen-
dence assumption (Robins, 1997) on the relationship between the potential
outcomes, Oy,, and the treatment decisions, Ax. We assume:

No Unmeasured Confounders: For each j = 1,..., K, A; is independent
of Os given {S1, A1, Sa, Ao, ..., S;}.

This assumption is also called sequential ignorability, (Robins, 2000). An

alternate statement of this assumption should be possible using the meth-
ods in Robins and Greenland (1992) or Dawid, Didelez and Murphy (2001).
These methods replace potential outcomes with potential experiments.

The phrase, “no unmeasured confounders” should not be misinterpreted;
perhaps a better phrase would be “no unmeasured direct confounders,” as
the assumption is a statement about treatment selection conditional on past
information. Intuitively this means that an unmeasured confounder may only
influence treatment selection through the measured past information. The
no unmeasured confounders assumption would be true if the treatments are
sequentially randomized. Treatments are sequentially randomized when at
each time j, the treatment, A; is randomized with randomization distribu-
tion allowed to depend on {Si, A;, Sz, Ao, ..., S;} (Robins,1997). Lavori
and Dawson (2000) and Lavori, Dawson and Rush (2000) propose that re-
searchers implement sequentially randomized experiments so as to estimate
optimal decisions rules (instead of sequential randomization they use the
phrase, biased adaptive within-subject randomization). An additional set-

ting in which the no unmeasured confounders assumption would be true is in
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computer experiments that are designed using a distribution for the decision,
A;, depending only on past information. Of course for a given observational
data set, one may believe that the S;’s are sufficiently rich so that the no
unmeasured confounders assumption holds.

Assuming no unmeasured confounders, we can write (3) which is a func-
tion of the multivariate distribution of the potential outcomes, as a function

of the multivariate distribution of the longitudinal data:

E[E[ . E[E[Y|Sk, Ak_1, Ak = di]

Sty Axa A =dica]. |81, 4= di)] (5)

where d; implicitly denotes d;(S;, 4; ;). This is Robins’ G-computation
formula (Robins, 1986, 1987, 1989, 1997 and Gill and Robins, 2001). For
K=2(5)is

E[Y(dy)] = E[E[E[Y|5‘2, Ay, Ag = do(Ss, A1)][S1, A1 = dl(Sl)H. (6)

Note the subtle difference between the above equation and (4) and the re-
peated expectation in (2); (2) and (4) are functions of conditional distribu-
tions indezred by treatment decisions a,; whereas the above is a function of
conditional distributions, conditioning on the treatment decisions. It may
appear to be patently obvious that (6) and the repeated expectation in (2)
should be equal. However from the discussion preceding the statement of
the no unmeasured confounders assumption we know that this may not be
true. The beauty of the no unmeasured confounders assumption combined
with Robin’s G-computation formula is that they provide a means by which
we can say that the repeated expectation in (2) and (6) are equal. Robin’s
G-computation formula is the formula that provides the mean response to a

dynamic regime in terms of the longitudinal data distribution.
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A proof of Robin’s G-computation formula is provided by lemma 2 in the
appendix. This proof assumes that the range of the treatment decisions, Ax
is countable (Ag is countable). Denote the conditional probability function
for each A; given S;, A; | by p;(a;|Sj, A;_1). The proof assumes that the
regime dg satisfies

K

P Hlpj(dj(gj,/ij_l)|§j,ﬁj_1) >0| =1 (7)
j=

That is, to prove that the repeated expectation in (2) and (6) are equal we

not only assume no unmeasured confounders, we also make the eminently

sensible assumption that treatment patterns consistent with the regime dy

can occur in the longitudinal data. See Gill and Robins, (2001) for more

general conditions and proof.

Denote the class of regimes (i.e. the vector of decision rules) satisfying
(7) by Dp. We subscript D by the probability P since the class of regimes
may vary by the distribution of the longitudinal data. For the remainder of
the paper we take as our goal that of finding a regime that maximizes (5)
over the class Dp. The assumption of no unmeasured confounders is only
used to justify the use of (5) as an appropriate objective function for the
purposes of estimating optimal regimes.

For each treatment level, ax satisfying px (ax|Sk, Ax_1) > 0 define,
Qo(Sk, Ax_1,ax) = E [Y|SK,AK—1, Ag = ak]
Next define,

JO(SKaAK—l) = sup QO(SKaAK—la GK)-

aK:pK(aK\SK,AK_1)>0
For each j = 0,..., K — 1 and a; satisfying p;(a;|S;, A;_1) > 0 iteratively
define,

Qu—i(8j, Aj1,05) = B [Jicj1(Sin, 45)185, 451, 45 = 0y
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and

Tr—j(Sj, Ajo1) = sup  Qx—;(Sj, Aj-1, a5)- (8)
a;:pj(a;j|Sj,A;-1)>0

We call the functions Jy, ... Jg 1, the optimal benefit-to-go functions. Note
that these functions differ from the displays in (1) in two ways, first the
above optimal benefit-to-go functions are conditional on treatment decisions
whereas in (1), they are indexed by treatment decisions and second we max-
imize over a restricted set of decision rules since we are unable to evaluate
treatment decisions that can not occur in the longitudinal data.

Beginning with J; and then ascertaining each optimal benefit-to-go func-
tion forms the steps of a dynamic programming argument that ends with the
maximal value equal to Jx_1(S7). This process is equivalent to maximizing
(5) over the class Dp. Indeed we have,

Theorem 1: Assume that Ag is countable. Assume E[|Y|‘,§K, AK] is
bounded a.s. Then,
sup E[E[ . E[E[Y|Sxk, Ax_1, Ax = dy]

JKEDP

Sty Ak-a, Aicr = dic-a] |81, A= di]] 9)

is equal to E[Jk_1(S51)].
The proof is in the appendix.

If we assume that the supremum is achieved at a d} in Dp (e.g. this
would occur if the number of possible treatments is finite), then we can write
the optimal benefit-to-go functions in terms of the potential outcomes for Y.

In this case

Jk—j(Sj, Aj_1) = E[Y (Aj_1,d}, ..., d5)|S;, Aj1] (10)
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for each 7 =1,..., K. This can be derived by following the same steps as in
the proof of Theorem 1 (see the appendix). Thus the optimal benefit-to-go
function represents the mean potential response conditional on the past and

assuming that optimal decisions will be followed in the future.

3) The Regret Functions

Our goal is to estimate an optimal regime (i.e., a regime that maximizes
(5) over the class Dp). An initial approach is to model the multivariate
distribution of (Sx, Ak, Y), say using a parametric, semiparametric or
nonparametric model, and then apply the dynamic programming argument.
By careful choice of a semiparametric model we are able to avoid the dynamic
programming step. Instead of parameterizing conditional mean functions or
conditional distribution functions we parametrize and then estimate “regret
functions.” At the end of this section we provide the semiparametric model
induced by parametrization of the regrets.

The regret functions are defined for each 5 =1,..., K as,

115(S5, Aj -1, a5) = Jx (S5, A1) — Qi—4(S;, Aj-1, a5).

Note that the p’s satisfy the constraint,

inf (S;,A;_1,a;) = 0.
aj:pj(aj|gj,A]‘_1)>0MJ( J -1 ])

The regret function p;(S;, A; 1, a;), provides the increase in the benefit-to-
go we forgo by making decision a; rather than the optimal decision at time
j. That is, the predictor effect is measured in terms of changes from the

optimal predictor value. This is most clearly seen when the supremum in (9)

14



is achieved at a dj € Dp, in which case the regret is given by (using the

potential outcomes model)

15(Sj, Aj1,05) = BEIY (Ajo,d5, ..., dy)|S;, Aja] —

E[Y(Aj—la Qj, d;—|—17 SRR d;()‘gjv Aj—l]'

It is clear that the backwards induction argument can be based on minimizing
the regrets instead of maximizing the ) functions. Thus if we had estimates
of the regrets we could then derive estimates of the optimal rules.

We directly model the regrets; this model may be nonparametric, semi-
parametric or parametric. Estimation is discussed in the next section. One
possible class of parametric models is based on a known “link” function
f(u); these functions provide the link between the regret and the decision
rule. The minimal value of each f should be achieved at © = 0 and be equal
to 0 (f(0) = 0); so each f is a nonnegative function. For a positive scale

parameter, 7;(5;, Gj—1) set
1 (55, 85) = 1;(55,85-0) f (a5 — di(5;, 8;11)). (11)

Note that the constraints on the link function imply that d;(5;,a;_1) is the
optimal decision rule based on past information (5;,a;_1). We form parsi-
monious parametric models for the optimal decision d;(5;,a;_1) and for the
scale parameter 7;(5;,a;_1). Parsimony can be important; in many settings
a simple rule is easier to implement than a complicated rule.

The shape of the link, f determines how the modeled regret will change
as a treatment decision deviates from the optimal. To provide flexibility
in the rate at which the modeled regret changes as a treatment decision
deviates from the optimal, we model and estimate a multiplicative unknown

scale parameter, 7,(5;,a@;_1). Large values of 7,(5;,a,_1) imply that a small
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difference in the treatment decision from the optimal produces a large regret
and vice versa. Suppose the possible decisions are real values (e.g. dose
of a drug), then one might believe that the regret will have an “U” shape
so that for doses smaller than the optimal, the subject receives insufficient
treatment, yet for doses larger than the optimal the subject suffers toxicity
or side effects and thus the subject does not benefit as much as would be the
case if the optimal dose is delivered. In this case we might use f(u) = u?.
Alternately we might believe the particular treatment does not cause toxicity
or side effects; in this case the link might be positive quadratic for v < 0 and
equal to zero thereafter. In the future it will be important to model the link
rather than assume it known.

In order to provide a more flexible regret we can combine two links; for ex-
ample we might base a model for the regret on, 11,(5;,a;) = n;(5;, ELj_l)f(aj -
d;(5, ;1)) + (55, ;1) ' (a; — d;(5;,3;-1)) where f(u) = u?I{u < 0} and
f'(u) = v I{u > 0}. We can allow the link function to change by interval
and/or by past information. This is particularly relevant if the type of de-
cision may change by interval and/or if the type of decision differs by most
recent status and most recent past decision.

If in an interval two different decisions must be made, then we may make
the decisions sequentially forming two “intervals” from the one and using a
different link for each decision type. For example suppose in each interval
educational staff have to make two decisions, first the staff member must
decide if the child is to receive special education or not. If the child is to
receive special education then the staff member must recommend a certain
number of minutes of special education per day; otherwise the staff member
must recommend a number of tutoring sessions per week. First we break
each interval into two intervals corresponding to the two decisions, then we

might use (11) for a given link f and a; € {0,1} denoting special education
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by 1 and no special education by 0. Then for possibly different link functions,

f"and f" the regret for the second decision would be
tj+1(8j41,@541) = {a; = 1}011(8541,85) f (aj+1 — dj1(8j+1 @j))

+ IH{a; = 0}n;41(5j41, @) f* (aj+1 — dj1(8j41, @j))
where the link f’ is used to parameterize the regret when one is choosing
among minutes of special education and the link f” is used to parameterize
the regret when one is deciding the frequency of tutoring sessions. In the
next section we provide a method to estimate the regret functions.

We can write the mean of Y given (Sk, Ag) in terms of the regrets,
K K
E[Y|Sk, Ax] = po +;¢j(5‘j,ﬁj_1) —jZ_luj(S‘j,fij) (12)
where p19 = EJg_1(S1), and the ¢,’s are defined so that the right hand side is
equal to the left hand side; ¢;(S;, A;_1) = Jx—;(Sj, Aj—1)—Qr—j+1(Sj-1, A1)
for j=1,..., K. Note that E[¢;(S;, 4;_1)|S;_1, A;_1] is zero. As mentioned
previously, parametrization of the regrets induces a semiparametric model

for the longitudinal data, X. When Y is continuous this model is given by,

SK,GK> X

K K
I pi(a;l55,@;1) I1 fi(sil55-1,a5-1)
j=1 j=1

g (y —po — > (04(55, aj1) — pi (55, ;)

i=1

where

e g(-|3k,ak) is the mean zero conditional density of Y given (Sk, Ag)
and must belong to the class of mean zero densities for fixed values of

(gKvaK)7
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e p,(al|5;,a;_1) denotes the conditional probability function for each A;
given (S'j, /ij_l) at times 7 = 1,..., K and each p; must belong to the

class of probability functions in a for fixed values of (5;,a;_1),

o fi(s|5j_1,aj_1) is the conditional density of S; given (S;_1, A,_1) at
times j = 1,..., K, each f; must belong to the class of probability

densities in s for fixed values of (5;_1,a;_1).

o 11;(5;,a;) is the jth regret, Jx_;(5;,a,-1) — Qx—;(5;,a;) and each pu;

must belong to the class of functions satisfying inf, ;.. (4, (5,,a;_1)>0 1;(55, @) =

0,

o ¢;(55,a,_1)is Jk_;(5;,8;-1) — Qr—j+1(5j,@j_1) and must belong to the

class of functions satisfying [ ¢,(5;,a,-1) f;(sj]5j-1,a;-1) ds; = 0,

e 1y is EJgk 1(S1) and takes values on the real line. pq is the mean

response to the optimal decision regime.

As discussed above we are primarily interested in the parameters composing
the regrets, p;; the unknown functions g, p;’s, f;’s, ¢;’s and scalar, pg are
nuisance parameters.

Advantages of Modeling the Regrets:

Modeling the regrets has several nice conceptual and practical proper-
ties. First, we parameterize the optimal rules; that is, we impose parsimony
on aspects of the multivariate distribution of (Sk, Ag, Y) that are of di-
rect relevance for our goal. In particular, this approach combined with the
estimation method to follow, permits the straightforward use of statistical
methods such as hypothesis testing and model selection. Thus we are able to
test if particular features of the past information are needed in the optimal

rule.
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A second nice property is that the constraints on the form of the opti-
mal decision are made explicit. To highlight this second property we con-
trast the direct parametric modeling of the regrets with parameterizing both
Qo(Sk,ax) = E|Y|Sk, Ax = ax| and the density of S; given (S;_1, 4;_;)
for each j and then by alternating supremum and averaging steps forming
estimates of all of the () functions. This alternate approach leads to im-
plicit constraints on the form of the regret functions, puq,..., ux—1 and the
Q1,...,QK_1 functions. Implicit constraints on @)1, . .., x_1 occur because
these are joint functions of )y and the conditional distributions of the S;’s.

The finite dimensional parametric models for )y and the distribution of
S; given (S;j_1, A;j—1) also constrain the form of the regret as follows. Accord-
ing to the dynamic programming algorithm we would first maximize )y over
ar yielding JO(S’K, dg—1). Thus the parameterization of (), determines the
form of Jo. From (12) we have that Jo(Sk, Gx—1) = o + Xy ¢5(S;, @j—1) —
Y5 ki (S),a5) (recall Qo = E[Y|Sk, Ag = ax]). Thus the parameteriza-
tion of g determines the shape of this function, particularly in ax_; via the
b (Sk,ax 1) — i 1(Sk 1,8k 1) term. At the same time, the parametric
model for the distribution of Sk given (Skx_1, Ax_1) constrains the shape of
bx (3K, Gk 1) in ag 1 since E[dx(Sk, Ax 1)|Sk 1, Ax_1)] = 0. These two
constraints lead to a limited set of forms for the regret function. This is
particularly a problem when the parametric models are nonlinear. This sit-
uation is similar to that highlighted by Robins and Wasserman (1997) who
in testing for effects of treatment decisions, found that the hypothesis of
no treatment effect may be excluded by the explicit restrictions imposed by
parametric models on other, less scientifically interesting, parts of the mul-
tivariate data distribution. Because the constraints are implicit it is difficult
in any given situation to check how much and in what way they constrain

the regret function.
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An additional nice property resulting from direct models for the regrets
is that parameterization of the regrets does not place constraints on other
aspects of the multivariate distribution of (Sg, Ak, Y) when E[Y|Sk, Ax]
is unbounded. For continuous Y with unbounded support, this can be seen
from the likelihood provided earlier. Since Y has unbounded support there
is no a priori restriction on the value of E[Y|Sk, Ag]. Thus as can be seen
from the likelihood, u; and p; are variation independent of the nuisance
parameters jig, g and ¢;, f;, for j =1,..., K. We are interested in parameters
composing p; and will use models for p;; parametric models for the y;’s and
p;’s do not constrain the possible values of the nuisance parameters and
all modeling assumptions are explicit. That is, we know that we are not
accidently making implicit, perhaps untenable, assumptions about nuisance
parts of the multivariate distribution. To highlight this property consider an
alternate approach of directly parameterizing each of the () functions. Note

that
Q1(5K—1, ag—_1) = E[mfaKQo(gK, C_LK)\SK—l, Ag_ 1= ar—1)-

Thus parametric models for J; and @y constrain the conditional distribu-
tion of Sk given (5 K1, A k—1). This is a well known problem regarding the
compatibility of marginal and conditional models (g plays the role of the
conditional mean and )y plays the role of the marginal mean). For a now
classic example, see Hougaard (1986) who shows that if one assumes that the
proportional hazards model from survival analysis holds for both marginal
and conditional models, then subject to natural conditions, the mixing den-
sity (here the density of Sk given (Skx_1, Ax_1)) must be a positive stable
distribution with infinite mean. Thus the restrictions on the conditional

distribution of Sk given (Sg_1, Ax_1) can be quite surprising.
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Bertsekas and Tsitsiklis (1996) working in a similar setting to the intro-
duction (i.e. the distribution of Sk, Y, indexed by the treatment decisions is
known or can be simulated from) illustrate the approximation of the @ func-
tions by neural network architectures such as splines, wavelets and classical
neural networks. Brockwell and Kadane (2001) use a discretization method
combined with the use of ”features” summarizing the past history to approx-
imate the () functions. These approaches share the first property with the
method proposed here, that is, they impose parsimony on aspects of the mul-
tivariate distribution of (Sx, Ag, Y) that are of direct relevance for the goal
of estimating an optimal regime. The architectures discussed by Bertsekas
and Tsitsiklis can be considered nonparametric modeling methods when S
can only assume a few values and the possible decisions are small; in this
case this method shares the third property of avoiding implicit constraints
on other aspects of the multivariate distribution. However, in many cases S
may assume many values or the set of possible decisions is not small; then
due to the curse of dimensionality this approach must be considered para-
metric and thus implicit restrictions are placed on the conditional density of
each S; given S;_;.

A fourth nice property of this modeling approach is that it directly leads
to a simple estimator of the mean response to the optimal dynamic regime.
This follows from (12) which implies,

K
E[Jk 1(S1)] = 21 Elp;(S;, A7)] + E[Y].
j=
Under the assumption of no unmeasured confounders, F[Jg 1(S;)] is the
mean response to an optimal dynamic regime. Thus given estimators of the
regrets and a sample, (Sk;, Ax;, Yi, i = 1,...,n), an estimator of the mean
response to an optimal dynamic regime is,

n! f (Z 13 (Sji, Aji) + Yi) :

i=1 \j=1
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All four properties are analogs of properties Robins (1986,1987,1989,
1997) established for structural nested mean models. Structural nested mean
models are models for effects relative to the predictor value of 0, whereas
the models presented here are for effects relative to the optimal predictor
value. Additionally, the likelihood here is similar in form to the likelihood

for Robins’ structural nested mean models.
3) Estimation

Estimation procedures can be based on the following least squares char-
acterization of the regret functions. Denote the true regret functions with a
subscript of 0, i.e., po1,- .., tox- Also we assume that the support of each
conditional probability function p;(a|5;,a;_1) for given (5;,a,_1) is known.
Thus the infimum in the definition of the regret function is over a known set
of decisions.

Theorem 2: Assume that both Y and each component of gk is square
integrable. Then given a vector of square integrable functions fix, where

each p; satisfies both inf,., (45,4, 1)>0 1;(S;, 4j-1,a) =0 and

2

K
E lY + D (S, Ar) = 30 i(Sy, A1, a)ps(alSj, Aja) | <
=1 a
K 2
E|\Y + Z (S A ) + m] S ij S _] 1,(1,)pj((1,|5_’j,f_1j_1) (13)
I=1,1#]
for all square integrable m;, j = 1,..., K we have that [ix is a.s. equal to

for- We can replace Y by Y + ¢ for a scalar ¢ and/or we can replace the
Zfil by Zg]‘ and the sum Zfil,l# by Zfij and in both cases the same result
holds. See the appendix for a proof of this result.
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There are a variety of ways to base estimation of the regret functions on
the above least squares characterization. For simplicity suppose the condi-
tional probability functions, px are known. First we formulate a model for
the regrets with a p-dimensional unknown parameter, 3, say p;(s;,a;; ) so
that inf, p4;(S;, aj—1,a; 8) = 0. Then we replace the expectation in (13) by
an average over the data with the aim of finding a B for which

2

K
Py, [Y + 3 (S Ais B) = D 1(S;, A1, 4 5)pj(a|5j,Aj1)] <

=1

Y+ 3 (S, A B) +my(S;, Aj) — S my(S;, Aj_1, a)p;(alS;, Aj 1)

for chosen m;, j = 1,..., K (for a function f of the ith subject’s data, X,
P,f(X) is defined as 1/n Y"1, f(X;), assuming that the sample observations
are independent draws from a distribution). In the simulations, we use the
model for the regrets as the m;.

In general the conditional probability functions (pg) for the longitudi-
nal data will be unknown (however we continue to assume that the sup-
port of each conditional probability function p;(a|5;, a,_1) for given (5;,@;-1)
is known). These densities can be estimated by postulating a model and
then using maximum likelihood, i.e., given the model p;(als;, a;—1; ) , j =
1,..., K with unknown parameter «;, maximize the log-likelihood

K
Pp LZI logp;(A;]S;, A 1; )
to find &,. In this paper we assume that the support of each p; does not
vary by the unknown parameter o. To estimate the parameters in the regret

functions, we search for a (5, ¢,) for which,
2

K K
Dorn | Y+ + D (S, A Br) — D 145(Ss, Aj1, a5 Br)pi(alSy, Aj_1;8) | <

j=1 =1
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K K
S e, [Y +e+ Y (S, As; Ba) + 15 (S5, A B)
= I=1,1£]

— 2 1i(S;, Ajo, a5 B)p;(alS;, Aji; ) 2 (14)
a

for all 3, c. (The inclusion of the unknown scalar, ¢, does not change con-
sistency but greatly improves the stability of the algorithm.) One way to
computationally implement the search is to start with an initial value of Bn
say [Bn1, substitute B, for B, in (14), minimize over (B,c), to get (Bna, ¢),
discard ¢, replace Bn in (14) with an and iterate the minimization process
until convergence. The least squares criterion uses the conditional variability
of the decision levels in the data in order to estimate the optimal decisions.
Intuitively this can be seen by acting as if the above least squares function
(14) is smooth in B and differentiating with respect to 5 and c¢. The A;’s
minus their conditional expectations given the past, play an analogous role to
covariates in a linear regression. This means, quite naturally, that if given the
past information A; is deterministic, this method can not lead to estimators

of the decision rules.
When the modeled regrets and optimal decisions are smooth functions
of B, simple Taylor series arguments can be used to derive an estimator of
the asymptotic variance of En The formula is provided in the appendix. An

estimator of the mean response () to an optimal dynamic regime is

K
fio = Py [Z 1 (S5, Az 8) +Y

J=1

The formula for the asymptotic variance fig is also in the appendix.
Further Comments:
(1) The least squares characterization in (13) and/or (14) leads to rel-

atively simple computations in contrast with the very natural approach of
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first, estimating Qo(Sk, ax) = E[Y|Sk, Ax = dx] and the density of S; given
(S;_1,A;_1) for each j and second, carrying out the interwoven supremum
and expectation steps composing the dynamic programming algorithm. See
Bertsekas and Tsitsiklis (pg. 3, 1996) for comments on the computational
issues. Furthermore as discussed at the end of section 2, in order to avoid im-
posing implicit constraints on the decision rule, one would want to make the
models for QO(S K, ak) and the conditional densities of S; given the past non-
parametric. Yet if the dimension or number of values S can assume and/or
the number of decisions is large the curse of dimensionality will result in
highly variable estimators.

(2) Note that the above estimation method depends on a correct parame-
terization of the conditional probability functions, px. Thus we are assuming
an overall model for the multivariate distribution of the data that stipulates
a parametric model for the regrets, jix and a parametric form for the condi-
tional probability functions, px (all other parts are nonparametric).

(3) In general estimators based directly on the least squares characteri-
zation in (13) and/or (14) will not lead to efficient estimators of 5. One has
several options to remedy this situation. If the dimensionality of the prob-
lem is small so that we avoid the curse of dimensionality (e.g. K is small
and the status measure can assume only a few values and the possible treat-
ment levels are few) then we can use nonparametric models to estimate each
component of the multivariate distribution and then use dynamic program-
ming. If this method is feasible then we do not need to assume a parametric
model for the conditional probability functions. Alternately we can adjust
the above estimator to achieve double robustness (and a “local” type of effi-
ciency, Robins, 2000). Conceptually this is a straightforward adaptation of
Robins’ (2000) work on structural nested mean models. A third option is

to change the model from a model in which most parts of the multivariate
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distribution are left unspecified (i.e., nonparametric) to a model in which the
entire multivariate distribution is parametric; then we may use the likelihood

to construct maximum likelihood estimators of the regret functions.
4) Simulation Results and Further Discussion

The goal of the simulations is to demonstrate that the estimation method-
ology proposed here is promising and deserves further investigation. We sim-
ulate data from the following prototypical sequentially randomized experi-
ment. This type of experiment would be used to estimate optimal decision
rules; rules that maximize academic achievement Y at the end of K = 10
intervals. In each interval there are two decisions. The first decision is
whether the child should receive special education (1=yes, 0=no). This de-
cision is binary. If the child is recommended for special education then a
level 1 or greater special education per day is to be assigned. If the child
is not to receive special education then an amount of tutoring per week, 0
or greater is assigned. Each decision should be based on the child’s status
as assessed at prior time intervals and at the beginning of the present time
interval (S1,. .., Sk). In the simulation of the sequentially randomized exper-
iment, the treatment assignment probabilities for the decision as to whether
a child should receive special education are uniform on {0,1}. The treat-
ment amount assignment probabilities for special education are uniform on
1,2,3 and for reading tutoring are uniform on 0,1,2,3. Note that although
these treatment assignment probabilities do not depend on the past, in a
sequentially randomized experiment we can allow the treatment assignment
probabilities to depend on the past statuses and treatments.

We divide each interval into two subintervals; in the first subinterval
the “yes/no” special education decision is made and in the second subin-

terval the amount of the appropriate treatment is to be decided. Thus
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the effective number of intervals is 2 ¥+ K = 20. The remaining data are
simulated as follows. The conditional density of Y, g¢(-|32,a2), is a nor-
mal, mean zero, variance .64 density. The marginal density of Si, fi, is
normal with mean mean,; = .5 and variance .01. The conditional density
of each S; given (S; 1,A; 1), j > 2 and odd, is normal, mean mean; =
b5+ .28;1 — .07A;_1A;_o — .01A,_1(1 — Aj_5), where A,_, assumes 1 or 0
according to whether special education is assigned. The conditional variance
of S; is set to .01. For j even, S; is set equal to S;_ 1. Except for the regret
functions the terms in the telescoping form of the conditional mean of Y are
the ¢;’s and pp. These are set as ¢;(5;,a;_1) = —5(s; — mean;) for j odd,
and po = 30. Recall p is the optimal mean response. There are no ¢; terms
for 5 even.

In simulation 1 the true regret for j odd (decide to assign special education
or not) is given by 6(a; —I{s; > 5/9})? and the true regret for j even is given
by 1.5a;_1(a; — 2s;)? + 1.5 % (1 — a;—_1)(a; — 5.5s;)* (the treatment amounts
are allowed to be continuous dosage levels). This specification of the regrets

means that the simulated mean, E[Y| Ay = g9, Sop = 59| is given by

20 20
30—5 Y (s;—mean;) — > 6(a; — I{s; > 5/9})?
j=1,j odd j=1,j odd
20
- Z 1.5aj_1(aj - 25]')2 + 1.5 % (1 - a]-_l)(aj - 5.5Sj)2.
j=2,j even

The regrets are zero at the optimal decision thus, for j odd, d} = I{s; > 5/9}
and for j even, dj = a; 12s; + (1 — a; 1)5.5s;.

In the analysis of each simulated sequentially randomized experiment, we
fit a quadratic link (f(u) = u?). In the odd time intervals the fitted regret
for the ”yes/no” special education decision is

e30(sj —P2) 2
pi(55,a5) = B (aj - W) (15)
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for a; € {0,1} (yes = 1, no = 0); that is we approximate the nonsmooth

I{s; > [} by the smooth function 1630(sj_52)

I CE R The choice of 30 is arbitrary;

in the future the pros and cons of other choices should be considered. In
the even time intervals the fitted regret for the amount of treatment (special

education or tutoring) is,

Wi2(sj,a;) = 54613'—1(%' — (B + 555_7'))2

+B7(1 = aj-1) (a5 — (85 + ﬁssa‘))Z- (16)

eSO(Sj —ﬁ2)
1430085 —B2)

dj = a;—1(Bs + Bss;) + (1 — aj_1)(Bs + Bss;) for j even.

We conducted a number of simulations; here three are discussed. First for

So the fitted decision functions are smooth: d; = for j odd and

illustrative purposes we provide, in Table 1, estimates of the 8’s for simulation
1. It is not surprising that (; is poorly estimated since we are fitting only
an approximation of the optimal decision rule in the odd time intervals.

(Table 1 about here)

Scientific interest is not directly concerned with the accurate estimation
of the decision regime but rather is most concerned with the ability of the
estimated regime to produce an optimal response. Thus in order to compare
the simulation results we provide boxplots and a table that evaluate the
mean response to the estimated decision regimes. For each data set in a
simulation, we estimate first the $’s and then the corresponding decision
rule. The estimated rules comprise the estimated regime. Then for each
of these estimated decision regimes we calculate the mean response under
the estimated treatment regime by Monte Carlo. To be more precise, we
generate 10,000 observations (complying with the estimated decision regime)
and form the mean response. Thus we have a mean response corresponding

to each estimated treatment regime in the simulation. Since our simulations
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are of size 1000 data sets, we have 1000 (Monte Carlo estimated) mean
responses per simulation. See Table 2 and Figure 1. The first simulation is
as above (labeled “Simulation 1”). From Table 2, we see that on average
(across estimations of the regimes) the estimated regimes in simulation 1
lead to a mean response of 29.27; recall the optimal mean response is 30.
This less-than-optimal performance is attributable to the fact that we are
approximating the discontinuous decision rule in the odd time intervals with
a smooth function. As a comparison, consider the following simple non-
dynamic regime. In the simulations the mean of S; at each time j is between
.4 and .5, indicating that the “average child” would not have been assigned to
special education (.5 < 5/9). In addition the amount of academic tutoring
that is optimally assigned for a child with S; = .45 is 5.5(.45)=2.475. So
in our simple non-dynamic regime, all children are assigned 2.475 units of
academic tutoring at each time interval. Use of this simple regime results
in a average mean response of 15.98. Thus use of the estimated optimal
rule as compared to this simple rule results in an average increase of 29.27-
15.98=13.29 in the response.

Table 2 and Figure 1 contain results for two further simulations. These
two simulations differ from simulation 1 only in the form of their true (i.e.
simulated) regrets. In both cases the true link function is nonquadratic
(hence the fitted quadratic link is misspecified). Simulation 2 uses data
simulated with the link,

Flu) = u? ifu? > 0.83
Y=Y 0 otherwise

in the odd numbered intervals and links,

fuy = [ v it 2333
] 0 otherwise
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for both amounts of special education and tutoring, respectively, in the even
numbered intervals. From Table 2, under simulation 2, we see that even
though the link function is misspecified, the mean response to the estimated
optimal regimes is closer to the optimal value of 30 than in simulation 1
(where the link function is correctly specified). This is not surprising since
in simulation 2 the true regrets are zero for a range of treatment levels, thus
the estimated rules only need to provide a treatment level within a range to
produce near-optimal results.

In simulation 3, we consider the opposite situation to simulation 2. In
simulation 3 the regrets are “peaked” at the optimal; here the link is

| if u? < 1.5

flu) = { u?2 — 1.5 ++/1.5 otherwise

in the odd numbered intervals and links,

flu) = [ul if u? < 2.5
u) = { u? — 2.5+ /2.5 otherwise
for both amounts of special education and tutoring, respectively, in the even
numbered intervals. As might be expected misspecification of the link (we
fit a quadratic link) results in the poorest mean response of the three sim-
ulations. Additionally the variability in mean response across the 1000 es-
timated optimal regimes more than doubles. Here the “peakedness” of the
regret implies that the estimated rules must provide treatment levels very
close to the optimal treatment levels to produce a near optimal response.
The poor performance and increase in variability is highlighted in Figure 1
by the boxplots of the mean responses.

(Table 2 and Figure 1 about here.)

In general our simulations indicate that the estimation procedure can be

sensitive to misspecification of the link function and the use of a smooth
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decision rule to approximate a discrete valued decision rule, thus in future
we plan to explore the usefulness of more flexible link functions and accurate
parameterizations of the rules.

Discussion:

Causal Bayesian networks provide a natural alternative to the method
presented here. For example, one constructs a tentative causal Bayesian
network (possibly containing unobserved latent variables) that incorporates
the assumption that the associated conditional distributions would be the
same even if the decisions are set by outside intervention. One “learns” the
structure of the causal Bayesian network from the data; i.e. one postulates
multivariate models for the group of observed and unobserved variables, es-
timates parameters and assesses fit. This is an area of intense research. An
overview of “learning” the structure of the network with references is pro-
vided by Cowell, Dawid, Lauritzen and Spiegelhalter (ch. 11, 1999). See
also Heckerman (1998). Then given a particular multivariate model with es-
timated parameters, one follows the dynamic programming arguments. The
dynamic programming steps are computationally difficult; Cooper (1990)
shows that probabilistic inference using these types of networks can be NP-
hard (problems that cannot necessarily be solved in polynomial time on a
sequential computer). Cowell, Dawid, Lauritzen and Spiegelhalter (ch. 11,
1999) discuss the use of local computations and decision potentials designed
to reduce the computational burden. It would be most interesting to as-
sess whether the methodology proposed here is competitive. Note that these
methods do not directly parameterize the optimal decision rules; further-
more the learning process assumes that there is good scientific information
about the distribution of all unobserved variables and about the relationship

between the unobserved variables and the observed variables.
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Another interesting alternative to the method presented here is the use
of Robins’ structural nested mean model(Robins, 1986, 1987, 1989, 1997).
However in order to form the mean response to a dynamic regime one must
(as is the case with Bayesian networks) model the distribution of the each
status, S; as outcomes of past statuses and past treatment.

Lavori and Dawson (2000) propose the use of an approximate Bayesian
bootstrap to impute the values of all potential outcomes. After all potential
outcomes are imputed, one would calculate the mean response corresponding
to each of a variety of dynamic treatment regimes and compare these to find
a best dynamic regime. Unfortunately, in the cases we envision the number
of time intervals combined with the continuity of the status will preclude the
use of the nonparametric approximate Bayesian bootstrap.

This work raises a number of interesting issues. An important practical
problem is the appropriate design of sequentially randomized trials to be used
for estimating an optimal decision regime. From a statistical standpoint this
is a difficult area because practical and ethical considerations might limit the
variability in the treatment levels, yet variability in the treatment levels is
crucial for high quality estimates. We need to better understand the conse-
quences of low variability in the observed treatment decisions (A;) given the
past information. Clearly one consequence of low variability and/or a small
number of possible values of A; will be less precise estimation of the rules. A
second type of problem that can arise is that in the experiment/observational
study, expensive or difficult-to-collect information may have been used in
treatment selection. For practical applicability the rules should not depend
on this information. For example in the Fast Track study, staff may have used
information from detailed summer interviews to assign treatment, however
in future summer interviews may not be available. So the goal is to find the

rules that optimally use a specified subset of the past information. The work
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by van der Laan, Murphy and Robins (2001) should be useful in developing
methodology for this problem. A third issue is that we assume decisions are
made in discrete time; practically, this means that in any time interval, treat-
ment decisions are made on all or most subjects. However when the timing
of the treatment decisions are so variable across subjects that the chance of a
decision occurring in any time interval becomes exceedingly small it is better
to move to a continuous time framework. It would be very useful to general-
ize this work to continuous time. Another useful generalization would allow
for a time varying response. We could choose to estimate a regime that would
optimize a one dimensional summary of the time varying response such as a
weighted average of the response with earlier responses contributing less to
the average than later responses. This is similar to minimizing discounted
expectations in infinite horizon, sequential decision problems (see Bather,
2000, chapter 9 or section 2.1.2 of Bertsekas and Tsitsiklis, 1996). When the
one dimensional summary can be expressed as an average, the work presented
here should generalize without much alteration.

Because of the similarity in the likelihood between this method and
Robins’ nested structural mean model, many of Robins’ results should gen-
eralize to this setting. In particular when the available data is observational,
the assumption of no unmeasured confounders is suspect. In this setting
Robins has developed sensitivity analyses for the nested structural mean
model (Robins, Rotnitzky and Scharfstein, sections 8.1b, 8.2b, 1999). It
would be most interesting to develop analyses that examine how the rules
would change as one allows for deviations from the no unmeasured con-
founders assumption.

An additional interesting area was described in the introduction; suppose
it is feasible to simulate from the known multivariate distribution. It is

unclear whether the methodology presented here can provide the basis for
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better computational algorithms that provide approximate optimal regimes.
This could be of great utility as the traditional use of a Bayesian network is

computationally difficult.
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9) Appendix

Lemma 1: Let (Z;, Z5, Z3) be a random vector where (Z;, Z5) are scalars,
Zs3 is a m vector and Z, is countably discrete. Assume that E|Z;]| is fi-
nite. Denote a version of the regular conditional probability density of Z,
given Z3 by p(z2|z3). Assume that d : R™ — R is measurable and that
Plp(d(Z3)|Z3) > 0] = 1. Then any two versions of E[Z|Z3, Zo = d(Z3)] are
a.s. equal on the sigma field generated by Z;.

Proof: By definition of the conditional expectation of Z; given Z3 on the
set {Zy = d(Z3)}, we have that for any B, a set in the sigma field generated
by Zs,

/ Z, dP = E[Z.|Zs, Z, = d(Z5)] dP
B{w: Za(w)=d(Zs (w))} BO{wiZs(w)=d(Zs (w))}
where E[Z1|Zs, Zy = d(Z3)] belongs to the sigma field generated by Z3 inter-
sected with the set {w : Zy(w) = d(Z3(w))}. Suppose we have two versions
of E[Z1|Z3, Zy = d(Z3)], on {Zy = d(Z3)} these can be written as hi(Z3) and
ho(Z3). By definition,

O:/ hi(Zs) — ha(Zs)) dP.
Bﬂ{w:ZQ(w):d(ZB(w))}( 1( 3) 2( 3))

But this is the same as (by definition of p)
0= [ (h1(Zs) = halZ2))p(d(25)|Z5) dP.
Since Plp(d(Z3)|Zs) > 0] = 1, P[h1(Z3) = ho(Z3)] = 1 (not just on the set,

{w : Z(w) = d(Zs(w))}).

Lemma 2: Assume that the range of the treatment decisions, Ag is count-
able and that E|Y| is finite. Assume no unmeasured confounders holds. As-

sume that the regime, dy is measurable and satisfies (7), where p;(a;|S;, A1)
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is a regular conditional density for the conditional distribution of A; given

S’j, flj,l. Then the repeated expectation, (5)

E[E[ - E[E[Y|Sk, Ax 1, Ax = d]

|‘§K—1a AK—% AK—l = dK—l] ‘Sla Al = d1:|:|

is well defined and is equal to E[Y (dg)].

Proof: For the repeated expectation to be well defined it must be shown
to assume a unique (only one!) value. As discussed by Gill and Robins
(2001), difficulties occur because the value of each conditional expectation is
arbitrary when the conditioning set has probability zero. Assumption (7) and
lemma 1 will allow us to show uniqueness. Because each d; is measurable
and by definition of conditional expectations, E[Y|Sk, Ax 1, Ax = dg],
E[E[Y|Sk, Ax_1, Ag = dK]‘S'K_l, Ag_y, Ax_1 = dg_1], etc., are defined
a.s. P. Using lemma 1 and (7), (e.g. in first case equate Y with Z;, (Sk,
Ag_1) with Z3 and equate Ax with Z5) we see that conditional expectation
is uniquely defined a.s. P. Thus (5) is well defined.

To see that (5) is equal to E[Y (dk)], first note that E[Y|Sk, Ax_1, Ax =
dk| is equal to E[Y (Ag_1,dk)|Sk, Ax_1, Ax = dk] a.s. by definition of Y.
But O,, is independent of Ax conditionally on (Sg, Ax 1), thus the above
conditional expectation is equal to E[Y (Ax_1,dk)|Sk, Ax_1] a.s. Thus (5)

is equal to

E[E[ . E[E[Y (Ak_1,dK)|Sk, Ax_1]

|§K—1, Ax o, Ax_1 = di_1]. .. ‘Sl, A = d1H-

Next the repeated expectation, E[E[Y (Ax_1, dx)|Sk, Ax_1]|Sk-1, Ax—2, Ax_1 =
dK_1] is equal to E[Y(AK_l,dKNSK_l, AK_Q, AK_1 = dK—l] a.s. Now we
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repeat the arguments made before; that is, first use the definition of Y then
since Oy, is independent of Ax_; conditionally on (Sg_;, Ax_), the above
conditional expectation becomes, E[Y (Ax_o,dx_1,dr)|Sk_1, Ax_2]. Re-

peated use of these arguments proves that (5) is indeed equal to E[Y (dx)].

Lemma 3: Let Z; be a random variable, Z3, a random m vector and 7,
a random variable with range A where A is countable. Assume that E|Z;| is
finite. Denote a version of the regular conditional density of Z given Z3 by
p(22/23). Then given € > 0 there exists a measurable function d such that,

E[Zl‘Zg, ZQ = d(Zg)] Z sup E[Zl‘Zg, Z2 = CL] — €
a:p(a|Z3)>0

a.e. P.

Proof: Without loss of generality assume that A is the positive integers.
Since E|Z| is finite we may choose a version of E[Z1|Z3 = z3, Zo = j] that is
finite everywhere. Consider the set of positive integers, j for which E[Z;|Z3 =
y>0 B[Z1|Z3 = 23, Z = i] —e and p(j|z3) > 0. Let d(z3)

be the minimum integer in this set. Then we have {23 : d(z3) > j} = {23 :

23, Za = J| = SuP;y

i|Z3

maxiijp(i‘23)>0 E[Z1|Z3 = z37Z2 = Z] < Supa:p(a\Z3)>0 E[Z1|Z3 = Z3:Z2 =

a] — €}. This set is measurable for all values of j thus d is measurable.

Proof of Theorem 1: First (5) is no greater than

E|:E|: .. E[J()(SK, AK—I)ng—I; AK_Q, AK—I - dK—l] e ‘Sl, Al - d1:|:| .

This is because px(dx(Sk, Ax_1)|Sk, Ax—1) > 0 a.s. and dg must take
values in {ax : px(ax|Sk, Ax_1) > 0}. Let ¢ > 0. Furthermore use lemma
3 to see that (9) is at least as large as

sup F
dx_1€Dp

E[ . 'E[JO(‘S_YKaAKfl)‘S_’Kfla AK*Q, AK*I = dKfl] s ‘Sla Al = dl]:| — €
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because Dp includes all measurable rules, dx depending on Sk, Ax_; with
pi(dx (Sk, Ax_1)|Sk, Ax—1) > 0 a.s. Thus (9) is within € of the first term
in the former display.

Evaluating the repeated expectation, the first term of the previous display

is

_ sup E[E[ . -E[QI(SKfla AK72a dKfl)‘SKan AK735 Ag o =dg_o]... ‘Sl, A= le-
dx-1€Dp
(17)

Similarly we note that (17) is within e of

_sup E[E[ . -E[J1(§K—1, AK—2)|S’K—2, AK—?UAK—Q = dK—Q] . ‘51, A = d1]]

dx—2€Dp

and thus this display is within 2¢ of (9). Finish the proof by repeating this

argument and recognizing that e is arbitrary .

Proof of Theorem 2: We only need (13) to hold for mx = figx. Note that
Eluk(Sk, Ax)|Sk, Ak 1] = Yo ik (Sk, Ax—-1,a)pk (a|Sk, Ak —1). Consider
the Kth inequality

2

K
E [Y + ZM(SL, A)) — Elpx(Sk, Ak)|Sk, Ax—1]| <

=1
2

K-1
E [Y + Z (St Al) + MOK(SK, AK) - E[NOK(SKaAKNSKaAKl]]

=1

Combining terms we have

K1
2E [Y + > (S, A) + ok (Sk, Ax) — Elpok | Sk, AK—l]]

=1

: [NK(SK, AK) - MOK(SK, /_11() - E[,LLK - ,U0K|SK; AK—I]]
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— — — — — — 2
+E [MK(SK,AK) — tox (Sk, Ax) — Elug — pok Sk, AK—I]] < 0.

Since the second part of the product in the first term has conditional mean

zero, the first term simplifies to yield,
2F [Y + MOK(EK, AK)} [MK(SKa AK) - MOK(SKa AK) - E[,UK - MOK|§K, AK—1]}

_ - o 2
+E [NK(SK,AK) — tox (Sk, Ax) — Eluk — tok |Sk, AK—l]] < 0.

Recall that pox (Sk, Ak) is equal to —E[Y |Sk, Ak] plus a term constant in

Ag thus the first term is identically zero and we have

E [MK(gK; AK) - MOK(S'K,AK) - E[MK - MOK|§K, AK—I]]2 < 0.
implying that the quantity inside the expectation is a.s. equal to zero. Thus,
E ([NK(SKa AK) - HOK(SK, AK) - E[,UK - ,U0K|'§K; AK—I]]Q ‘SK; AK—I] =0a.s.
That is

— — _ _ _ _ 2 _ _
> [MK(SK, Ax_1,0) = pox (Sk, Ax—1,a) — E[ux — M0K|SK,AK—1]] px(a|lSk, Ax-1) =0

a

a.s. Fix a sample point in this set of probability 1. Then for each a with
pi(a|Sk, Ax_1) > 0 we have

MOK(SK, /_1191, a) — ,UK(SK, AKA, a) = Elpox — MK|SK, AKA]-

Recall that the supremum of pox(Sk, Ax_1,a) over such a is zero and by

assumption the same holds for pg. Thus E[uox — px|Sk, Ax_1] = 0 and
tor (Sk, Ak—1,a) — pir (Sk, Ax—1,a) = 0.
We have pox = px with probability one.
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Next we consider (13) for j = K — 1 and mg_; = Jio,x—1- The proof is

virtually identical to the above. Using the just shown result that pox = px,

we have
K-1 o o ~ ~ 2
E lY + > (S, Ai) + pok (Sk, Ax) — Elpk—1|Sk-1, Ax—2]| <
=1
K-2 K o B ) 2
E\Y+ Y (S, A)+ Y. wou(S,A) — Elpok-1|Sk—1, Ax—2]
-1 I=K—1

Combining terms as before,

K-2

K
Y+ > wm(SuA)+ D polS, Al) — Elpo,x—1/Sk—1, Ax—2]
—K—

=1 l 1

2F

: [,U/K—l(SK—la AK—l) - /LO,K—1(‘§K—1, AK—l) - E[MK—1 - NO,K—1|SK—la AK—Q]]

_ _ _ - _ _ 2
+E [,UK—I(SK—la AK—l) - MO,K—I(SK—la AK—l) - E[MK—l - ,UO,K—1|SK—17AK—2]] < 0.

Since the second part of the product in the first term has conditional mean

zero, the first term simplifies to yield,

2F [Y + ,LLO,K—l(gK—I; AK—l) + MOK(SK; AK)]]
: [MKA(SYKA, AKA) - HO,Kfl(SKfla AKA) - E[HKfl - ,UO,K71|SK71; AK&]]

_ - _ - _ - 2
+F [,UKA(SKA, Ag_1) — MO,KA(SKA, Ag_1) — Elpg—1 — ,UO,K71|SK71aAK72]] < 0.

Since po,x—1(Sk—1, Ax_1) is equal to —E[Y + o ¢ (Sk, Ax)|Sk—1, Ax—1] plus

a term constant in Ax_; the first term is zero. We have,

_ —_ _ —_ _ _ 2
E [MK—1(SK—1, AK—1) - NO,K—1(5K—1, AK—l) - E[MK—1 - NO,K—1|SK—1: AK—Q]] = 0.
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implying that the quantity inside the expectation is a.s. equal to zero. As in
the arguments for j = K this implies that po x—1 = px—1 with probability
one.

Continuing in this fashion we see that jox = jt1x with probability one.
Also it is easy to see that we can replace the Zfil by Egj and the sum

Zl}il,l# by Z{;j and the same result holds.

Variance of 3: This estimator can be used when the regrets and opti-

mal decisions are smooth functions of 5. For a p column vector, say V,
denote VVT by V®2. Also denote the first derivative with respect to o of
pi(4;]S;, Aj_1; ) by pi(A4;18;, A;_1; ) and set S,(Sk, Ax; )

= ZJ 1Pi(4518;, Aj—1; @) /pi(Aj]S;, Aj—1; @). Denote the second derivative
with respect to a of P, [Ejzl log p; (A]-|S]-, Aj_; oz)] and evaluated at o = &,
by —Ias. Denote the first derivative of 11;(S;, A;; 3) with respect to § by
(1;(S;, Aj; B). Set €(3, @) equal to

-1 K K
?Z]Pn Y+Z,U'l Sl:Ala ZN'] j l,a’]7ﬁ)pj(a]| ] 1,01)] )
j=1 =1

set Sp(Y, Sk, Ax; B, @in) to

Y 4 @B, @n) + Zuz Sty A Br) — > 1i(S5, A1, ag; 3n)10j(aj|gj, Ajy; an)]

=1 a;

o _, T .5 T 5 5 ~
X [%c(ﬂ, an)|5:§n + f15(Sj5 Ajs Bn) — D 45(Sj, Ajo1, ag; Bu)pi (a4] S5, A1 an)]
and set —1I, 8q €qual to
K
> Pn

=1

ﬂj(gja Aﬁ Bn) - Z ﬂj(gj, Aj—la aj; Bn)pj(aj |5j, Aj—l; @n)]

a;j
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T
0 _ ~
X [%C(ﬂna )a an Z,U/] SJaAj laajaﬂn)p](aj|SJ3A] laan):|

a;

K
~S e,

i=1

K
Y + (B, Gn) + D (S, Ai; Br) — D 15(S;, A1, aj; Bn)p;(a4]S;, Ajs; @n)]

=1 a;
X {Z (15(S;, Ay, ag; Ba)pj(a;]S;, Ajo; @n)T] :
aj

Lastly set —fgg equal to,

K K
Z [ (B, an)l sz, + > (S, A Bn) — Zﬂj(sj,Aj—baj;ﬁn)Pj(aj|Sj;Aj—1;@n)]
= P

aj

x | i15(Sy, Az Bu) — 3 i5(Ss, Aj1, a5 Ba)ps(a51S;, Aj-1; )
a;

For sample of n subjects we estimate the asymptotic variance of 3 by

~ ~ — - ~ ~ ~ — — T
(1/n)I = (1/n)I53BalS5(Y, Sk, Axc; By Gin)+Ialae Sa(Skc, Ax; &)™ (I54)

Variance of Jig: An estimator of the asymptotic variance of [ij is given by

(]_/’I’L Z,LL] SjaAja/Bn) +Y + IO/J’I l[S,B(Y SK7AKaBn: Ckn) + I/)’al O}Sa(SKvﬁKaan)]

j=1

where Iog =P, [ZJ 1125 (S; ],ﬂn)] .
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Table 1. Estimates of Parameters in the Decision Regime: Simulation 1

True B || Avg. | Std. Err. | Avg. Est. Std. Err.
6.0 6.89 0.210 0.210
0.56 0.56 0.002 0.002
0.0 0.05 0.184 0.181
1.5 1.50 0.125 0.125
2.0 2.01 0.255 0.247
0.0 0.06 0.128 0.125
1.5 1.48 0.078 0.083
5.5 5.54 0.358 0.358

Simulations of 1000 data sets of size 1000.

Table 2. Descriptive Statistics for the Mean Response to each of 1000

Estimated Treatment Regimes

Simulationl | Stmulation2 | Simulation3
Mean 29.27 29.54 28.22
Median 29.27 29.54 28.29
Std.Dev. 0.19 0.16 0.47

The mean response is evaluated using 10,000 Monte Carlo repetitions. The

optimal mean response is 30.
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