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1 Introduction

Structuralism is the view that the subject-matter of a theory of pure mathematics is a mathemat-
ical structure. Different versions of structuralism tell different stories about what mathematical
structures are.! But assuming that they agree about when a model? exemplifies a mathematical

structure, they can agree about the conditions under which a sentence of pure mathematics is true:

[Mathematical Truth]
Let structure s be the subject-matter of a theory T of pure mathematics, and let C be
the class of models that exemplify s. Then a sentence in the language of T is true if

and only if it is true according to every model in C.

This is a promising start, but it will not take us very far unless we supplement it with an account of
how it is that mathematicians succeed in specifying the needed mathematical structure. We would
like to know, for example, how it is that mathematicians are able to single out the structure of the
natural numbers from every other mathematical structure as the subject-matter of arithmetic. It is
tempting to think that mathematicians uniquely specify a mathematical structure—or, equivalently,
the class C of models exemplifying that structure—by setting forth an appropriate set of axioms.
For C might be identified as the class of all and only the models which make the axioms true.
This strategy will succeed on the assumption that three conditions are met. First, the axioms
must be satisfiable (i.e. they must have at least one model), to ensure that at least one structure is
exemplified by the models in C. Second, the axioms must be categorical (i.e. they must have only

pairwise isomorphic models), to ensure that at most one structure is exemplified by the models in



C. Finally, the axioms must be recursive, to ensure that they can be set forth by finite beings like
ourselves, at least in principle. (The set of true sentences of arithmetic, for example, is far too
complex to be set forth by humans, even in principle.) When we combine the three conditions, we

are in a position to offer the following thesis on behalf of the structuralist:

[Aziomatic Categoricity]
If a set of axioms A is (¢) satisfiable, (ii) categorical and (ii7) recursive, then math-
ematicians are in a position to use A to uniquely specify the mathematical structure

exemplified by each of the members of the class C of models of A.

In the special case of pure arithmetic, [Mathematical Truth] and [Aziomatic Categoricity] combine
to produce a tidy account of the conditions under which a sentence of pure arithmetic is true. Since
the set of second-order Dedekind-Peano Axioms is satisfiable, categorical and recursive, [Aziomatic
Categoricity] implies that it can be used to specify the class C of models exemplifying a certain
mathematical structure s—the structure of the natural numbers. Thus, when s is taken to be
the subject-matter of pure arithmetic, it follows from [Mathematical Truth] that a sentence of the
language of pure arithmetic is true just in case it is true according to each of the models of the
second-order Dedekind-Peano axioms.

We will see, however, that (on certain reasonable assumptions) no recursive and satisfiable
axiomatization of set theory is categorical. So friends of [Mathematical Truth] cannot rely on
[Aziomatic Categoricity] to provide an account of the conditions under which the sentences of pure
set theory are true. The aim of the paper is to assess the prospects of structuralism in light of this

limitative result.

2 Axiomatic Categoricity

2.1 Arithmetic

We know from Goédel’s Incompleteness Theorem that no recursive and satisfiable first-order axiom
system sufficiently rich to interpret elementary arithmetic can ever be categorical. So no sufficiently

rich first-order axiom system can ever satisfy the necessary conditions of [Aziomatic Categoricity].



Matters improve dramatically if we are allowed to help ourselves to second-order quantification.
The set of second-order Dedekind-Peano Axioms, for example, is a satisfiable, categorical and
recursive axiomatization of arithmetic. According to [Aziomatic Categoricity], mathematicians are
therefore in a position to use the second-order Dedekind-Peano Axioms to specify a mathematical
structure—the structure of the natural numbers.

There are, of course, important questions to be raised about second-order quantification in the
present context. For instance, one might think that our understanding of second-order quantifica-
tion is not sufficiently determinate to rule out non-standard Henkin-interpretations. And this would
naturally lead to doubts about whether the second-order Dedekind-Peano Axioms can be any more
successful than their first-order counterparts in the task of uniquely specifying the structure of the
natural numbers. A defense of the claim that our understanding of second-order quantification is
robust enough to exclude Henkin interpretations would take is too far afield,? but we shall nonethe-
less assume that structuralists can help themselves to second-order quantifiers. This is acceptable
because our aim is to set forth a challenge for structuralism, and the legitimacy of second-order

quantification can only strengthen the structuralist’s case.

2.2 Set Theory

If there is an inaccessible cardinal, then the axioms of ZFC2 (second-order Zermelo-Fraenkel set
theory with Choice) are not categorical.* [Proof sketch: Let In be a sentence of the language of
ZFC2 to the effect that there is an inaccessible cardinal. Then, if there is an inaccessible, neither
ZFC2 = In nor ZFC2 |= —In.] Thus, unlike the case of the Dedekind-Peano Axioms, [Aziomatic
Categoricity] does not suffice to guarantee that axioms of ZFC2 succeed in uniquely specifying a
mathematical structure.

Ernst Zermelo has shown, however, that ZFC2 has a remarkable feature: given any two of its
models, (at least) one of them must be isomorphic to an initial segment of the other. In other
words, the structure of a model of ZFC2 is completely determined by the height of its ordinal
sequence. This means that all we need to obtain a categorical second-order axiomatization of pure

set theory is to supplement the axioms of ZFC2 with an axiom fixing the height of the ordinals. For



example, the result of supplementing the axioms of ZFC2 with an axiom to the effect that there
are no inaccessibles, —In, is categorical.

—In is not a sentence that many set theorists are inclined to accept. But the categoricity of
ZFC2+-1In gives rise to the question of whether some other way of enriching ZFC2 might yield
categoricity without betraying mathematical practice.

There is an important sense in which the answer is ‘no’. For the following seems to be consistent

with the practice of most set-theorists:

Principle of Second-order Global Reflection
There is a set S such that every true sentence of the language of second-order set theory

is true when its quantifiers are restricted to elements of S;
and we have the following;:

First Limitative Result
If the Principle of Second-order Global Reflection obtains, then no recursive and satis-
fiable set of true sentences of the language of set theory is categorical. (See appendix

for proof.)

(Note that this is compatible with the categoricity of ZFC2 + —In, since —In is inconsistent with
the truth of Second-order Global Reflection.)

The First Limitative Result brings about a preliminary puzzle for Structuralism. If set theory
has no satisfiable, categorical and recursive axiomatization, then [Aziomatic Categoricity] cannot be
used to explain how it is that mathematicians are able to single-out the class of models exemplifying
the structure of pure sets. How then, according to the structuralist, might the subject-matter of
set-theory be specified?

Of course, the puzzle relies on the assumption that the Second-order Global Reflection Principle
is true. But the Reflection Principle should presumably be accepted or rejected on the basis of
strictly mathematical considerations, so it shouldn’t be questioned merely on the grounds that it
poses an obstacle for what seemed like an attractive account of how mathematicians manage to

specify the subject-matter of set theory. The mathematical question of whether we should accept



a thesis like the Reflection Principle ought not to depend on the philosophical question of how it is

that mathematicians are in a position to specify the structure of the pure sets.

3 Impure Set Theory

It follows from Zermelo’s result that any two models of ZFC2 of the same size are isomorphic. So if
we enriched ZFC2 with an axiom specifying the size of the universe of sets, [Aziomatic Categoricity]
would deliver the result that mathematicians can used the enriched system to specify the structure
of pure sets. But the First Limitative Result shows that the enriched system would violate Global
Reflection.

There is, however, a different way of taking advantage of Zermelo’s result. The trick is to bring
urelements into the picture. By building on Zermelo’s result, [21] has shown that any two models
of the same cardinality of ZFCU2 (second-order Zermelo-Fraenkel set theory with urelements and
Choice) plus the Urelement Set Axiom (which says that there is a set whose members are all and
only those individuals that are not sets) have isomorphic pure sets.> In particular, any two models
of McGee’s system with domains consisting of absolutely everything have isomorphic pure sets.
(Of course, when models are taken to be sets, there is no model with an absolutely unrestricted
domain. For present purposes it is best not to think of models as sets.”)

But now suppose one insists that the first-order quantifiers of McGee’s axiom-system are to
range over absolutely everything. Since any two models of the McGee’s system with absolutely
unrestricted domains have isomorphic pure sets, one might claim that the result is a unique spec-
ification of the structure of the pure sets. The problem posed by the First Limitative Result is
avoided because one leaves it to the world to determine the size of the models involved in the
specification, rather than setting forth an axiom to the effect that the universe of pure sets is of
such-and-such a size.

The results in [39] show that McGee’s result is not an isolated case. There are a number of
axiomatizations of set theory with urelements whose models with unrestricted domains are pairwise
isomorphic. This suggests a general strategy for improving on [Aziomatic Categoricity]. Consider

first a slight simplification:



[U-Aziomatic Categoricity]

If a set of axioms A is (ia) satisfied by a model with an absolutely unrestricted do-
main, (iia) such that any two models of A with absolutely unrestricted domains are
isomorphic, and (ii7) recursive, then, by insisting that the first-order quantifiers take
absolutely unrestricted range, mathematicians are in a position to use A to uniquely
specify the mathematical structure exemplified by each of the members of the class C

of models of A with absolutely unrestricted domains.

The reason this is not quite what we want is that McGee and Uzquiano’s results don’t show
that, when the range of the quantifiers is absolutely unrestricted, any two models of ZFCU plus
the Urelement Set Axiom are isomorphic. What they show is that the pure sets of one will be

isomorphic to the pure sets of the other. The principle we need is therefore this:

[U-Axiomatic P-Categoricity]

If a set of axioms A is (ia) satisfied by a model with an absolutely unrestricted domain,
(73b) such that any two models of A with absolutely unrestricted domains have isomor-
phic P-restrictions® for some predicate P in the language of A, and (iii) recursive, then,
by insisting that the first-order quantifiers take absolutely unrestricted range, mathe-
maticians are in a position to use A to uniquely specify the mathematical structure
exemplified by each of the P-restrictions of members of the class C of models of A with

absolutely unrestricted domains.

Consider McGee’s axiom-system. When we let P be the predicate ‘z is a pure set’, [U-Aziomatic
P-Categoricity] delivers a guarantee that ZFCU2 plus the Urelement Set Axiom uniquely specifies
a mathematical structure—provided, of course, that the axioms of ZFCU2 plus the Urelement Set
Axiom are satisfied by some model with an absolutely unrestricted domain. Structuralists can
therefore claim, in accordance with [Mathematical Truth], that a sentence of the language of pure
set theory is true just in case it is true according to each member of the class C of models of ZFCU2
9

plus the Urelement Set Axiom with unrestricted domains.

To illustrate the point, consider the status of In and —In, characterized above. Neither In nor



—In is a (semantic) consequence of ZFCU2 plus the Urelement Set Axiom. The axioms themselves
leave open the question of whether In or —In is true, but by requiring our quantifiers to take
absolutely unrestricted range, we let the world answer the question for us. For it follows from
McGee’s result that one of In and —In is true in all models with absolutely unrestricted domains
of ZFCU2 plus the Urelement Set Axiom. And, by [Mathematical Truth], this means that each of I'n
and —In must be either true or false. If the size of the universe is that of the first inaccessible, then
—In is true and In is false. But if the size of the universe is that of the seventeenth inaccessible,
then In is true and —In is false. (Here and throughout, claims about the size of the universe
are to be understood in second-order terms. For instance, ‘the size of the universe is that of the
first inaccessible’ is to be read as a sentence of pure second-order logic to the effect that there are
precisely inaccessibly many objects and that any plurality consisting of precisely inaccessibly many

objects is in one-one correspondence with the entire universe.)

4 Stability

On the assumption that conditions (ia), (iib), and (iii) are fulfilled, [U-Aziomatic P-Categoricity|
delivers the result that mathematicians are in a position to use ZFCU2 plus the Urelement Set
Axiom to uniquely specify the structure of the pure sets. But, of course, condition (ia) (i.e. sat-
isfiability in a model with an absolutely unrestricted domain) is far from straightforward. If the
size of the world is that of an inaccessible, then there will be many models of ZFCU2 plus the
Urelement Set Axiom with absolutely unrestricted domains. But if the world happens to contain
precisely power-of-an-inaccessible many objects, then there will be no such models. In general, the
usefulness of [U-Aziomatic P-Categoricity] depends on whether or not the size of the world is such
that the relevant axiom-system is satisfied in models with absolutely unrestricted domains.
Indeed, when we deal with unrestricted versions of mathematical theories, we run the risk that
different theories might impose incompatible demands on the size of the universe. For instance,
unrestricted versions of the class theory set forth in [19] and of second-order Morse-Kelley class
theory with urelements (MKU2) plus the Urelement Set Axiom!? both require the universe contain

precisely power-of-an-inaccessible many objects. As a result, either of these unrestricted versions



of class theory imposes constraints on the size of the universe that are incompatible with the
constraints imposed by the unrestricted version of ZFCU2 plus the Urelement Set Axiom, which
requires the size of the universe to be that of an inaccessible.

But such incompatibility makes it difficult to understand what reasons could be offered to
accept one axiom-system over its rivals. Methods of justification internal to the mathematical
community are unlikely to help, since current mathematical practice seems to allow set theory and
class theory to coexist peacefully side by side. And it seems bizarre to suggest that one could use
non-mathematical methods to determine whether the size of the universe satisfies the constraints
imposed by one of the theories rather than the constraints imposed by the other.

It may be of interest to illustrate a further risk: that of incompatibility between a mathemati-
cal theory and a cluster of non-mathematical theses. It is a consequence of the axioms of classical
mereology that any objects have a (unique) mereological fusion.!! Hence, when the first-order quan-
tifiers are taken to range over absolutely everything there is, classical mereology implies that any
objects whatsoever—whether they be concrete or abstract—have a (unique) mereological fusion.

This imposes an immediate constraint on the size of the universe:

Let there be precisely x mereological atoms. If there is no atomless gunk, then there

must be precisely 2 objects (or 2% — 1 objects if « is finite).!?

This means, in particular, that unless there is atomless gunk, the universe cannot have an inacces-
sible size (since 2% objects are never an inaccessible number of objects). But in order for ZECU2
plus the Urelement Set Axiom to be true when the first-order variables take absolutely unrestricted
range, the world must have the size of an inaccessible cardinal. So, when one’s first-order quan-
tifiers range over absolutely everything, one cannot accept both classical mereology and ZFCU2
plus the Urelement Set Axiom without being immediately committed to the conclusion that there
is atomless gunk.

This is very troubling. For whether or not classical mereologists are happy with the conclusion
that there is atomless gunk, it seems inappropriate for such a conclusion to be forced upon them
merely as a result of accepting an unrestricted version of set theory rather than, say, an unrestricted

version of class theory. Still worse is the suggestion that classical set theorists might make a decision



about what system of mathematical axioms to accept on the basis of whether they believe in the
existence of atomless gunk, or some other metaphysical thesis.

Something is amiss. But what? One tentative suggestion is that the unrestricted versions of set
theory and class theory we have considered are too ambitious: mathematical theories should not
be allowed to impose any specific constraints on the cardinality of the universe over and above the
requirement that the universe be at least of a certain size. The suggestion is admittedly vague. But,
at least as a first approximation, it might be partially expressed as the claim that mathematical

theories should be stable, where stability is characterized as follows:!?

A theory T is stable if and only if there is some cardinal s such that T is satisfied by a

model of cardinality s and, for all A > &, T is satisfied in a model of cardinality .

It is important to note that, because cardinals are sets, stability has been characterized on the basis
of satisfiability in set-sized models.!* Thus the stability of a theory T need not guarantee that T is
satisfiable in models with unrestricted domains.'® Nonetheless, the stability of T' should be prima
facie evidence that T imposes no structural constraints on the cardinality of the universe over and
above the requirement that the universe be at least of a certain size.'6

The versions of set theory and class theory we have considered are certainly not stable (provided,
that is, that they are satisfiable in some set-sized domain). ZFCU2 plus the Urelement Set Axiom,
for example, is never satisfied by models whose cardinality is a successor. Might one be able to

improve upon the McGee-Uzquiano results by setting forth a categorical and stable axiomatization

for set theory? In fact, the answer is ‘no’:

Second Limitative Result
No theory extending ZFCUZ2 that is satisfiable in a set-sized domain is stable. (See

appendix for proof.)

5 A Puzzle for Structuralism

The limitative results of sections 2 and 4 suggest that no attempt to specify a mathematical

structure as the subject-matter of set-theory can satisfy both of the following two conditions:



[Success]
We are in a position to justify the claim that our specification has succeeded in picking
out some mathematical structure or other (whether or not some structure has been

picked out uniquely).

[Uniqueness|

Our specification is capable of picking out a mathematical structure uniquely.

Here’s why. The First Limitative Result suggests that, if [Uniqueness] is to be satisfied in the
case of set theory, structuralists have little choice but to adopt the strategy of [U-Aziomatic P-
Categoricity]. But, in light of the Second Limitative Result, it would seem that [U-Axiomatic
P-Categoricity] can only deliver the right result if it is used in conjunction with an unstable axiom-
system.

This undermines [Success]. Unstable axiom-systems are problematic because they impose con-
straints on the size of the universe other than the requirement that the universe be at least of
a certain size. For instance, an unstable theory might impose a constraint to the effect that the
universe contains power-of-an-inaccessible many objects. This means that different unstable the-
ories might impose incompatible constraints on the size of the universe. And it is difficult to see
how one could ever be justified in believing that the constraints imposed by a given theory obtain,
rather than the incompatible constraints of its rivals. The methods of justification internal to the
mathematical community are unlikely to help. It seems unreasonable to suppose, for example,
that purely mathematical considerations would favor unstable axiomatizations of set theory over
unstable axiomatizations of class theory, rather than allowing set theory and class theory to coexist
peacefully side by side. And it is again difficult to imagine that one could use non-mathematical
methods to determine whether, e.g. there are precisely power-of-an-inaccessible many objects. But,
unless we are justified in believing that the relevant constraints on the size of the universe ob-
tain, we cannot be justified in thinking that our specification has succeeded in picking out some
mathematical structure or other. So [Success]| fails.

If this is right, then structuralists face a dilemma. They must either abandon [Success| or

abandon [Uniqueness]. Neither option is very comfortable. If they give up [Success], then they are

10



unable to guarantee that their specification of the structure of the pure sets is, in fact, compatible
with structure of the pure sets (since they are unable to rule-out a scenario in which it doesn’t
pick out any mathematical structure at all). If, on the other hand, they give up [Uniqueness],
then they are left with a choice. They might decide to hold on to the claim that there is a unique
mathematical structure which constitutes the subject-matter of set theory in spite of the failure
of [Uniqueness], and endeavor to explain how it is that set theoretic terms come to be associated
with just one of a large family of rival structures even though mathematicians lack the resources
to specify which. But it is not easy to see how such a story would go. Alternatively, structuralists
might take the failure of [Uniqueness] to show that set theory does not have a unique structure as
its subject-matter. Instead, its truth conditions are associated with several different mathematical
structures.!” But this position comes at a cost. For one might have thought that the difference
between interpreted mathematical theories—such as arithmetic and set theory—and uninterpreted
mathematical theories—such as group theory—is that, whereas the former have a unique structure
as their subject matter, the latter do not.'® Structuralists must therefore tell a novel story about
the distinction between interpreted and uninterpreted mathematical theories. But, again, it is not

easy to see how such a story would go.

Appendix

e First Limitative Result

Proof Sketch: Assume, for reductio, that A is a recursive, satisfiable and categorical set of
true sentences of the language of set theory. Within the language of second-order set theory,
define the predicates Model(x) and Sat(z,y). Model(x) is satisfied by a set M just in case
M is a (set-sized) model for second-order set theory, and Sat(x,y) is satisfied by a pair of
a set M and (the Godel number of) a formula ¢ just in case M is a (set-sized) model that
satisfies ¢. Since A is a recursive set of sentences, “z is a (Godel number of a) member of A”
is represented by some formula of second-order set theory. Let "A = ¢ be a formula of the
language of second-order set theory that states that (the Gédel number of) ¢ is satisfied in

every (set-sized) model in which (the Gédel numbers of) all members of A are satisfied.
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In the presence of Second-order Global Reflection, "A |= ¢ is a truth predicate for the lan-
guage of second-order set theory. For suppose that ¢ is a true formula of set theory. Since
every sentence in A is true, all members of AU {¢} are true. Second-order Global Reflection
therefore guarantees that there is a model M that satisfies all members of AU{¢}. Since A is
categorical, it follows that "A |= ¢ is true. If, on the other hand, ¢ is false, then all members
of AU {—¢} are true. Second-order Global Reflection therefore guarantees that there is a
model M that satisfies all members of A U {—¢}, from which it follows that "A = ¢ is false.
Accordingly, "A |= ¢ iff ¢ is true. This contradicts Tarski’s Theorem, according to which no

language expresses its own truth predicate.O

Second Limitative Result

Proof Sketch: We proceed in two steps. First we note that the cardinality of any set-sized
model of ZFCU2 (or extensions thereof) must fulfill a certain condition.!® Then we observe
that, given any cardinal that satisfies the condition, there is a higher cardinal that fails to

satisfy the condition.

First step. Let k be an infinite cardinal and suppose that (M, E, S) is a model of ZFCU2 of
cardinality x (where M is the domain of the model, F is the interpretation of ‘€’ and S is
the interpretation of ‘Set’). We show that there is an inaccessible A < k such that KN < gk

(where x<* is the cardinality of the set of subsets of s of cardinality strictly less than )).

For each a € S, let (a)g = {x € M : zFa}. Notice that for no a € 5, |(a)g| = k.
For otherwise, by second-order replacement in (M, E,S), there would be b € S such that
(b)p = M, which is impossible. Let A\ be the least cardinal < x such that for no a € S,
|(a)g| = A. Then (a)g € [M]<* for any a € S (where [M]<? is the set of subsets of M of

cardinality strictly less than A).

Let X € [M]<*. By minimality of A there is an a € M such that |X| < |(a)g|. Let F be a
function from (a)p onto X. By second-order replacement in (M, E,S), there is some b € S
such that (b)g = X. Since extensionality holds in (M, E, S), this yields the result that, for

any X € [M]<*, there is a unique b € M such that (b)g = X. So the members of [M]<} are

12



precisely the (a)g for a € S. Since (M, E, S) is a model of ZFCU2, A must be an inaccessible.

But |M| = k. So A is an inaccessible < x such that £<* < k.

Second step. It can be shown that J,., has as many countable subsets as subsets altogether.?"
So, when k = Ju4., there can be no inaccessible A < & such that x<* < k. By the first step,

it follows that the cardinals that fail to satisfy ZFCU2 are unbounded. O
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Notes

!Compare, for instance, [14], [25], [21] and [36].

2For present purposes, it is best not to think of models as sets. A second-order conception of
model is set forth in [30] and further developed in [31]. In what follows we shall use ‘model’ in the
second-order sense. (This means that it makes no literal sense to speak of a class of models. Claims
to the effect that every member of a class C of models satisfies a certain condition ® are therefore to

be understood as shorthand for claims to the effect that every model satisfying a predicate ‘C(X)

satisfies .)

3See, however, [2], [3], [4], [21], [22], [32], [29] and [43]. Boolos’s work is criticized in [34], [25]
and [20]. Relevant texts also include [35], [17], [18] and [26].

4 Assuming, of course, that they are satisfiable.

5Tt may be of interest to note that when logically unrestricted quantifiers ‘vY’are allowed—
quantifiers taking unrestricted range in every model-—McGee’s partial categoricity result translates
into a full categoricity result for ZFCU2 plus the Urelement Set Axiom: two models of ZFCU2V
plus the Urelement Set AxiomY have isomorphic pure sets. For more on logically unrestricted

quantifiers, see [42], [31] and [43].

For discussion on quantifying over everything see [23], [9] chapters 14-16, [7], [6], [42], [22], the
postscript to [10] in [11], [27], [28], [31], [12], and [43].

7See footnote 2.

8The P-restriction of a model M of A to P is the elementary submodel M whose domain is the

extension of P according to M.
9 Consider the theory of cardinal numbers embodied in HP (Hume’s Prinpicle):
VXYY [Num(X) = Num(Y) < X =~ Y],
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where'X =~ Y’ abbreviates a second-order formula expressing one-one correspondence between the

objects falling under ‘X’ and the objects falling under ‘Y.

HP need not be categorical: on the assumption that there are uncountable models of HP, an
uncountable model of HP will not be isomorphic to a countable one. So, [Aziomatic Categoricity]
does not guarantee that HP can be used on its own to uniquely specify a mathematical structure.
But HP has the same feature as McGee’s system: any two models of HP of the same cardinality
have isomorphic numbers. So [U-Axiomatic P-Categoricity] delivers the result that, when the range
of the quantifiers is taken to be absolutely unrestricted, mathematicians can use HP to to specify

the structure of the numbers.

10Tn the case of Morse-Kelley class theory, this presupposes that the class variables are taken to

be genuinely individual variables. For an alternative treatment, see [40].

HGee, for instance, [?]. The mereological fusion of the Fs is the unique x such that (i) = has each

of the Fs as parts, and (i7) every part of z has a part in common with an F.

12A mereological atom is an object with no parts other than itself. There is atomless gunk if

there is some object which is not the fusion of mereological atoms.
13Cf. [13] n. 5.

4What if we had characterized stability in terms of satisfiability in arbitrary domains (set-sized
or not)? The problem with this suggestion is that satisfiability in models with unrestricted domains
becomes a necessary and sufficient condition for stability. So the new notion does not deliver a
useful test for determining whether a mathematical theory is satisfiable by the universal domain.
(It is also worth noting that the second limitative result below does not hold for the revised notion

of stability.)

5For example, if—pace Second-order Global Reflection—there is a finite axiomatization of T'
that is satisfied in models with an unrestricted domain but false in all set-sized models, then the

negation of the Ramsey sentence for 1" will be a stable theory that is not satisfiable in models with
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unrestricted domains.

160ne informal way of motivating this claim makes use of the thought underlining the standard
motivation for the principle of Second-order Reflection—the thought that any structural feature
of the universe of sets ought to be mirrored by some set-sized model of set-theory. Suppose a set
theory T imposes some structural constraint F on the cardinality of the universe which happens
not to be met. On reasonable assumptions, the universe of all sets is just as large as the universe
of all objects. So the universe of all sets will also fail to meet F. But if any structural feature of
the universe of sets is mirrored by some set-sized model of set-theory, then there must be models of
arbitrarily high cardinality which satisfy F (since, given some structural feature and some cardinal
K, we can think of a further structural feature satisfied by the universe that combines the preceding
one with the condition that the universe be of cardinality greater than k). T is therefore not stable.
Vague as it is, this sort of argument has proven extremely valuable in the development of set theory

(see, for example, [33]).

"This means that [Mathematical Truth] must be given up. The most natural substitute is

presumably a version of supervaluationism:

[Supervaluational Mathematical Truth)

Let S be a non-empty class of structures picked out by mathematicians as candidates
for constituting the subject-matter of a theory T' of pure mathematics, and, for s € S,
let Cs be the class of models that exemplify s. Then a sentence in the language of T is
true if, for every s € S, it is true according to every model in Cy; the sentence is false if

its negation is true; and otherwise the sentence is neither true nor false.

18Gee, for instance, [41].

YThe proof of this fact is essentially taken from [15].

20More generally, if v is a singular limit cardinal of cofinality ¢, there are as many subsets of v

of cardinality ¢ as there are subsets of v altogether. See Theorem 12 in [37].
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