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Some History

Quantum Mechanics
Summer 1925: Observables are operators (Heisenberg)
Fall 1925: Poisson Bracket — Commutator (Dirac)

Christmas 1925: Representation of operators on wave-functions
(Schrodinger)
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Some History

Quantum Mechanics
Summer 1925: Observables are operators (Heisenberg)
Fall 1925: Poisson Bracket — Commutator (Dirac)

Christmas 1925: Representation of operators on wave-functions
(Schrodinger)

Representation Theory

Winter-Spring 1925: Representation Theory of Compact Lie
Groups (Weyl)

Spring 1926: Peter-Weyl Theorem (Peter, Weyl)
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Schrodinger and Weyil

° ° ° ° ° ° ° ° °
Quantum Field Theory and Representation Theory — p.4
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Weyl's Book

1928:. Weyl's "Theory of Groups and Quantum
Mechanics", with alternate chapters of group the-
ory and quantum mechanics.
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Interview with Dirac, Wisconsin, 1929

And now | want to ask you something more: They tell me that you and
Einstein are the only two real sure-enough high-brows and the only
ones who can really understand each other. | won’t ask you if this is
straight stuff for | know you are too modest to admit it. But | want to

know this — Do you ever run across a fellow that even you can't
understand?
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mind releasing to me who he is?

° ° ° ° ° ° ° ° °
Quantum Field Theory and Representation Theory — p.6



Interview with Dirac, Wisconsin, 1929

And now | want to ask you something more: They tell me that you and
Einstein are the only two real sure-enough high-brows and the only
ones who can really understand each other. | won’t ask you if this is
straight stuff for | know you are too modest to admit it. But | want to
know this — Do you ever run across a fellow that even you can't
understand?

Yes.

This will make a great reading for the boys down at the office. Do you
mind releasing to me who he is?

Weyl.
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The Gruppenpest

Wolfgang Pauli: the "Gruppenpest”, the plague of group theory.

For a long time physicists mostly only really needed representations of:
R™, U(1): Translations, phase transformations. (Fourier analysis)
SO(3): Spatial rotations.

SU(2): Spin double cover of SO(3), isospin.

Widespread skepticism about use of representation theory until
Gell-Mann and Neeman use SU (3) representations to classify strongly
Interacting particles in the early 60s.
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Representation Theory: Lie Groups

A representation of a Lie group GG on a vector space V' is a
homomorphism

p:g€G—plg) € GL(V)

We’'re interested in representations on complex vector spaces, perhaps
infinite dimensional (Hilbert space). In addition we’ll specialize to
unitary representations, where p(g) € U(V'), transformations
preserving a positive definite Hermitian form on V.

For V = C™, p(g) is just a unitary n by n matrix.
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Representation Theory: Lie Algebras

Taking differentials, from p we get a representation of the Lie algebra g
of G-

p g — End(V)

For a unitary p, this will be a representation in terms of self-adjoint op-

erators.
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Quantum Mechanics

Basic elements of quantum mechanics:

States: vectors | > in a Hilbert space H.
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Basic elements of quantum mechanics:
States: vectors | > in a Hilbert space H.
Observables: self-adjoint operators on H.
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Quantum Mechanics

Basic elements of quantum mechanics:
States: vectors | > in a Hilbert space H.
Observables: self-adjoint operators on H.
Hamiltonian: distinguished observable H corresponding to energy.

Schrddinger Equation: H generates time evolution of states

d
i— |0 >= H|¥ >
dt
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Symmetry in Quantum Mechanics

Schrodinger’s equation: H is the generator of a unitary representation
of the group R of time translations.

Physical system has a Lie group GG of symmetries — the Hilbert space
of states 'H carries a unitary representation p of GG.

This representation may only be projective (up to complex phase),
since a transformation of ‘H by an overall phase is unobservable.

Elements of the Lie algebra g give self-adjoint operators on H, these
are observables in the quantum theory.
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Standard Examples of Symmetries

* Time translations: Hamiltonian (Energy) H, G = R.
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Standard Examples of Symmetries

Time translations: Hamiltonian (Energy) H, G = R.
Space translations: Momentum P, G = R3.

Spatial Rotations: Angular momentum J, G = SO(3).

Projective representations of SO(3) < representations of
SU(2) = Spin(3).
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Standard Examples of Symmetries

Time translations: Hamiltonian (Energy) H, G = R.
Space translations: Momentum P, G = R3.

Spatial Rotations: Angular momentum J, G = SO(3).

Projective representations of SO(3) < representations of
SU(2) = Spin(3).

Phase transformations: Charge @, G = U(1).
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Quantization

Expect to recover classical mechanical system from
guantum mechanical one as 7 — 0

Surprisingly, can often “quantize" a classical mechanical

system in a unigue way to get a quantum one.
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Classical Mechanics

Basic elements of (Hamiltonian) classical mechanics:

States: points in a symplectic manifold (phase space) M, (e.g.
R%").
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Classical Mechanics

Basic elements of (Hamiltonian) classical mechanics:

States: points in a symplectic manifold (phase space) M, (e.g.
R%").

Observables: functions on M

Hamiltonian: distinguished observable H corresponding to the
energy.

Hamilton’s equations: time evolution is generated by a vector field
Xy on M determined by

z'Xch = —dH

where w is the symplectic form on M.
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Quantization + Group Representations

Would like quantization to be a functor

(Symplectic manifolds M, symplectomorphisms)

l

(Vector spaces, unitary transformations)

This only works for some subgroups of all symplectomor-

phisms. Also, get projective unitary transformations in gen-

eral.
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Mathematics — Physics

What can physicists learn from representation theory?

Classification and properties of irreducibles.
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Classification and properties of irreducibles.
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Mathematics — Physics

What can physicists learn from representation theory?
Classification and properties of irreducibles.
How irreducibles transform under subgroups.

How tensor products behave.

Example: In Grand Unified Theories, particles form representations of

groups like SU(5), SO(10), Eg, Es.
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Physics— Mathematics

What can mathematicians learn from guantum mechanics?

Constructions of representations starting from
symplectic geometry (geometric quantization).
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Physics— Mathematics

What can mathematicians learn from guantum mechanics?

Constructions of representations starting from
symplectic geometry (geometric quantization).

Interesting representations of infinite dimensional
groups (quantum field theory).
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Canonical Example: R*"

Standard flat phase space, coordinates (p;,q;), i =1...n:
M =R w = En:dpi A dg;
1=1
Quantization:
pi, 03] = |4, 451 = 0, [Gi, p;| = ihdy;
(This makes R*" !, a Lie algebra, the Heisenberg algebra)

Schrédinger representation on H = L?(R"):

0
dqi

g; = mult. by ¢;, p; = —ih
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Metaplectic representation

Pick a complex structure on R?", e.g. identify C* = R?" by
Zj = q5 + ipj

Then can choose H = {polynomials in z; }.

The group Sp(2n, R) acts on R?" preserving w, H is a projective
representation, or a true representation of Mp(2n, R) a double cover.

Segal-Shale-Weil = Metaplectic = Oscillator Representation

Exponentiating the Heisenberg Lie algebra get H?" !, Heisenberg
group (physicists call this the Weyl group), H is a representation of the
semi-direct product of H?"*! and Mp(2n,R).
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Quantum Field Theory

A quantum field theory is a quantum mechanical system whose
configuration space (R", space of ¢; in previous example) is infinite
dimensional, e.g. some sort of function space associated to the
physical system at a fixed time.

Scalar fields: Maps(R® — R)
Charged fields: sections of some vector bundle

Electromagnetic fields: connections on a U (1) bundle

These are linear spaces, can try to proceed as in finite-dim case, taking

(7 ® OF
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A Different Example: S?

Want to consider a different class of example, much closer to what
Weyl was studying in 1925.

Consider an infinitely massive particle. It can be a non-trivial projective
representation of the spatial rotation group SO(3), equivalently a true
representation of the spin double-cover Spin(3) = SU(2).

H = C™*!, particle has spin %.

Corresponding classical mechanical system:

M =58?=SU(2)/U(1), w=mn x Area2-form

This is a symplectic manifold with SU(2) action (left multiplication).
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Geometric Quantization of S?

What is geometric construction of H analogous to Fock representation
in linear case?

Construct a line bundle L over M = SU(2)/U(1) using the standard
action of U(1) on C.

L = SU(?) XU(1) C

|
M = SU(2)/U(1)

M is a Kahler manifold, L is a holomorphic line bundle, and H

[0 (L™), the holomorphic sections of the n’th power of L.
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Borel-Weill Theorem (1954) |

This construction generalizes to a geometric construction of all the
representations studied by Weyl in 1925.

Let G be a compact, connected Lie group, 1" a maximal torus (largest
subgroup of form U(1) x --- x U(1)). Representations of T" are
“weights", letting 1" act on C with weight )\, can construct a line bundle

LAZGXTC

l
G/T

G /T is a Kahler manifold, L, is a holomorphic line bundle, and G acts

on'H = Fhol(L)\)-
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Borel-Well Theorem ||

Taking A in the dominant Weyl chamber, one gets alll

elements of G (the set of irreducible representations of G) by this construction.

In sheaf-theory language

H = H°(G/T,O(Ly))

Note: the Weyl group W(G,T) is a finite group that permutes the
choices of dominant Weyl chamber, equivalently, permutes the choices

of invariant complex structure on G/T.
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Relation to Peter-Weyl Theorem

The Peter-Weyl theorem says that, under the action of G x G by left
and right translation,

=) End(V;)=> Vi xV;
icG icG
where the left G action acts on the first factor, the right on the second.

To extract an irreducible representation j, need something that acts on
all the V.*, picking out a one-dimensional subspace exactly when i = j.

Borel-Weil does this by picking out the subspace that
transforms with weight A under T’

IS invariant under n, where g/t C =ny &n_
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Borel-Well-Bott Theorem (1957)

What happens for A a non-dominant weight?

One gets an irreducible representation not in H°(G/T, O(L,)) but in
higher cohomology H’ (G /T, O(Ly)).

Equivalently, using Lie algebra cohomology, what picks out the
representation is not H'(n,, V.*) # 0 (the n_ invariants of V;*), but
H’(ny,V;*) # 0. This is non-zero when )\ is related to a ) in the
dominant Weyl chanber by action of an element of the Weyl group.

In some sense irreducible representations should be labeled not by a
single weight, but by set of weights given by acting on one by all ele-

ments of the Weyl group.
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The Dirac Operator

In dimension n, the spinor representation S is a projective
representation of SO(n), a true representation of the spin double cover
Spin(n). If M has a "spin-structure”, there is spinor bundle S(M),
spinor fields are its sections I'(S(M)).

The Dirac operator [pwas discovered by Dirac in 1928, who was
looking for a “square root" of the Laplacian. In local coordinates

~ 0

ID acts on sections of the spinor bundle. Given an auxiliary bundle E
with connection, one can form a “twisted" Dirac operator

Dp : T(S(M) x E) — T(S(M) x E)
Quantum Field Theory and Representation Theory — p.27



Borel-Well-Bott vs. Dirac

Instead of using the Dolbeault operator 0 acting on complex forms
QY*(G/T) to compute H*(G/T,O(Ly)), consider Ip acting on
sections of the spinor bundle.

Equivalently, instead of using n,. cohomology, use an algebraic
version of the Dirac operator as differential (Kostant Dirac
operator).

Basic relation between spinors and the complex exterior algebra:
S(g/t) = A" (ny) ® /A (n_)

Instead of computing cohomology, compute the index of D This is inde-

pendent of choice of complex structure on G/T.
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Equivariant K-theory

K-theory is a generalized cohomology theory, and classes in K° are
represented by formal differences of vector bundles. If E is a vector
bundle over a manifold M,

[E] € K°(M)
If G acts on M, one can define an equivariant K-theory, Kg (M),
whose representatives are equivariant vector bundles.
Example: [L,] € K& (G/T)

Note: equivariant vector bundles over a point are just representations,
SO

K2 (pt.) = R(G) = representation (or character) ring of G

° ° ° ° ° ° ° ° °
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Fundamental Class in K-theory

In standard cohomology, a manifold M of dimension d carries a
“fundamental class" in homology in degree d, and there is an
Integration map

/ : HYM,R) — H°(pt.,R) =R

In K-theory, the Dirac operator provides a representative of the
fundamental class in “K-homology" and

/ . [E] € Kg(M) — indexPg = kerDg — cokerDgy € Kg(pt.) = R(G)

° ° ° ° ° ° ° ° °
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Quantization = Integration in K-theory

In the case of (G/T,w = curv(Ly)) this symplectic manifold can be
“quantized” by taking H to be the representation of G given by the
index of Iy, .

This construction is independent of a choice of complex structure on
G /T, works for any A, not just dominant ones.

In some general sense, one can imagine “quantizing” manifolds M
with vector bundle F, with H given by the index of [Dg.

Would like to apply this general idea to quantum field theory.
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History of Gauge Theory

1918: Weyl's unsuccessful proposal to unify gravity and
electromagnetism using symmetry of local rescaling of the metric

1922: Schrodinger reformulates Weyl's proposal in terms of phase
transformations instead of rescalings.

1927; London identifies the phase transformations as
transformations of the Schrddinger wave-function.

1954: Yang and Mills generalize from local U(1) to local SU(2)
transformations.
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Gauge Symmetry

Given a principal G bundle over M, there is an infinite-dimensional
group of automorphisms of the bundle that commute with projection.
This is the gauge group G. Locally it is a group of maps from the base
space M to G.

G acts on A, the space of connections on P.

Example: M = S', P=8' x G, G = Maps(S',G) = LG

A/G = conjugacy classes in G, identification given by taking the holon-

omy of the connection.
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Loop Group Representations

See Pressley and Segal, Loop Groups.

LG/G is an infinite-dimensional Kahler manifold, and there is an
analog of geometric quantization theory for it, with two caveats:

One must consider “positive energy" representations, ones where
rotations of the circle act with positive eigenvalues.

Interesting representations are projective, equivalently
representations of an extension of LG by S!. The integer
classifying the action of S* is called the “level".

For fixed level, one gets a finite number of irreducible representations.
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QFT In 1+1 dimensions

Consider quantum field theory on a space-time S* x R. The Hilbert
space H of the theory is associated to a fixed time S*.

The level 1 representation for LU (N ) is ‘H for a theory of a chiral
fermion with N “colors".

At least in 1+1 dimensions, representation theory and quantum field

theory are closely related.
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Freed-Hopkins-Teleman

For loop group representations, instead of the representation ring
R(LG), one can consider the Verlinde algebra Vj. As a vector space
this has a basis of the level k positive energy irreducible
representations.

Freed-Hopkins-Teleman show:

Vi = Kot 0.6(G)

The right-hand side is equivariant K-homology of G (under the conju-
gation action), in dimension dim G, but “twisted" by the level k (shifted
by 7). This relates representation theory of the loop group to a purely

topological construction.
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QFT Interpretation

Consider the quantum field theory of chiral fermion coupled to a
connection (gauge field).
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QFT Interpretation

Consider the quantum field theory of chiral fermion coupled to a
connection (gauge field).

Apply physicist’s “BRST" formalism.
Get explicit representative of a K-homology class in Kg(A).

Idenitfy Kg(A) with FHT’s K (G), since for a free H action on M,
Ky(M)=K(M/H).
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Summary

Quantum mechanics and representation theory are very closely
linked subjects.
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exploitation by mathematicians for insights into representations of
Infinite-dimensional groups.
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exploitation by physicists. Much is known about QFT that awaits
exploitation by mathematicians for insights into representations of
Infinite-dimensional groups.

Work in Progress: 1+1 dim QFT and twisted K-theory. Relate path
integrals and BRST formalism to representation theory and
K-theory.
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Summary

Quantum mechanics and representation theory are very closely
linked subjects.

Much is known about representation theory that still awaits
exploitation by physicists. Much is known about QFT that awaits
exploitation by mathematicians for insights into representations of
Infinite-dimensional groups.

Work in Progress: 1+1 dim QFT and twisted K-theory. Relate path
integrals and BRST formalism to representation theory and
K-theory.

QFT in higher dimensions?
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