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Abstract

Although citation to precedent in judicid opinionsis a critical component of the network of rules that comprise “the law” in any area,
there have been surprisingly few systematic attempts to use the abundant data available on citation patterns to uncover generd principles that
might illuminate the nature and structure of the legal system. In this paper, we use data from the New Y ork Court of Appeals and the Seventh
Circuit regarding the number of times judicid opinions cite to, and are subsequently cited as, precedent to test the hypothesisthat lega
arguments and legd doctrine have akind of “fractd” structure. Our mode provides a reasonablefit to the citation data that we examined,
athough there appear to be sgnificant sources of variability in these data that are not explained by our smple predictive framework, and it is
clearly far too early to draw any robust conclusions about the hypothesis other than that additiona work aong these lines appears to be

warranted.
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Introduction

Citation to precedent in judicid opinionsis aserioudy under-studied phenomenon. It goes without saying that in a common-law system
such as our own, citing precedent is one of the more significant means by which current legd disoutes are resolved; indeed, one could plausibly
suggest that the web of citations from one case to another is a criticad component of the network of rules that comprise “the law” in any area, as

any firg-year law student struggling to master Shepardizing can attest. Although the concept of precedent istruly “a the heart of the way in
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which lawyers think about the legal system,”* there have been few systematic attempts to use the abundant data available on citation patterns to

uncover generd principles that might illuminate the nature and structure of the legal system.”

*William M. Landes and Richard Posner, “Legd Precedent: A Theoretical and Empirical Andysis” 19 J. Law & Econ. 249, 292 (1976).
*There are, of course, exceptionsto that general rule. See, for example, William M. Landes and Richard Posner, supra note 4; William M.
Landes and Richard Posner, “Legd Change, Judicid Behavior, and the Diversity Jurisdiction,” 9 J. Legal Studies 367 (1980); Michad S. Fried,
The Evolution of Legd Concepts The Memetic Perspective, 39 Jurimetrics 291 (1999); William M. Landes, Lawrence Lessig, and Micheel E.
Solimine, "Judicid Influence: A Citation Analyss of Federd Courts of Appeds Judges,” 27 J. Legd Studies 271 (1998); Virginia Cano,
“Citation Life Cycles of Ten Citation Classics,” 22 Scientometrics 297 (1991); John Merryman, “Toward a Theory of Citations: An Empirica
Study of the Citation Practice of the California Supreme Court in 1950, 1960, and 1970,” 50 S. C. L. Rev. 381 (1977); Peter Clinch, “The
Use of Authority: Citation Petterns in the English Courts,” 46 J. Documentation 387 (1990); James Leonard, “An Andyss of Citationsto
Authority in Ohio Appellate Decisions Published in 1990,” 1994 Law Library Journa 129; Stephen Marx, “Citation Networksin the Law,” 10
Jurimetrics 121 (1970); Fred Shapiro, “Origins of Bibliometrics, Citation Indexing, and Citation Analyss: The Neglected Legd Literature,” 43
J. Am. Soc. Info. Sci. 337 (1992). Nonethdess, we think it fair to suggest that there has been surprisingly little work given the critical postion

of citation to precedent within the Anglo-American legd system.



In this paper, we andyze case citation patterns from a theoretica perspective derived from the theory of complex systems and fracta
geometry, and we explore possible links between citation practices and a more generd theory of legd decison-making and legd argumentation.
More specificdly, we believe that legd arguments have akind of fractd structure — recursively generated and possessing a branching, sdlf-
amilar, tree-like structure at dl levels of the argumentation hierarchy — and that case citation patterns should reved that structure. In Section |,
we introduce some of the basic concepts of the geometry of fractals. Section 11, building upon a provocative early paper by Jack Balkin,
introduces the notion that legal systems can be thought of as fractd objects. In Section 111 we formulate assmple mode of a fracta-generating
process, and compare the output of that mode to citation data from state and federal courts (the New Y ork Court of Appedls and the Seventh
Circuit). Findly, In Section IV we discuss the results of these analyses and suggest directions for future research.

l. An Introduction to Fractal Geometry

Fractals comprise a class of geometric figures that share some rather unusua characteristics® Although there is no generally accepted

definition for the term fractd, they can generdly be characterized as complicated figures of infinite length that do not smplify when magnified,

®Thereis, to put it mildly, an immense literature about fractal geometry. Fortunately, there are a number of excellent non-technical introductions
to the field: in roughly ascending order of technicd difficulty, see, for example, Garnett P. Williams, Chaos Theory Tamed (1997); G. Sugihara

and R.M. May, Applications of Fractasin Ecology, 5 Trendsin Ecol. Eval. 79 (1990); Hans Lauwerier, Fractas. Endlesdy Repeated



that is, whose structure repeatsitsdlf at al scales.” To appreciate the basic nature of fracta geometry one can begin, following Benoit

Mandelbrot' s dassic formulation,® with the seemingly smple question: How do we measure the length of a geometric object?

Geometrica Figures (1991); Gary William Flake, The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex
Systems, and Adaptation (1998); Benoit Mandelbrot, The Fractal Geometry of Nature (1983); Manfred Schroeder, Fractas, Chaos, Power
Laws. Minutes from an Infinite Paradise (1991); Kathleen T. Alligood, Tim D. Sauer, and James A. Y orke, Chaos. An Introduction to
Dynamica Systems (1996); Robert L. Devaney, Chaos, Fractas, and Dynamics (1990). The materid in this Section was compiled largely from
these references. Thereis aso an excdlent collection of Frequently Asked Questions about fractals compiled by the moderators of the
sci.fractds newsgroup at ftp://rtfm.mit.edu/pub/usenet/news.answers/fractd-fag.

’On the absence of a generaly accepted definition for the term “fractal,” see Alligood et al., supra note 6, at 149 - 50 (“ Scientists know a
fractd when they see one, but there is no universaly accepted definition [dthough it] is generdly acknowledged that fractals have some or al of
the following properties: complicated structure at awide range of length scades, repetition of sructures at different length scdes (sdf-amilarity),
and a‘fractd dimengion’ that isnot an integer.” [See note 10 infra for adiscusson of “fractd dimension’]. See dso Williams, supra note 6, at
237 - 243. Benoit Manddbrot, who coined the term “fracta” in a 1975 essay, has suggested that we would be better off without a precise

definition of the term. See Manddbrot, supra note 6, at 361 - 363.



One ample and graightforward method goes asfollows. teke aruler of length e, and then “wak” the ruler dong the figure, starting
each new ruler-step where the previous one left off. The number of ruler-steps taken (N(e)), multiplied by the length of the ruler (e), isan
esimate of the length of thefigure.

L(e) =N(e) * e, (Equation 1)
where L(e) = the edimate of length derived usng aruler of length , and

N(e) = the number of steps needed to traverse the figure usng aruler of length

What happens to our estimate L (e) as our measuring ruler gets smdler and smdler (that is, a higher and higher magnification)? That, as
it turns out, depends criticaly on the kind of figure whaose length we are measuring. Condder the smplest of dl geometric figures, the ordinary
Euclidean straight line. For aline, of course, estimated length L(€) does not change as ruler length changes (that is, L(e) = congtant); a one-
meter line remains one meter long whether e =1 m (inwhich case N(e) = 1 and L(e) = 1* 1m = 1m by equation 1), 1 cm (N(e) =100, L(e) =
1m), 1 mm (N(e) =1000, L(e) =1 m), etc.

For an irregular figure, see Figure 1(a), the estimate L (e) may change as afunction of ruler length; over acertain range, astheruler gets

andler and smdler, L(e) increases, (that is, the figure gppears to get longer), because smdler rulers can follow the irregular “wiggles’ of the

8Benoit Mandelbrot, “How long is the coast of Britain? Statistica saf-smilarity and fractiona dimension,” 155 Science 636 (1967).



curve more closely. See Figure 1(b). But for dl Euclidean figures, L(e) convergesto awell-defined vadue — the “true’ length of the figure —
as ruler length decreases (e approaches zero).’

L(e) = N(e)*e ==> congtant

ime=>0

Thisislittle more than a restatement of principles familiar to anyone who has taken (and remembers) high school geometry: A circle has

atrue length that isindependent of the measuring instruments used to estimate that length; we call that length the circumference of the circle, and
itis, of course, equd to the radius of the circle multiplied by . Our estimating procedure will — must — converge on this vaue as our
messuring rulers get amdler and smaller; we may need an infinite number of infinitesmally small rulersto get it exactly correct, but Eudlidean
geometry is premised on the notion that we can do just that.

True fractal objects, by contrast, are those for which (by definition) estimated length L(e) never converges.™® Fractals appear to get

longer and longer as the measuring stick gets smdler and smdler, and the estimated length of atrue fractal divergesto infinity as e approaches

Z&0:

°See Mandelbrot, supra note 6, at 25 - 33; Schroeder, supranote 6, at 9 - 11.



L(e) =N(e)*e ==> ¥ [Equation 2]
lime => 0
A smple example is the binary tree shown in Figure 1(c), drawn by repesting asmple “forking” pattern at smaller and smdler scdes.
Each branch splitsinto two vertical branches, with a scale reduction factor of Y2 The number of vertical branches thus doubles at each level of

the figure, while the length of each individua branch haves a each level. Thefigure created by repeating this process an infinite number of times

19 d. More generdly, Equation 2 states that for fractals L(e)=N(e)*e ° divergesto infinity if D = 1. One of the defining characterigtics of true
fractasisthat there exigs a critical exponent (D = D¢ > 1), for which the expression

L(e) = N(e)* °
does converge to afinite number. D isthe so-caled “Hausdorff,” or fractal, dimension of the object concerned. For such objects, the
expresson L(e) = N(e)* ° divergesto infinity for al D < Dy, and converges on zero for dl D > Dy, See Schroeder, supra note 6, at 9 - 16,

213-14; Williams, supra note 6, at 306 - 333.



isa“true’ or “ideal” fracta.** Figure 2(d) shows a different fractal, the so-called “ Koch Snowflake,” produced as shown by infinite repetition
of asingle geometricd transformation (as shown in Figures 2(a) - 2 (c)).

For these figures, as the measuring ruler gets smdler and smdler the estimate of the length of the object continues to increase. These
figures have no “true length”; a higher and higher magnification, more of the detall — the “wiggles’ — in afractd curve appear, and no matter
how amdl the ruler, how high the magnification, the figure continues to get longer and longer.

Fractal objects are also sdf-amilar & dl scdes, that is, they have the same shape and structure a whatever scale or magnification you

view them. For example, each branch of Figure 1(c), however smal, can initsturn be seen as the “trunk” of acomplete tree, a scaled-down
copy of the entire figure — just as the tree shown in Figure 1(c) may itsdlf represent just one branch of amuch larger smilarly-structured figure.

If you wereto “zoom in” on any portion of the figure and view it a asgnificantly higher level of magnification, it would look exactly the same as

MWwilliams, supra note 6, at 242 - 43, ussfully distinguishes between what he calls “ deterministic” or “exact” fractals (such asthe fractals
depicted in Figures 3 and 4), formed by (theoreticaly) infinite repetition of an equation or geometricd motif, and “natura” fractals, which

contain elements of randomness or noise and which are necessarily limited to afinite range of Sizes. See dso Schroeder, supra note 6, at 30.



Figure 1(c) itsdf. No matter how high the magnification — no matter how “degp” into the structure you look — it ways looks exactly,
dizzyingly, the same.*?
While fractd objects turn out to have anumber of important characterigtics of purdly theoreticd interest (and considerable theoretical

importance),” they have attracted attention in recent years primarily because many rea-world objects, from semiconductors to bronchial tubes

““Fractal objects are thus entirdly internally scale-free; there is no way to determine the scale of the object without reference to something
externd to the fractd itsdf, precisaly becauseit looks exactly the same at dll scdes. Fractal objects therefore can have no “true’ or “naturd”
scale, no degree of magnification that is “better” than any other for showing the shape and details of the object.
BFractal's have been characterized as “ mathematical monsters,” Schroeder, supra note 6, at 8, because of some of their rather peculiar
properties. They are continuous curves that, while confined within a finite area— the edge of the branching tree shown in Figure 3 will never
reach the end of the page, just as a Koch Showflake beginning with aline of unit length will never go beyond the origind end-points of the unit
line— are of infinite length, a seeming contradiction. They are dso nowhere differentiable dong that infinite length (that isthey are tangent-less).
Mandelbrot describes the

“...conventiond attitude towards [the Koch Snowflake] on the part of mathematicians. They are dl but unanimousin proclaming that

[it] isamongtrous curve! . . . [ The eminent mathematician] Charles Hermite [wrote] of ‘turning away in fear and horror from this



in the lung to meteorites, appear to have fractal-like quaities and to be well-described by the geometry of fractals.™ Coastlines, for example;
the irregular figure depicted in Figure 1(a) isin fact a ketch of a portion of the British coastline, but because coadtlines display sdf-amilarity a a

vadt range of scales you cannot tell from Figure 1(a) the scale a which it is drawn, that is, whether this drawing represents a satellite photograph

lamentable plague of functions with no derivatives.” . . . Not only near every book but every science museum proclaims that
nondifferentiable curves are counter-intuitive, ‘mongtrous,’ ‘ pathological,’ or even *psychopathic.’”

Mandelbrot, supra note 6, a 33. These “lamentable functions”
. . . continuous but without tangents, were first defined a century ago by the German mathematician Karl Welerdrass, just to show his
skeptical colleagues. . . that such functions did indeed exist. But other authorities, not least the great Audtrian physicist Ludwig
Boltzmann, saw the light: Boltzmann wrote to Fdix Klein (in 1898) that nondifferentiable functions could have been invented by
physicigts because there are problems in satistical mechanics ‘that absolutely necessitate the use of nondifferentiable functions” And his
French colleague Jean Perrin went even further when, in 1906, he presaged present sentiment about such mathematica mongters, saying
that * curves that have no tangents are the rule, and regular curves, such asthe circle, are interesting but quite specid.””

Schroeder, supranote 6, at 7 - 8.

14 Seg, generdlly, the sources cited supra, note 6.



(at ascdeof, say, 1 cm = 1000 km), an ordinary road map (1 cm = 10 km), the outline of some particular inlet at even smaller scde (1 cm =
100 m), or the contours of individud grains of sand. Coagtlines have the same “wiggly” shape a dl scdes, and are sdf-amilar and scdefreein
that sense, and indeed, as an empirica matter, measured coastline lengths never appear to stabilize or converge on afixed vaue, but keep
increasing at finer and finer measurement scales. See Figure 3.

Il. Isthe Law a Fractal Object?

Itis, perhaps, difficult to think of “the law” as ageometrica object. Thereis, however, a sense in which the processes of legdl
argumentation resemble the kind of recursive branching processes that can generate fracta curves, and in which the structure of legd doctrine
possesses a fractd-like self-amilarity over awide range of scaes.

Jack Bakin was, we believe, the first to make this suggestion (though it has now become unexceptiond, if not quite commonplace, in the

literature™). Balkin argued that legal doctrine has a branching structure similar to the fractal branching tree displayed in Figure 1(c),* in which

1> See, for example, Robert Scott, Chaos Theory & The Justice Paradox, 35 Wm. & Mary L. Rev. 329, 348-49 (1993) (suggesting that the
conflict between future justice and present justice produces an inevitable tenson in the law that replicates itsdlf over and over, producing a

fractd structure); Llewdlyn J. Gibbons, No Regulation, Government Regulation, or Sdf-Regulation: Socid Enforcement or Socid Contracting



the “basic structure of mora and politica choiceisreprised at each level of discourse, S0 that large scale structure resembles small scale
dructure”*” Heillustrated this point with awell known (and quite typical) doctrinal problem from the law of torts: should a defendant’s
negligence be judged againg an “objective’ standard (that is, what the reasonable person in defendant’ s Situation would have done) or a
“subjective’ standard (what the defendant believed was reasonable given defendant’ s Stuation)? Any body of tort law must, in some sense,
confront and resolve this problem in some way; it represents an example of what Balkin calsa“rule choice.”” Whichever choice is made,
additiond rule choices, a “lower” leves of the doctrina hierarchy, will inevitably be generated. For example, under the objective sandard, the

question will inevitably be presented whether

for Governance in Cyberspace, 6 Cornell J. Law & Pub. Pal'y 475 (1997) (discussing the fractd nature of Internet communication and Internet
rule-making). A search of the LEXIS Lawrev database reveded 55 references to the law’ s “fractd structure” in published articles.

18Jack Balkin, The Crystalline Structure of Lega Thought, 39 Rutgers L. Rev. 1 (1986) (hereinafter Balkin, Crystalline Sructure). In alater
article— Jack Bakin, The Promise of Legd Semiotics, 69 Tex. L. Rev. 1831, 1835-6 (1991) — Bakin himsaf noted that the argumentation
structure he outlined in 1986 was better described as “fractd” rather than “crystdline.”

17 Jack Balkin, The Promise of Legal Semiotics, 69 Tex. L. Rev. 1831, 1836 (1991).



“. .. thereis an exception for children, or a different standard for insane persons, or for those who are blind, or intoxicated, and so
forth. Thisleads usto further rule choices, each of which leadsto additiona branches of doctrind development. Assume, for example, that we
follow one of these branches of doctrinad development and create an exception for children (which is now the mgority rule). We might consder
if thereis an exception to that exception when the child engages in an adult activity (thistoo, isthe case now generdly). We might then go onto
ask if operating a motorcycle is an adult activity within the meaning of that rule, and if so, whether operating a motor scooter is also an adult
adtivity.”*®

And so on; this branching doctrind structure, as Bakin notes, has no naturd stopping place, but continues indefinitely downward, a

“ descending series of rule choices of increasing factual complexity and specificity,”*

afractd landscape where rule choices are the branching
motif, endlessy repested at finer and finer scale. See Figure 4.
Thisfractd structure of legd doctrine is a0 reflected in (or, perhaps, itsdf reflects) the fracta structure of lega argumentation.

Consder atypicd civil lawsuit; for concreteness, assume that plaintiff is asserting a smple daim of copyright infringement againg the

18 Bakin, Crystaline Structure, supra note 16, at 11.

19 Bdkin, Crystdline Structure, supra note 16, at 9-10.



defendant.®® At the “highest” level of generdlity, the sit raises a Single question: |s the defendant lisble to the plaintiff? Substantive copyright
law decomposes this single question into three (which condtitute the basic “dements of the claim”): Isthe work in question (call it “Work A”)
protected by copyright? Is plaintiff the owner of the copyright in Work A? Did Defendant do something to or with Work A that violates one or
more of the exclusve rights of the copyright holder?

The plaintiff’s complaint, in effect, is an assartion that each of these questions should be answered in the affirmative. The defendant, in
her response, may move the argument “downwards’ along any or dl of these three branches, expanding any or dl of theinitid questionsinto a
number of different sub-questions of which they are composed. For example, with regard to plaintiff’ s assertion that Work A is protected by
copyright, defendant may expand the origind unitary question into three of its sub-components and argue (@) that Work A isnot an “origind

work of authorship” that has been “fixed in atangible medium of expression,”# (b) that Work A is uncopyrightable as a matter of law,* and/or

20 Our choice of acopyright lawsuit for thisillustration reflects only our grester familiarity with that body of law; this exercise can, we would
assart, be replicated in any body of legd doctrine.
?Section 102(a) of the Copyright Act, 17 U.S.C. §102(a), provides that “[c]opyright protection subsists . . . in origina works of authorship

fixed in any tangible medium of expresson.”



(¢) that whatever copyright protection Work A may have had has expired. The other two origind questions can be similarly expanded.
Defendant may argue that plaintiff is not the owner of the copyright in Work A because plaintiff (a) is not the “author” of Work A%, (b) is
somehow statutorily or otherwise barred from owning copyright,2* and/or (c) has transferred to some third party whatever ownership rights he
may have previoudy possessed®, or defendant may argue that her actions did not violate any of the copyright holder’ s excdlusive rightsin Work
A because (a) her actions are not within the scope of the copyright holder’ s exclusiverrights, (b) she did nat, in fact, take the actions plaintiff has
complained of, and/or (c) her actions, though they may appear to violate one or more of the copyright holder’ s exclusve rights, are privileged

for one reason or another.

22Section 102(b) of the Copyright Act, 17 U.S.C. §102(b), qualifies section 102(a), see supra note 21, by stating that “[iJn no case does
copyright protection for an origina work of authorship extend to any idea, procedure, process, system, method of operation concept, principle,
or discovery .. .”

ZSection 201(a) of the Copyright Act, 17 U.S.C. §201(a), provides that “ownership of a copyright vestsinitialy with the author.”

2 See, e.g., section 105 of the Copyright Act, 17 U.S.C. §105, which provides that “[c]opyright protection under thistitle is not available for
any work of the United States Government.”

% A saries of rules regarding the transfer of copyright ownership is provided in section 204 of the Copyright Act, 17 U.S.C. §204.



And s0 on; each of these sub-questions can, in turn, support additional downward expansion.?® See Figure 5. Note, too, that the
argument and counter-argument may move “upwards,” to higher levesin the argumentation hierarchy. Defendant may, for example, argue that
the court lacks subject matter jurisdiction over the claim, that the Copyright Act does not gpply to thisclam at dl, and/or that the court lacks
persond jurisdiction over Defendant. Each of these new branches can, in turn, be expanded “downward” in much the same way that the
origina branch was expanded. See Figure 6.

This branching process can, in theory, continue indefinitely.?” Lega argument, in this view, like the coastline of Britain or any other fractal

object, hasno “true’ length, no “naturd” scae. Whatever the magnification scde or level of argumentation, the same kind of argumentative

% For example, the assertion that Work A is uncopyrightable as a matter of law can be expanded to an argument that Work A isan ‘ideal or a
‘process or a‘method of operation,” each of which is deemed uncopyrightable in section 102(b) of the Copyright Act, 17 U.S.C. §102(b).
See Figure 5.

2" See Balkin, supra note 16, a 12 (suggesting that there can be “ an infinite number of subdoctrina choices which could follow * beneath’ any
rule choice’). Although we believe that the assertion is correct, it may not be provable in any rigorous way; the most we can say, perhaps, is

that we have never met alegd question that could not be decompaosed into sub-questions, if only because the inherent ambiguity of language is



such that we can dways ask, with respect to any question, what the individua words mean (and what the words comprising their definitions
mean, and so on).

Prof. Landes smodd of issue resolution during the litigation process is Smilar to the branching process we describe above. See William
M. Landes, Sequential Versus Unitary Trids: An Economic Andyss, 22 J. Leg. Stud. 99, 124 - 132 (1993). Landes asks how the
identification of separate issuesin acase, and the order in which those issues are decided by the court, affects the costs of litigation and the
parties litigation Strategies. He notes at the outset that “ since the boundaries of an issue [in any case] are sometimes arbitrary, one may be able
to separate one issue into several narrower issues,” id. At 124, and indeed that “one may be able to subdivide issues ad infinitum.” Id., at 124
n. 46. He suggests, however, that restricting the definition of an “issue’ to a question that is dispostive of the entire case “may limit this
[infinitely recursive] process” Id.

Although we have made a smilar suggestion oursalves, see David G. Post and Steven C. Salop, |ssues and Outcomes, Guidance, and
Indeterminacy: A Reply to Professor John Rogers and Others, 49 Vand. L. Rev. 1069, 1077 — 1081 (1996) (defining, for purposes of
determining the optimal appdllate court voting procedure, a“ primary issue’ asonethat (a) islogicaly independent of other issues presented, (b)
ispatentidly dispositive of the outcome of the case, and (c) cannot be decomposed further into separate sub-questions that meet criteria () and

(b)), we are no longer persuaded that this redtriction limits thisinfinitely branching process. For instance, the “root” question in our hypothetical



“wiggles’ regppear. We can dways “zoom in” on any argumentative point, looking at it asthe “root” of adeeply branching Structure, or “zoom
out” and look at it asasmdl part of alarger recursvely branching structure. The number of argumentative steps required to go from point A —
the predicate facts of acase— to point B — the ultimate concluson that Defendant ig/is not ligble to Plaintiff — isindeterminate a priori.

1. Teding the Hypothes's

copyright case —is defendant lidble to plaintiff?—is a digpogtive issug if plantiff prevals on thet issue, hewins. Theissuesinto which it can be
decomposed are also digpositive issues, if defendant can show that copyright does not protect the work in question, she prevalls, or that plaintiff
does not own the copyright, shewins. The issuesinto which those sub-questions can be decomposed are a so dispositive issues, if defendant
can show that the work is not an “original work of authorship,” or that copyright in the work has expired, she wins. The issuesinto which those
sub-sub-questions can be decomposed, see Figure 5, are also dispositive issues, if defendant can show that the work in question is a* process,”
or that her actions are within the fair use privilege, shewins. Redricting attention to only those issues that can be dispositive in any case does
not, it would appear, limit our ability to continue this decomposition process. See also John Rogers, ‘Issue Voting' by Multimember Appellate
Courts: A Response to Some Radica Proposals, 49 Vand. L. Rev. 997, 1001 — 1006 (1996) (arguing that the “issues’ raised in any case can

aways be expanded “ one level down”).



The ideathat legd doctrine and argumentation, like so much of the physica and biologicd world, is generated by arecursive process
and has akind of fractd structureis certainly a powerful and intriguing metgphor. Our god here isto frame this more precisdy as atestable
hypothes's. What would we expect the legal world to look like if this were true?

In the redl world of litigated cases, of course, the branching process does not continue indefinitely. Each decided case represents a
gangle ingtantiation of this process that has come to rest a some point, each opinion asingle “treg’ in the forest of judicia opinions. If legd
argumentation proceeds in this manner, what would that forest look like?

This requires further consideration of the workings of branching processes. We have built a smple probabaistic amulation modd of a
branching process that constructs Smulated “trees’ in the following manner.?® The model has two parameters, B (Branch Number) and p (Add
Branch Probahility), and trees are congtructed in the following manner:

1. Begin with asingle branch (the root);
2. Sdect arandom number between 0 and 1. If the number sdlected is between 0 and p, add B new branches at the end-point
of the branch. If the number selected is between p and 1, terminate the branch (that is, close the end-point by placing a“leaf” a the end of the

branch).

2350urce and executable code for this Smulaion modd are available from the authors.



3. If theroot has been terminated during Step 2, stop. If not, repeat Step 2 for dl un-terminated branches (that is, for all
branches that do not have “leaves’ at their end-points).
4. When dl branches are closed (that is, when dl branches have “leaves’ a dl of their end-points), stop.”

Fig. 7 shows one illustrative tree constructed in this manner.®

#There was one additiona step that we implemented in our Smulation modd!: If any tree had more than 10,000,000 “leaves,” the smulation for
that tree was terminated. Thiswas Ssmply for computationa convenience, as keeping track of trees of this size began to exceed the memory and
processor limitations of the computer on which the smulation was running.

%0 \We recognize that this smple model does not adequiately capture the many nuances of the actua tree-generating processin lega opinions.
The way that the legd questionsin ared case are expanded and the place(s) where that expanson terminates — the shape and structure of any
individud casg sfind branching tree — are determined by an extremey complex interaction among alarge number of factors. the subgtantive law
of copyright, the facts of the case, the kill of the opposing lawyers, the judge' s expertise, the amount of time and energy that the judge (or her
law clerks) can devote to the matter, the parties' ability to pay for continued downward expansion of the issues in the case, among others. Our
modd incorporates radica ignorance of these various factors or the way that they interact; we assume Ssmply that the results of asimulated coin

toss determine whether or not the expans on process continues or terminates.



How large are the trees that are produced by this smple mode? How many leaves will these trees have? That, it turnsout, is an
interesting story. We smulated the growth of 1 million trees at each of various parameter settings, and the Sze digtributions in these populations
fal into three distinct categories. One category is displayed in Figure 8*, which shows the size distributions in tree populations produced by
seiting the parameters p and B so that p * B < 1, that is, so that the probability of adding B branches at any end-point was lessthan 1/B.** The
tree-size distributions in these populations al show an orderly pattern, a steady (and approximately exponentia®) dedline in the number of
leaves per tree. The digtributions converge rapidly to zero; the range of tree Szeisrdativey limited (even though thereis, theoreticaly, afinite

probability that any treein any of these three populations would have 1000, or 1,000,000, or any arbitrarily large number of leaves™).

3 The digtributions in Figures 8 — 10 are plotted against double logarithmic scales, for reasons that will become clearer in amoment.

#The expected value of the number of branches added at any single end-point of thismodd issmply p * B; in the smulated populations shown
in Figure 8, this expected vaue was lessthan 1.

% On double logarithmic scales, an exponentia distribution will have a concave shape, as shown by the least-squares regression lines for the
exponentid distributions plotted in Figure 8.

*There is some finite probability — equal to p” — that any individua tree continues to add branches for n recursions, where n is any arbitrarily

selected number. But the likelihood that it will do so declines exponentialy, and the rapidity of exponentia decay insures that this probability



A second category of tree Sze digtributions is produced wherep * B > 1, that is, where the probability of adding B branches at any end
point isgreater than 1/B. These digtributions are not as orderly asthose in the first category; instead, they appear to be bifurcated in arather
complicated way. See Figure 9. One fraction of these populations shows, as before, a steady decline in the size of the trees produced; in
Figure 9(a), for example, (p = 0.5, B = 4), the left-hand side of the distribution looks very much like the distributions displayed in Figure 8, with
an gpproximately exponentia decline in the number of trees of size 10, 50, or 100. But a second, substantid, fraction of these populations
apparently never stops growing; the range of tree sizes in these populations is apparently unlimited.®*  In Figure 9(a), for example,
approximately 45% of the trees in this population (represented by the value plotted with a® at ¢ = 1000 in Figure 9(a)) reached a size of

10,000,000 leaves and were ill growing — thet is, they gtill had unterminated branches. The same istrue for the other populations constructed

becomes vanishingly small in rdaively short order. If p = 0.5, for example, the probability that any branch will continue for 2000 recursonsis
(0.5)%° @10, avery smal number indeed.

*\We say “apparently unlimited” because, as noted above, see supra note 29, we arbitrarily stopped counting when trees reached a certain size
— 10,000,000 leaves — because of memory and processor limitations in the computer used for this simulation. We cannot, therefore, say with
assurance that the trees in this portion of the smulated populations never stopped growing; nor can we eiminate the possibility that some kind

of order re-establishes itsef in these didtributions, many orders of magnitude distant from the first portion of the population.



with this parameter relationship, shown in Figure 9(b) - (d), each of which hasaamdler, but sill substantial, number of trees of (apparently)
infinite 9ze. Unlike the populaionsinwhich p * B < 1, see Figure 8, the Sze didributionsin populaionsin which p * B > 1 do not converge to
zero; it appears that once trees manage to pass some critical sSize in these populations, they continue to grow indefinitely.
Finaly, thereisathird category of distributions intermediate between these two, produced when p * B = 1 — that is, where the number

of branches added is the precise inverse of the probability of adding additional branches. In these populations the tree-size distribution follows a
power law of the form

N(c) = Kc* [Equation 3]
Where

K = constant,

¢ = the number of terminating end points on each tree generated by this process, and

N(c) = the number of treeswith ¢ terminating end-points.®

% Equation 3 can be rewritten as

log (N(C)) = log (constant) + (-x)* (log(c)).

Power law digtributed data will thus plot as agtraight line (with dope -x) on double logarithmic scaes.



See Figure 10.

These populations (unlike the tree populations in the first two groups) are truly “fractd” in structure. Power law digtributions are
characterigtic of fractal objects because they embody the scde-free sdf-amilarity thet isthe hdlmark of those objects. They are invariant under
ascdechange. To be more precise, wherever we look along a power law curve the proportiondity relationship of equation 3 (N(c) p c™is
undisturbed.®” They are therefore scale-free; at these parameter settings the size of trees have the kind of scale-free property associated with

fracta objects.

$That is, if N(c,) = Kac,™, then N(c,) = Koc,™ for dl ¢; the proportiondlity constant K changes, but the underlying proportionality relationship
doesnot. The change of scae does not modify the basic statistica behavior of the function. In Schroeder’ s words:
“Think of a homogeneous power function such as f(x)=cx® where ¢ and a are congtants. . . . Such simple power laws, which abound in
naure, are in fact salf-amilar; if x is rescded (multiplied by a congtant) then f(x) is dtill proportiond to x?, dbeit with a different constant
of proportiondity. [Plower laws, with integer or fractional exponents, are one of the most fertile fields and abundant sources of self-
gmilarity.”

Schroeder, supra note 6, at 103.



To summarize, the behavior of populations produced by the smple branching process that we smulated fadlsinto three distinct
categories or digributiond domains. One category, in the region defined by p * B < 1, displays a pattern of finite and orderly growth; a second,
wherep * B> 1, apattern of infinite, disorderly growth; and athird, at the boundary between these two regionswhere p = B, a pattern of
infinite but orderly growth at al scaesin accordance with a smple power law.

This phenomenon — whereby power law behavior and fractd structure is produced at the boundary between order and disorder, at the

“edge of chaps’ — isacommon feature of modes of recursive growth processes of thiskind.®  Power law distributed dataindicates — at

$5eg, for example, Kauffman and Johnsen’s modd of the growth of co-evolving biological species within ecosystems. Stuart Kauffman and
Sonke Johnsen, "Coevolution to the edge of chaos: Completed fitness landscapes, poised states, and coevolutionary avalanches,” 149 J.
Theor. Biol. 467, 489-91 (1991). Depending on the initia parameter settings of these modds, populations of species either “freeze’ with little
evolutionary change — what Kauffman and Johnsen refer to asthe “solid” state — or they fluctuate chaotically — the “gas’ state. And “[jjust
as a the interface between the solid and gas phase is akind of 'liquid' region,” so0 too is there an interface or boundary where evolutionary
change proceeds in accordance with apower law.” 1d. Smilarly, the smple logistic modd of population growth, N(c') = (1-x)*N(c) dso
shows this boundary phenomenon, with narrow regions of sef-amilar fracta output in between regions of stable and chaotic growth. See

Williams, supra note 6, at 161-173, 189-197; Alligood et al., supra note 6, at 18-24.



least to the extent that these model s accurately reflect underlying processes — that the growth pattern is poised at precisdly that boundary, that
somehow the parameters have been precisely “tuned” to reach that result. And while we can set the parameter settings of our computerized
modd at will to produce power law size distributions (or, for that matter, distributions in ether of the other two categories), one might perhaps
think that distributions in thisthird category would rarely, if ever, be observed in the red world of complex systems, how likdly isit, after dl, that
the parameters of area world branching process would be so findly “tuned” asto cometo rest on this narrow boundary so asto produce a

power law distribution of Szes?

Note that this boundary phenomenon — a power law distribution at the interface between an orderly and adisorderly state — is
embodied in the definition of afractd object aswell. Asnoted above, see supra note 10, for true fractals the expression

L(e) =N(e)*e®
converges to zero for dl D > D, divergesto infinity for dl D < D, and converges to afinite non-zero number at Dy (the fractd dimension of
the object). Thefracta dimensionisthus, in this sense, a unique number at the “boundary” between regions where the length function L(e)

“explodes’ (D < Dyit,) or disappears (D > Dygit).



This, however, turns out not to be the case; power law rdationships are well-nigh ubiquitous in awide variety of physicd, biologicd,
and socid systems where no “tuning” of the parameters is permitted,® leading some to suggest that there are mechanisms not yet understood

whereby growth processes “sdf organize” and evolve without direction to this “critical” boundary state.

*The size of earthquakes (the “ Gutenberg-Richter law”), see Per Bak, How Nature Works (1996) at 12 - 14, the Size of citiesin the United
States (and elsewhere), see Paul Krugman, Development, Geography, and Economic Theory (1997) 42 - 46, Schroeder, supra note 6, at
103-104, the size of meteorites, see A.Z. Mekjian, Mode of afragmentation process and its power-law behavior, 64 Phys. Rev. Lett. 2125
(1990), the size of hiologica organisms (“Cope' s Law”), see Schroeder, supra note 6, at 105, R.M. May, How many species are there on
earth?, 214 Science 1441 (1988), the size and shape of rainforest patches and the growth of different species populations within those patches,
see G. Sugiharaand R.M. May, Applications of fractalsin ecology, 5 Trends Ecol. Eval. 79, 82-3 (1990), R.V. Sole and S.C. Manrubia, "Are
rainforests self-organized in acritica state?'173 J. Theor Biol 31 (1995), the size and shape of clouds, see Schroeder, supra note 6, at 221, the
growth of blood vessals and neurons, seeid., at 119, the Size of personal incomes (“Pareto’slaw™), seeid., a 34-5, the number of species
becoming extinct in any period, see Ricard V. Sole, Susanna C. Manrubia, Michael Benton, and Per Bak, Sdf-amilarity of extinction statistics
in the fossl record, 388 Nature 764 (1997), Kauffman and Johnsen, supra note 35, at 493, Bak, supra, a 164-65, the number of times

particular words occur in spoken or written text (“Zipf's Law™), see Schroeder, supra note 6, at 35, Bak, supra, a 24-5, the growth of traffic



jams, Bak, supra, a 197, even the growth in the number of scientific journas devoted to particular subjects over time (“Bradford' sLaw™), see
S. Naranan, Bradford's Law of Bibliography of Science: An Interpretation, 227 Nature 631 (1970), Robert Fairthorne, Empirical Hyperbolic
Digributions for Bibliometric Description and Prediction, 25 J. Doc 319 (1969)— dl appear to be distributed in accordance with a power law
function.

This rather extraordinary regularity, long written off as some sort of peculiar satistica oddity, has begun to attract increasing attention; it
islikely that this satigtica regularity reflects some important regularity in the underlying processes at work in these diverse phenomena. See, for
example, Paul Krugman, Development, Geography, and Economic Theory (1997) at 42 - 46 (putting forth the “ghostly beginnings of an
explanation” for the “gpooky regularity” of the power law digtribution for city Sze, and noting that the distribution is “amgor embarrassment for
economic theory; one of the strongest statistica relationships we know, lacking any clear basisin theory”); Bak, supra, a 14 (“ The importance

of the Gutenberg-Richter law [for earthquake magnitudes] cannot be exaggerated. It is precisdy the observation of such smple empiricd laws

in nature that motivates us to search for a theory of complexity) (emphasisin origind); M.E.J. Newman and Gunther J. Eble, Declinein

extinction rates and sdf-amilarity in the fossll record, 1998 Santa Fe Ingtitute Working Papers Series Number 98-04-03, at 2 (ubiquity of
power law digtributions in many branches of science and engineering “ poses one of the great unsolved scientific mysteries of the last few

decades’).



Our hypothess, then, isthat the fractd Structure of systems of legal doctrine and legd argument will be reflected in a power law
digtribution of the output — the Size, or other measurable characteristics — of those systems. Determining appropriate measures of the output
of legd sysemsisadifficult task; asit were, before we can determine the length of the law’ s coastline we need to decide precisdy whét the
law’s coadtline might be. We have chosen two measures of the “size’ of the output of the lega system: (@) the number of citationsin judicid
opinions to previoudy-decided cases, and (b) the number of citations to those judicial opinions in subsequently-decided cases.

To some extent, of course, our decison was driven by practica condderations, case citation datais widdly available in various

electronic databases in aform the permits rdatively easy analyss of large data-sets. But we bdlieve that the number of citations to prior

“*The theory of “salf-organized criticality” was first advanced in P. Bak, C. Tang, and K. Wiesenfeld, Self-organized Criticality: an Explanation
for 1/f Noise, 59 Phys. Rev. Lett. 381 (1989), and was further amplified (in a non-technica manner) in Bak, supra note 36 (developing an
extendve argument in favor of theories of self-organized criticdity in complex systems of dl kinds). See, generdly, Schroeder, supra note 6, at
389; C. Adami, Sdf-organized Criticality in Living Systems, 203 Phys. Lett. A 29-32 (1995) (sdf-organized criticdity refersto systems “that
are driven to acritica state which is robust to perturbations and whose macroscopic behavior is predictable to the extent that it follows power
laws with exponents depending on geometry and spatid structure’); R.V. Sole and S.C. Manrubia, Are Rainforests Sdf-organized in a Criticd

State?, 173 J. Theor Biol 31 (1995).



precedent contained in ajudicid opinion, and the number of subsequent citations to an opinion, are important (though they are surely not the
only) components of the output of our legd system and help define the structure of that system. The number of citationsto prior precedent in
any judicia opinion should provide a least some information about, and can serve as arough proxy for, the “size’ of legd arguments (at least,
the 9ze of those arguments as they are ultimatdy formulated by the judge(s) deciding the case); while citations serve many functions, thelr
primary function is surely to point to a prior case as having resolved a particular legal issue raised by the case then under consderationin a
particular way — to provide the answer to a question posed by the current controversy. The difference between a case that citesto 100
previoudy decided cases and one that citesto 10 is surely due to many factors— “the judge’s persond style, tastes, erudition, pedantry, etc.”*
— but we think it reasonable to assert that the former case in some sense raises (and resolves) more questions than the latter.

And the number of times that individua opinions do, or do not, show up as citations in subsequent cases should provide a least some
information about the structure of the overall doctrind web and the Sgnificance of individuad cases within that web. Cases cited with great

frequency are in some sense more firmly embedded within the legd firmament, having spawned more “offsoring,” than those lessfrequently

cited that die leaving few descendants.

“William M. Landes and Richard Posner, supra note 4, a 252.



We chosg, as our population of reported cases, al cases decided in 1930, 1950, 1970, and 1980 by the New Y ork Court of Appeals
(Cohorts 1 - 4), and all cases decided in those same years by the federal Court of Appedls for the Seventh Circuit (Cohorts 5 - 8).* Our
results are displayed in Figures 11 - 14.%

These results provide some support for our hypothesis. On the one hand, the power law function provides a Satisticaly sgnificant fit to
the observed datain dl cohorts (and across cohorts); that is, the hypothesis that these data are distributed in accordance with a power law
explans adatigticdly sgnificant amount of the variation in citation practicesin al cases. On the other hand, it is gpparent that additiona factors
are at work in producing the observed patterns. First, there appear to be clear and systematic deviations from the log-linear form predicted by

the power law function in many of the populations, an occasiondly pronounced curvature more suggestive of an exponentid, rather than a

“*There was no particular method to this sdlection, other than a suspicion that there might be some tempora diversity in these data, or some
differences between citation patternsin federd and state courts, that might be worth exploring. The number of reported opinions in each cohort
isshownin Table 1.

**The digtributions in Figures 11 — 14 are, again, plotted againgt double logarithmic scales; power law digtributions will display as straight lines

on such scales. See supra note 36.



power law, digtribution.* Thisis particularly noticesble in the federal court citation data, both for the distribution of the number of citationsin
opinions, see Figurel6, and the number of times opinions are subsequently cited, see Figure 18. In dl of these 7" Circuit populations, there
gppears to be an dmost congtant probability of “smal” events (that is, cases with rlatively low numbers of citations, or opinions cited few
times); these distributions gppear dmost horizontd in the range ¢ < 10 or so, with the predicted log-linear trend showing up only in the range of
c>10. The New York data, on the other hand, much more closely approximate the expected linear shape across the board — and to the
extent they deviate from that prediction, they appear to do so in adifferent way (that is, there appear to be more smdl events than predicted by
the power law modd).

V. Discusson

We regard the results of this preliminary study as highly suggestive but hardly conclusive. The fractd structure hypothes's accounts for a

limited (though statisticaly sgnificant) fraction of variation in citation practices in the data that we examined — enough, we believe, to warrant

“In no case, however, was an exponentia distribution amor e effective predictor of the data than the power law distribution, thét is, in no case
did an exponentid function explain a greater fraction of the variance in the data than did a power law function. In anumber of cases, however,

the difference between the two functions was not satisticaly sgnificant.



further research aong these lines®™ There are any number of possible directions such research might take. We can certainly imagine more
sophigticated tests of the hypothess. There may well be far better measures of legd system output than the case citation Statistics we chose to
focus on here. Moreover, our andyss can hardly be considered definitive even as gpplied to those citation data. We opted for quantity rather
than quaity; we did no “clean up” of the raw citation data, lumping together dl citation types (“See”, “But see” “Seeds0,” “Cf..,” €c.) into a
sngle measure of number of citations per opinion, nor did we attempt to eiminate, or correct for, the practice of string citations. Used in this
fashion, the raw number of citations per case is undoubtedly an extremely crude proxy for the variable of interest, the number of different legd
questions resolved by the opinion, and it islikely that amore fine-grained and careful analysis of these data would yield a better understanding of

the extent to which this hypothesis meaningfully accounts for observed patterns in these systems.

> Quite gpart from the validity of our fracta structure hypothesis as atool for explaining patterns in these data, certain of those patterns are
puzzling and should be the subject of additiona work, most notably the marked differences between citation patternsin the federal and state
courts that we included in our analyses and that we currently regard asinexplicable. Landes and Posner found smilarly puzzling differences
between the “depreciation rates’ for federal and state common-law cases, see William M. Landes and Richard A. Posner, Lega Change,
Judiciad Behavior, and the Diverdty Jurisdiction, 9 J. Legd Studies 367, 378-86 (1980). and we suspect that a fuller understanding of these

differences can help illuminate more generdly the important role of case citations within the legal system.



More generdly, we view these andyses as but the initid, hdting Sepsin what we believe is alarger and more sgnificant overdl project.
Some forty-odd years ago, Lon Fuller suggested that we think about the legal system as an “imperfectly growing treg’ that, with pruning, can
“redlize its own capacity for perfection [and] grow properly.”* Fuller can be forgiven for not considering the possibility that legd systems
actudly — and not just metaphoricaly — grow astrees do, for it isonly in recent years, with the development of fractd geometry and the other
quantitative tools for studying complex systems, that we are beginning to understand the generd principles that may govern the growth process
in trees and other natural objects.”” We do not, as we have said, regard this question as having been in any sense answered in this paper; we do
believe that our results suggest that it is worth continuing to ask it. I, indeed, there are principles common to the processes of growth in legd

systems and in other biological and physica systems, the implications for the study of the law would seem to be substantial®®; like other powerful

“6 Lon Fuller, Adjudication and the Rule of Law, 1960 Proc. Am Society Int'l Law 1, 8 (1960).

47 See espedidly Stuart A. Kauffman, Origins of Order (1993), which remains the best summary of the general theory of complex systems.

*® Thereisasmal, but growing, literature on the study of the law as a complex system. See, for example, David G. Post and David R. Johnson,
‘Chaos Prevailing on Every Continent’: Towards a New Theory of Decentralized Decison-Making in Complex Systems, Chicago-Kent L.
Rev. (in press); Miched S. Fried, The Evolution of Lega Concepts. The Memetic Perspective, 39 Jurimetrics 291 (1999); JB. Ruhl, The

Fitness of Law: Using Complexity Theory to Describe the Evolution of Law and Society and Its Practical Meaning for Democracy, 49 Vand.



paradigms (law and economics comes to mind), this view of the nature of the legd universe generates a series of questions — can we identify
particular configurations of legd systems that are more, or less, stable? How does the Size and complexity of lega systems change through
time? Are there systematic differences between different bodies of law in terms of their “fracta dimensions’? How does the law “colonize’ new

areas? — derived from this general theory that can perhaps be answered with (and only with) these tools.

L. Rev. 1407 (1996); JB. Ruhl, Thinking of Environmental Law as a Complex Adaptive System: How to Clean Up the Environment by
Making a Mess of Environmental Law, 34 Houston L. Rev. 933 (1997); JB. Ruhl and Harold J. Ruhl, Jr., The Arrow of the Law in Modern
Adminigrative States Using Complexity Theory to Reved the Diminishing Returns and Increasing Risks the Burgeoning of Law Posesto
Society, 30 U.C. DavisL. Rev. 405 (1997); Mark J. Roe, Chaos and Evolution in Law and Economics, 109 Harv. L Rev. 641 (1996);
Thomas Geu, The Tao of Jurisprudence: Chaos, Brain Science, Synchronicity, and the Law, 61 Tenn. L. Rev. 933 (1994); Andrew W. Hayes,

An Introduction to Chaos and Law, 60 UMKC L. Rev. 751 (1992).



Table1l. Number of Reported Opinionsin Each Cohort

Cohort | Description No. of opinions

1 NY Court of Appedls, 1930 (vols252- | 918
255 NY)

2 NY Court of Appedls, 1950 (vols300- | 1313
302 NY)

3 NY Court of Appeds, 1970 (vols 25 - 733
27 NY 2d)

4 NY Court of Appeds, 1980 (vols48 - 1281
52 NY 2d)

5 7™ Circuit, 1930 (vols 37 - 45 F2d) 181

6 7" Circuit, 1950 (vols 179 - 186 F2d) | 213




7 7" Circuit, 1970 (vols 421 - 440, F.2d) | 434

8 7™ Circuit, 1980 (vols 615 - 645 F.2d) | 410

Note that the correspondence between the year of the decision and the data in each cohort is only approximate. Because of theway in
which the datain the Shepard' s database are stored, it was considerably easer to extract information based upon the volume number of the
reporter in which the opinion was published, rather than the year of the decison. We constructed each cohort by taking the first and last
volumes containing any cases decided in a particular year, and examining al casesin those volumes. For example, there are no N.Y. Court of
Appedls cases with a decision date between January 1 and December 31, 1930, in any volume of N.Y . Reports prior to volume 252, or

subsequent to volume 255; accordingly, Cohort 1 consists of al cases in volumes 252-255.



Figure 1(@) Anirregular curve.



Figure 1(b) Edtimating the length of the irregular curve shown in Figure 1(a), using aruler of length E.
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Figure 1(c). A fracta branching tree, created by recursive addition of atwo-branch “fork” at al branch end-points.




Figure 2. Congructing the “Koch Snhowflake” Beginning with aline of unit length (&), place an equilaterd triangle over the middle third of the

line (b). Repest for each of the four line segments in the new figure (c), and so on (d).
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Figure 3. Empirica data on the length of various coastlines and land boundaries. These data are derived from Mandelbrot, supra note 8, who
in turn derived them from L. F. Richardson, The Problem of Contiguity: An Appendix to Satistics of Deadly Quarrels, 6 Gen. Sys.
Y earbook 139 (1961); other coastline data, and adiscussion of these “ Richardson plots,” can be found in Lauwerier, supra note 6, at 29-31,

and Williams, supra note 6, at 309-13. Note that the length of the circle plotted in this figure converges rapidly to a constant vaue.
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Figure 4. A branching diagram of the “rule choice’ between different forms of tort doctrine. From Bakin, Crystaline Structure, supra note 16.
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Figure 5. The dements of the copyright claim (P = plaintiff, D = defendant). Seetext for detalls.
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Figure 6 The “copyright treg’” shown in Figure 5 displayed within alarger superstructure. See text for details.
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Figure 7. An example of atree constructed by our Smulation mode, containing 10 “leaves’ (terminating
branches, represented by closed circles). At each rectangle, the program flips a (virtua) coin; if the coin
comes up heads— which it does with probability p) — the program adds B branches (here, two). If

the coin comes up talls, the program terminates the branch.




Figure 8. Each graph in Figure 8 shows the Sze distribution in a population of smulated trees a the
stated parameter settings. The x-axis represents the number of “leaves,” ¢, and the y-axis the number
of treesin the population having exactly ¢ leaves (N(c)). Indl populaions shown in thisfigure, the
model parameters were set sothat p * B < 1. On each graph we have plotted the least-squares

regresson line for an exponentia digtribution (along with the r-squared value for the regression).
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Figure 8(b).

Branching simulation, P=0.25, B=2
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Figure 8(c).

Branching simulation, P=0.333, B=2
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Figure 9. Graphs of the didtribution of tree 9zesin populationswith p * B> 1. Graphing conventions as

in Figure 8. The solid square plotted at the value of ¢ = 1000 represents the number of treesthat were

gill growing when we terminated their growth a 10,000,000 leaves.
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Figure 9(b)
Branching simulation, P=0.333, B=5
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Figure 9(c)
Branching simulation, P=0.25, B=10
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Figure 9(d)
Branching simulation, P=0.10, B=15
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Figure 10. Grgphs of the digtribution of tree Sizesin populationswith p * B= 1. Graphing conventions
asin Figure 8. On each graph we have plotted the |east-squares regression line for a power law

digtribution (along with the r-squared vaue for the regression).
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Figure 10(b)
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Figure 10(c)
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Figure 10(d)
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Figure 11. The digtribution of the number of citations within individua cases within our four cohorts ((a)

— (d)) from the New Y ork Court of Appedls, and for the aggregate New Y ork data from al four

cohorts (€). On each graph we have plotted the least-squares regression line for a power law
digtribution (along with the r-squared vaue for the regression).
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Figure 11(b)
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Figure 11(c)
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Figure 11(e)
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Figure 12.

Figure 12. The digribution of the number of citations within individua cases within our four cohorts (()
— (d)) from the Seventh Circuit Court of Appedls, and for the aggregate Seventh Circuit data from all
four cohorts (€). On each graph we have plotted the least-squares regression line for a power law
digtribution (along with the r-squared vaue for the regression). (a)
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Figure 12(c)
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Figure 12(d)
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Figure 13. The digtribution of the number of times that opinions are cited as precedent by subsequently-
decided cases, within our four cohorts ((a) — (d)) from the New Y ork Court of Appeds, and for the
aggregate New Y ork datafrom al four cohorts (€). On each graph we have plotted the least-squares

regression line for a power law digtribution (dong with the r-squared value for the regression).
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Figure 14. The digtribution of the number of times that opinions are cited as precedent by subsequently-

decided cases, within our four cohorts ((@) — (d)) from the Seventh Circuit Court of Appeds, and for

the aggregate Seventh Circuit data from dl four cohorts (€). On each graph we have plotted the least-

squares regression line for a power law digtribution (along with the r-squared vaue for the regression).
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