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3.D.1

The Cobb-Douglas utility function

u(x) = x�1x
1��
2

is homogeneous of degree one:

u(kx) = (kx1)
� (kx2)

1��

= k�x�1k
1��x1��2

= kx�1x
1��
2 :

Walras� law holds since u is locally nonsatiated. (The Cobb-Douglas
utility function is strictly increasing in its arguments, which is stronger than
local nonsatiation.)
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Because u is strictly concave, it has a unique maximum, which is clearly a
convex set. Concavity follows from x1 > 0 and x2 > 0 (implied by lim

x1!0
@u(x)
@x1

=

lim
x2!0

@u(x)
@x2

=1) and

ru(x) =

24 �
�
x2
x1

�1��
(1� �)

�
x1
x2

��
35 > 0

Dru(x) =

"
�� (1� �) x21x2

(x1x2)
� � (1� �) x�1

x1x�2

� (1� �) x�1
x1x�2

�� (1� �) x�1
x�+12

#
:

The Hessian is negative de�nite, since the principal minor is negative and
jDru(x)j = �2 (1� �)2

�
x41+x

2�
1

x21x
2�
2

�
> 0

3.G.8

If v is logarithmically homogeneous, then

v(p; �w) = ln�+ v(p; w);

where

v(p; w) = ln ev(p; w);
for some ev(p; w) that is homogeneous of degree 1. (Thus v(p; �w) = ln�ev(p; w) =
ln�+ v(p; w).)
We have

rpv(p; w) =
rpev(p; w)ev(p; w)

rpev(p; w) = ev(p; w)rpv(p; w):

By Euler�s theorem,

ev(p; w) = @ev(p; w)
@w

w:

Using Roy�s identity,

rpev(p; w) = �@ev(p; w)
@w

x�:
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Substituting,

rpev(p; w) = �ev(p; w)
w

x�

ev(p; w)rpv(p; w) = �ev(p; w)
w

x�

Dividing through by ev(p; w) and letting w = 1,
rpv(p; 1) = �x�:

3.G.15

(a) The function u(x) = 2
p
x1+4

p
x2 is locally nonsatiated; therefore

Walras�law holds. The utility maximization problem is:

max
x1;x2

2
p
x1 + 4

p
x2

s.t. p1x1 + p2x2 = w

x1 � 0; x2 � 0:

Lagrangian formulation (ignoring the nonnegativity constraints, which will
hold at the optimum):

max
x1;x2

2
p
x1 + 4

p
x2 + � (w � p1x1 � p2x2) :

First-order conditions:

@u(x�)

@x1
=

1p
x�1
� ��p1 = 0

@u(x�)

@x2
=

2p
x�2
� ��p2 = 0

@u(x�)

@�
= w � p1x�1 � p2x�2 = 0:

Solving for x�(p; w):

x�1 =
p2

4p21 + p1p2
w

x�2 =
4p1

4p1p2 + p22
w:

Nonnegativity of x1; x2 is met. The second derivatives are negative, indicat-
ing a maximum.
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(b) The expenditure minimization problem is:

min
x1;x2

p1h1 + p2h2

s.t. 2
p
h1 + 4

p
h2 � u

h1 � 0; h2 � 0:
Since f(h) = p1h1+ p2h2 is strictly increasing in u and u(h) = 2

p
h1+4

p
h2

is continuous, the utility threshold constraint must hold with equality. Ignore
the nonnegativity constraints for now. Lagrangian formulation:

max
x1;x2

� p1h1 � p2h2 + �
�
2
p
h1 + 4

p
h2 � u

�
:

First-order conditions:
@f(h�)

@h1
= �p1 +

1p
h�1
�� = 0

@f(h�)

@h2
= �p2 +

2p
h�2
�� = 0

@f(h�)

@�
= 2

p
h�1 + 4

p
h�2 � u = 0:

Solving for h�(p; u):

h�1 =

�
p2

8p1 + 2p2
u

�2
h�2 =

�
p1

4p1 + p2
u

�2
:

Nonnegativity of h1; h2 is met. The second derivatives are negative, indicat-
ing a maximum.

(c) The expenditure function is determined by:

e(p; u) = p1h
�
1 + p2h

�
2:

Substituting and solving:

e(p; u) =
p1p

2
2 + 4p

2
1p2

64p21 + 32p1p2 + 4p
2
2

u2:

We have:
@e(p; u)

@p1
=

p22
64p21 + 32p1p2 + 4p

2
2

u2 = h�1

@e(p; u)

@p2
=

p21
16p21 + 8p1p2 + p

2
2

u2 = h�2:
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(d) The indirect utility function is determined by:

v(p; w) = 2
p
x�1 + 4

p
x�2:

Substituting:

v(p; w) = 2

r
p2

4p21 + p1p2
w + 4

r
1

p2
w � 1

4p1 + p2
w

=
8p1 + 2p2p
4p21p2 + p1p

2
2

p
w:

We have:

@v(p; w)

@w
=

4p1 + p2p
4p21p2 + p1p

2
2

1p
w

@v(p; w)

@p1
= � 4p1p

2
2 + p

3
2

(4p21p2 + p1p
2
2)
p
4p21p2 + p1p

2
2

p
w

@v(p; w)

@p2
= � 4p21p2 + 16p

3
1

(4p21p2 + p1p
2
2)
p
4p21p2 + p1p

2
2

p
w

Thus:
@v(p;w)
@p1

@v(p;w)
@w

= � p2
4p21 + p1p2

w = �x�1

@v(p;w)
@p2

@v(p;w)
@w

= � 4p1
4p1p2 + p22

w = �x�2;

which con�rms Roy�s identity, rpv(p;w)
@v(p;w)=@w

= �x�.

5.C.2

To show: The pro�t function � is convex in the price vector p.
Proof. Consider the price vectors p and p0 with optimal production plans
y(p) and y(p0); and associated pro�ts � (p) = pT � y(p) and � (p0) = p0T �
y(p0): The pro�t associated with a convex combination ep = �p+ (1� �)p0
of p and p0 (where � 2 [0; 1]) is:

� (ep) = epT � y(ep)
= �pT � y(ep) + (1� �)p0T � y(ep)
� �pT � y(p) + (1� �)p0T � y(p0)
= �� (p) + (1� �)� (p0) :
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The inequality follows from the optimality of y(p) at p and of y(p0) at p0:
The last equation implies that � is convex.

5.C.7

The intution behind the results is obvious: an increase in the output
price induces more production, and since the production function is strictly
concave, it is cost-minimizing to raise production by increasing all inputs.
Secondly, an increase in a factor price leads to less production, and strict
concavity of the production function implies that it is cost-minimizing to
reduce all inputs.
The pro�t maximization problem

max
z
pf(z)�wTz

has the �rst-order condition

prf(z�) = w:

Di¤erentiate with respect to p (recalling that z� is a function of p):

rf(z�) + pDzrf(z�)Dpz
� = 0:

Denoting Dzrf(z�) = H, the solution of the system of conditions is

Dpz
� = �H

�1rf(z�)
p

:

To show that Dpz
� > 0; we need H�1rf(z�) < 0: In the two-input case,

H�1 =

"
@2f
@z22

� @2f
@z1@z2

� @2f
@z1@z2

@2f
@z21

#
@2f
@z21

@2f
@z22
�
�

@2f
@z1@z2

�2
Since f is strictly concave, @2f

@z21
< 0, @2f

@z22
< 0, and jHj = @2f

@z21

@2f
@z22

��
@2f

@z1@z2

�2
> 0: Since rf(z�) > 0 (f is increasing) and @2f

@z1@z2
> 0 (given),

this implies

@2f

@z22
<

@2f

@z1@z2

@f
@z2
@f
@z1
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and

@2f

@z21
<

@2f

@z1@z2

@f
@z1
@f
@z2

:

It follows that

H�1rf(z�) = 1

jHj

"
@2f
@z22

@f
@z1
� @2f

@z1@z2

@f
@z2

@2f
@z21

@f
@z2
� @2f

@z1@z2

@f
@z1

#
< 0;

and therefore Dpz
� > 0: The general case involves more tedious notation,

but the same argument applies.

Next, di¤erentiate the �rst-order condition with respect to w (recalling
that z� is a function of w):

pDzrf(z�)Dwz
� =

pHDwz
� = 1:

The solution of the system of conditions is

Dwz
� =

H�11

p
:

To show that Dwz
� < 0; we need H�11 < 0: This amounts to negative row

sums of the adjoint matrix of H. In the two-input case, we need:"
@2f
@z22
� @2f

@z1@z2
@2f
@z21
� @2f

@z1@z2

#
< 0:

Since @2f
@z21

< 0 and @2f
@z22

< 0 by the concavity of f , and @2f
@z1@z2

> 0 by
assumption, the condition holds, and we have Dwz

� < 0:

5.C.9

(a)

The �rm�s problem is

max
z1;z2

p
p
z1 + z2 � w1z1 � w2z2:

Since z1 and z2 are perfect substitutes in the production function, the �rm
uses only z1 if w1 < w2; only z2 if w1 > w2; and an arbitrary ratio of z1 and
z2 if w1 = w2:
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Case 1 : w1 < w2: Then z�2 = 0 and the problem reduces to max
z1
p
p
z1 �

w1z1: First-order condition:

p

2
p
z�1
= w1:

Hence

z�1 =
p2

4w21
:

Therefore:

y =
p
z�1 + z

�
2

=
p

2w1
:

� = p
p
z�1 + z

�
2 � w1z�1 � w2z�2

=
p2

4w1
:

Case 2 : w1 > w2: Then z�1 = 0 and the problem reduces to max
z2
p
p
z2 �

w1z2: Symmetrically to Case 1, we have:Hence

z�2 =
p2

4w22

and

y =
p

2w1

� =
p2

4w2
:

Case 3 : w1 = w2: Denote the amount of the generic input by ez and the
generic factor price by ew. Then the problem reduces to maxez p

p
2ez � 2 ewez:

First-order condition:

p

2
p
2ez� = ew

Hence

ez� = p2

8ew2 ;
8
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where z�1 + z
�
2 = 2ez� and ew = w1 + w2: There are in�nitely many solutions

for the optimal input vector z�: However, pro�t is unique:

y =
p
2ez�

=
p

2 ew:
� = p

p
2ez� � 2ewez�

=
p2

4ew:
(b)

The �rm�s problem is

max
z1;z2

p
p
min fz1; z2g � w1z1 � w2z2:

Since z1 and z2 are perfect complements, the �rm optimizes by using z1 and
z2 in equal amounts, i.e. z�1 = z

�
2 such that min fz�1 ; z�2g = z�1 = z�2 : Then the

problem reduces to max
z1
p
p
z1 � (w1 + w2) z1: First-order condition:

p

2
p
z1

= w1 + w2

z�1 = z�2 =
p2

4 (w1 + w2)
2 :

Therefore:

y =
p
min fz�1 ; z�2g

=
p

2 (w1 + w2)
:

� = p
p
z1 � (w1 + w2) z1

=
p2

4 (w1 + w2)
:

(c)

Assume �rst that � < 1 and � 6= 0; these special cases are discussed later.
The �rm�s problem is:

max
z1;z2

p (z�1 + z
�
2)

1
� � w1z1 � w2z2:

9
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Observe that the CES production function is homogeneous of degree 1 (i.e.
it exhibits constant returns to scale):

((�z1)
� + (�z2)

�)
1
� = � (z�1 +

� z�2)
1
� :

This implies that, given a constant price vector (p; w1; w2), the �rm either
produces nothing (hence demands z�1 = z�2 = 0) or produces an in�nite
quantity (hence demands z�1 = z

�
2 = 1) or produces an arbitrary quantity,

employing the inputs in a �xed proportion. Which case obtains depends on
the relationship between p and the factor prices w1 and w2:
Taking �rst-order conditions with respect to z1,

p
(z��1 + z

��
2 )

1��
�

z�1��1

= w1

z��1 + z
��
2

z��1
=

�
w1
p

� �
1��

z�1
z�2

=
1��

w1
p

� �
1�� � 1

� 1
�

and symmetrically with respect to z2;

z�1
z�2
=

 �
w2
p

� �
1��

� 1
! 1

�

:

Solving for p in terms of w1 and w2:

p =
w1w2�

w
�

1��
1 + w

�
1��
2

� 1��
�

:

If this condition holds, then any vector (z1; z2) such that
z�1
z�2
=

��
w2
p

� �
1�� � 1

� 1
�

is optimal for the �rm. Since the righthand term is constant, all linear scal-
ings of an optimal factor combination are optimal, i.e. there are in�nitely
many solutions z�. Pro�t is, however, unique:

� = p (z��1 + z
��
2 )

1
� � w1z�1 � w2z2

= p

  �
w2
p

� �
1��

� 1
!
z�

�

2 + z
��
2

! 1
�

� w1

 �
w2
p

� �
1��

� 1
! 1

�

z�2 � w2z�2

= p

�
w2
p

� 1
1��

z�2 � w1

 �
w2
p

� �
1��

� 1
! 1

�

z�2 � w2z�2 :
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Substituting for p and simplifying,

� =
w1w2�

w
�

1��
1 + w

�
1��
2

� 1��
�

 
w

�
1��
1 + w

�
1��
2

w
�

1��
1

! 1
�

z�2 � w1
�
w2
w1

� 1
1��

z�2 � w2z�2

=
w1w2

�
w

�
1��
1 + w

�
1��
2

� 1
�

�
w

�
1��
1 + w

�
1��
2

� 1��
�
�
w

�
1��
1

� 1
�

z�2 � w1
�
w2
w1

� 1
1��

z�2 � w2z�2

= w
��
1��
1 w2

�
w

�
1��
1 + w

�
1��
2

�
z�2 � w1

�
w2
w1

� 1
1��

z�2 � w2z�2

=

�
w2 + w

��
1��
1 w

1
1��
2

�
z�2 �

�
w

��
1��
1 w

1
1��
2 + w2

�
z�2

= 0:

In the extreme cases, the �rm either earns zero pro�t by producing noth-
ing if

p <
w1w2�

w
�

1��
1 + w

�
1��
2

� 1��
�

or in�nite pro�t by producing an in�nite quantity if

p >
w1w2�

w
�

1��
1 + w

�
1��
2

� 1��
�

:

Now let � = 1: In this case the production function is linear, and the
threshold condition is easily seen to be p = min fw1; w2g : If this holds,
then the �rm uses the cheaper input to produce an arbitrary quantity (or
if w1 = w2; the �rm employs the factors in an arbitrary ratio). Pro�t is
(p� ew) ez� = 0: If p > min fw1; w2g ; the �rm uses the cheaper input to
produce an in�nite quantity (or if w1 = w2; the �rm employs the factors in
an arbitrary ratio); pro�t is in�nite. Finally, if p < min fw1; w2g ; then the
�rm produces nothing and earns no pro�t.
Lastly, if � = 0;the CES production function is unde�ned, but it can be

shown that as � approaches zero, the CES function is the function
p
z1z2 in

the limit. Taking logs,

ln f = ln (z�1 + z
�
2)

1
�

=
ln (z�1 + z

�
2)

�
;
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we can apply L�Hôpital�s rule to get

lim
�!0

ln f = lim
�!0

@
@�
ln (z�1 + z

�
2)

@
@�
�

= lim
�!0

z�1 ln z1+z
�
2 ln z2

z�1+z
�
2

1

=
ln z1 + ln z2

2

=
1

2
ln (z1z2) :

Raising both sides to base e;

f =
p
z1z2:

In this case, the �rm�s maximization problem is:

max
z1;z2

p
p
z1z2 � w1z1 � w2z2:

Notice that the production function continues to be homogeneous of degree
1. The �rst-order conditions are:

pz�2
2
p
z�1z

�
2

= w1

pz�1
2
p
z�1z

�
2

= w2:

Solving these separately for the factor demand ratio:

z�1
z�2

=
1

4
�
w1
p

�2
z�1
z�2

= 4

�
w2
p

�2
:

Then the "stable" condition is

4

�
w1
p

�2
4

�
w2
p

�2
= 1

p = 2
p
w1w2:

If this holds, the �rm produces an arbitrary quantity of output, using the

factors in the ratio z�1
z�2
= 4

�
w2
p

�2
: Since every linear scaling of an optimal

12
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demand vector is also optimal, there are in�nitely many solutions. Pro�t is
zero:

� = p
p
z�1z

�
2 � w1z�1 � w2z�2

= p

s
4

�
w2
p

�2
z�22 � w14

�
w2
p

�2
z�2 � w2z�2

= 2w2z
�
2 � w14

�
w2

2
p
w1w2

�2
z�2 � w2z�2

= 2w2z
�
2 � w2z�2 � w2z�2

= 0:

The remaining cases are p > 2
p
w1w2; in which case the �rm produces

in�nite output and earns in�nite pro�t, and p < 2
p
w1w2, which gives zero

production and zero pro�t.

6.B.2

If U representing % on L has the expected utility form, then % satis�es
the independence axiom.
Proof. A preference relation % on the set L of simple lotteries satis�es the
independence axiom if and only if

L % L0 () �L+ (1� �)L00 % �L0 + (1� �)L00

for all L;L0; L00 2 L and all � 2 (0; 1) : Since this is an "if and only if" state-
ment, we have to show that if U has the expected utility form (equivalently,
U is linear), then (if)

�L+ (1� �)L00 % �L0 + (1� �)L00 ) L % L0:

and (only if)

L % L0 ) �L+ (1� �)L00 % �L0 + (1� �)L00:

(If) Suppose [�L+ (1� �)L00] % [�L0 + (1� �)L00] : Since U represents
%, it follows that

U (�L+ (1� �)L00) � U (�L0 + (1� �)L00) :

Since U is linear, this implies

�U (L) + (1� �)U (L00) � �U (L0) + (1� �)U (L00)
U (L) � U (L0) :
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But then L % L0 as required.
(Only if) Suppose L % L0: Then U (L) � U (L0) : Multiplying by � and

adding (1� �)U (L00) gives

�U (L) + (1� �)U (L00) � �U (L0) + (1� �)U (L00) ;

By linearity of U;

U (�L+ (1� �)L00) � U (�L0 + (1� �)L00) ;

which implies

�L+ (1� �)L00 % �L0 + (1� �)L00:

6.B.4

(a)

It is given that A % D, hence if U represents %, we must have U (A) �
U (D) : Since utility functions are unique up to monotone transformations,
we can assign arbitrary values to U (A) and U (D) such that U (A) � U (D) :
Say U (A) = 1 and U (D) = 0: Next, it is given that

B � pA+ (1� p)D

and

C � qB + (1� q)D:

These imply (using the linearity of U):

U (B) = pU (A) + (1� p)U (D)
U (C) = qU (B) + (1� q)U (D) :

Substituting U (A) = 1 and U (D) = 0;

U (B) = p

U (C) = pq:

A linear utility function that represents % is U : L �! R such that

U (A) = 1

U (B) = p

U (C) = pq

U (D) = 0:
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(b)

The event that �ooding occurs contains outcomes C and D. The event
that no �ooding occurs contains outcomes A and B. The conditional prob-
ability of an evacuation in the event of �ooding is:

Pr (C)

Pr (C [D) =
Pr (C)

Pr (C) + Pr (D)

(since C \D = ?). This implies:

Pr (D) =
1� Pr(C)

Pr(C[D)
Pr(C)

Pr(C[D)

Pr (C) :

We know the probability of �ooding:

Pr (C [D) = Pr (C) + Pr (D) = 0:01:

Therefore,

Pr (D) =
1� Pr(C)

Pr(C[D)
Pr(C)

Pr(C[D)

(0:01� Pr (D))

= 0:01

Pr(C)
Pr(C[D) �

�
Pr(C)

Pr(C[D)

�2
Pr(C)

Pr(C[D)

:

If criterion 1 is used, Pr(C)
Pr(C[D) = 0:9: If criterion 2 is used, Pr(C)

Pr(C[D) = 0:95:
Hence

Pr (D)1 = 0:001

Pr (D)2 = 0:0005

and, since Pr (C) = Pr (D)
Pr(C)

Pr(C[D)

1� Pr(C)
Pr(C[D)

;

Pr (C)1 = 0:009

Pr (C)2 = 0:0095:

The conditional probability of an evacuation in the event of no �ooding
is:

Pr (B)

Pr (A [B) =
Pr (B)

Pr (A) + Pr (B)
:

15



Christian Roessler (U Melbourne)

(since A \B = ?). This implies:

Pr (B) =

Pr(B)
Pr(A[B)

1� Pr(B)
Pr(A[B)

Pr (A) :

By an elementary property of probability,

Pr (A) + Pr (B) + Pr (C) + Pr (D) = 1:

Substituting for Pr (B) ; we have

Pr (A) = (1� Pr (C)� Pr (D))
�
1� Pr (B)

Pr (A [B)

�
:

If criterion 1 is used, Pr(B)
Pr(A[B) = 0:1: If criterion 2 is used, Pr(B)

Pr(A[B) = 0:05:
Thus:

Pr (A)1 = 0:891

Pr (A)2 = 0:9405

and

Pr (B)1 = 0:099

Pr (B)2 = 0:0495:

In summary, the probability distributions are, for criterion 1,

Pr (A)1 = 0:891

Pr (B)1 = 0:099

Pr (C)1 = 0:009

Pr (D)1 = 0:001:

For criterion 2,

Pr (A)2 = 0:9405

Pr (B)2 = 0:0495

Pr (C)2 = 0:0095

Pr (D)2 = 0:0005:

Under the two criteria the agency has, respectively, utility

U1 (�) = Pr (A)1 U (A) + Pr (B)1 U (B) + Pr (C)1 U (C) + Pr (D)1 U (D)

= 0:891 + 0:099p+ 0:009pq:

16
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and

U2 (�) = Pr (A)2 U (A) + Pr (B)2 U (B) + Pr (C)2 U (C) + Pr (D)2 U (D)

= 0:9405 + 0:0495p+ 0:0095pq:

Since p < 1;

U1 (�)� U2 (�) = �0:0495 + 0:0495p� 0:0005pq < 0;

so criterion 2 is preferable.

6.C.1

Suppose, contrary to the claim, that when q > � the individual insures
completely: � � D. Then � > 0 and the agent�s problem

max
��0

[�u (w � q�� (D � �)) + (1� �)u (w � q�)]

has �rst order condition

(1� q)� @
@�
u (w � q�� (D � �)) = q (1� �) @

@�
u (w � q�)

(su¢ cient under strict concavity).
Moreover, � � D and strict concavity of u imply

@

@�
u (w � q�� (D � �)) � @

@�
u (w � q�) ;

therefore

(1� q)� � q (1� �)
� � q;

a contradiction.

6.C.9

(a)

The agent�s problem without uncertainty

max
x
[u (w � x) + v (x)]

has �rst order condition

@

@x
u (w � x0) =

@

@x
v (x0) :

17
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The agent�s problem with uncertainty

max
x
[u (w � x) + E [v (x+ y)]]

has �rst order condition

@

@x
u (w � x�) = E

�
@

@x
v (x� + y)

�
:

Suppose, contrary to the claim, that x� � x0: Then, by concavity of v,

E

�
@

@x
v (x� + y)

�
� E

�
@

@x
v (x0 + y)

�
;

and

E

�
@

@x
v (x0 + y)

�
>
@

@x
v (x0)

implies

E

�
@

@x
v (x� + y)

�
>
@

@x
v (x0) :

Using the �rst order conditions, this leads to

@

@x
u (w � x�) > @

@x
u (w � x0) ;

where concavity of u implies x� > x0; a contradiction.

(b)

Let

�
@3

@x31
v1 (x1)

@2

@x21
v1 (x1)

� �
@3

@x32
v2 (x2)

@2

@x22
v2 (x2)

;

or equivalently,

�
@2

@x21

@
@x1
v1 (x1)

@
@x1

@
@x1
v1 (x1)

� �
@2

@x22

@
@x2
v2 (x2)

@
@x2

@
@x2
v2 (x2)

rA

�
@

@x1
v1 (x1)

�
� rA

�
@

@x2
v2 (x2)

�
;

18
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where rA (�) is the Arrow-Pratt coe¢ cient of absolute risk aversion. Therefore

c

�
@

@x1
v1 (x1)

�
� c

�
@

@x2
v2 (x2)

�
(by proposition 6.C.2(iii)), where c (x+ y) denotes the certainty equivalent
of lottery x+y. We will derive the certainty equivalents of the risky prospects
x�1 + y and x

�
2 + y (i.e. the optimal choices under v1 and v2) and use

E

�
@

@x1
v1 (x0 + y)

�
>

@

@x1
v1 (x0)

to show that, given the relationship of the certainty equivalents,

E

�
@

@x2
v2 (x0 + y)

�
>

@

@x2
v2 (x0) :

The respective �rst-order conditions for the problems in v1 and v2 are:

@

@x1
u (w � x�1) = E

�
@

@x1
v1 (x

�
1 + y)

�
and

@

@x2
u (w � x�2) = E

�
@

@x2
v2 (x

�
2 + y)

�
:

Let

E

�
@

@x1
v1 (x0 + y)

�
>

@

@x1
v1 (x0)

and denote by ex1 the level of saving such that
E

�
@

@x1
v1 (x0 + y)

�
=

@

@x1
v1 (ex1) :

If we interpret @
@x1
v1 as a Bernoulli utility function, then ex1 is the certainty

equivalent of x0 + y under v1: Concavity of v implies that ex1 = x0 � z for
some z > 0. Similarly, denote by ex2 the level of saving such that

E

�
@

@x2
v2 (x0 + y)

�
=

@

@x2
v2 (ex2) :

Again, ex2 is the certainty equivalent of x0 + y under v2: From our initial
argument, we have ex1 � ex2; which implies

x0 � ex2 � z > 0ex2 � x0 � z < x0:
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But then (by concavity of v2)

E

�
@

@x2
v2 (x0 + y)

�
>

@

@x2
v2 (ex0) :

As demonstrated in part (a),

E

�
@

@x
v (x0 + y)

�
>
@

@x
v (x0)

implies

x� > x0:

Thus we have shown that, if the coe¢ cient of absolute prudence is weakly
smaller for utility function v1 than for v2; then x�1 > x0 only if x

�
2 > x0: More

succinctly, x�2 � x�1 (the more "prudent" agent will save more).

(c)

Strict concavity must be assumed for parts (c) and (d). If @3

@x3
v (x) =

@2

@x2
@
@x
v (x) > 0 and (by strict concavity of v) @2

@x2
v (x) = @

@x
@
@x
v (x) < 0; the

function @
@x
v (x) is strictly convex. Applying Jensen�s inequality,

E

�
@

@x
v (x+ y)

�
>
@

@x
v (E [x+ y]) :

Using E [y] = 0; hence E [x+ y] = E [x] = x,

E

�
@

@x
v (x+ y)

�
>
@

@x
v (x) :

(d)

From

@rA (v (W ))

@W
= � @

@W

@2v(W )
@2W
@v(W )
@W

= �
@3v(W )
@3W

@v(W )
@W

�
�
@2v(W )
@2W

�2
�
@v(W )
@W

�2 < 0;

we have

@3v (W )

@3W

@v (W )

@W
>

�
@2v (W )

@2W

�2
@3v(W )
@3W
@2v(W )
@2W

@v (W )

@W
<

@2v (W )

@2W

�
@3v(W )
@3W
@2v(W )
@2W

> �
@2v(W )
@2W
@v(W )
@W

:

20



Christian Roessler (U Melbourne)

Since @2v(W )
@2W

< 0 and @v(W )
@W

> 0 (by strict concavity), @
3v(W )
@3W

> 0:

6.C.16

(a)

If the individual owns the lottery, the expected utility in case of no action
is

pu (w +G) + (1� p)u (w +B) ;

and the expected utility upon selling the lottery at price q is

u (w + q) :

Selling is rational if

u (w + q) � pu (w +G) + (1� p)u (w +B)

(equality at the minimum acceptable price). Provided that u is bijective,
there exists an inverse mapping u�1 and we can solve explicitly for q,

q = u�1 (pu (w +G) + (1� p)u (w +B))� w:

(b)

If the individual does not own the lottery, the expected utility in case of
no action is

u (w) ;

and the expected utility upon buying the lottery at price r is

pu (w � r +G) + (1� p)u (w � r +B) :

Buying is rational if

pu (w � r +G) + (1� p)u (w � r +B) � u (w)

(equality at the maximum acceptable price). For general functional forms of
u, this expression has no explicit solution for r. All that can be said is that
r is implicitly determined by

pu (w � r +G) + (1� p)u (w � r +B) = u (w) :
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(c)

In general, q (the minimum sale price of the lottery) and r (the maximum
purchase price of the lottery) are not equal. The reason is a wealth e¤ect.
If the lottery is initially owned, the sale adds to the payo¤ that is not state
contingent; in the opposite case, the purchase subtracts from �xed wealth. In
case of risk aversion that is decreasing in wealth, the lottery has more value
to a seller (since the buyer�s wealth is reduced by paying the �xed price,
causing him to discount the lottery). On the other hand, if risk aversion
is increasing in wealth, the lottery becomes more valuable to a buyer. A
su¢ cient condition for the (minimum) selling and (maximum) buying price
to be the same is therefore that u has a constant absolute risk aversion form,
i.e. it belongs to the CARA class.
To see this, observe that at the minimum sale / maximum purchase prices,

the expected utility of owning the lottery equals the utility of the certainty
equivalent. Denote the certainty equivalent of the lottery in part (a) as ca
and the certainty equivalent of the lottery in part (b) as cb; hence ca = w+ q
and cb = w: Now, ca (the seller�s certainty equivalent) re�ects the addition of
risk L to �xed wealth w, whereas cb (the buyer�s certainty equivalent) re�ects
the addition of the same risk to �xed wealth w � r:
By an analogous argument to that in proposition 6.C.3(iii), w � ca and

w � r � cb are constant in w and w � r (respectively) if (and only if) u has
the CARA property. We can also conclude that

w � ca = w � r � cb:

(If w� ca = k and w� r� cb = l, then scaling �xed wealth from w to w� r
and k�s invariance to scaling imply w� r� cb = k; hence k = l:) Substituting
for ca and cb, we have

q = r:

(d)

If u =
p
x and G = 10; B = 5; w = 10,

q =
�
p
p
20 + (1� p)

p
15
�2
� 10;

and r is determined by

p
p
20� r + (1� p)

p
15� r =

p
10:
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This expression can be transformed into a quadratic 
2p� 1
p2

r � 20 + 10
p2
+

�
1� p
p

�2
15

!2
=

 
2

p
10

p

1� p
p

!2
(15� r)

and solved for a function in p by straightforward but tedious calculations.
(From the solution to the quadratic formula, eliminate the negative price.)

6.C.20

The certainty equivalent c (") is de�ned by

u (c (")) =
1

2
u (x+ ") +

1

2
u (x� ") :

Di¤erentiating with respect to ":

u0 (c (")) c0 (") =
1

2
u0 (x+ ")� 1

2
u0 (x� ")

u00 (c (")) c0 (") + u0 (c (")) c00 (") =
1

2
u00 (x+ ") +

1

2
u00 (x� ") :

(where f 0 is shorthand for @f
@"
). As " �! 0, this converges to

u00 (c (0)) c0 (0) + u0 (c (0)) c00 (0) = u00 (x)

in the limit.
Solve the �rst derivative for c0 (") and evaluate at " = 0:

c0 (") =
u0 (x+ ")� u0 (x� ")

2u0 (c ("))

lim
"�!0

c0 (") = 0:

Moreover, observe that

lim
"�!0

c (") = x;

since there is no uncertainty at " = 0.
Substituting for c0 (0) and c (0) in the second derivative, we have

u0 (x) c00 (0) = u00 (x) ;

i.e.

c00 (0) =
u00 (x)

u0 (x)
= �rA (x) :
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6.E.1

The expected regret function is

R (x; x0) =
SX
s=1

�sh (max [0; x
0
s � xs])

=
1

3

SX
s=1

p
max [0; x0s � xs]:

De�ne % by x % x0 if and only if R (x; x0) � R (x0; x) :
For x = (0;�2; 1) ; x0 = (0; 2;�2) ; and x00 = (2;�3;�1) ; we can show:

x0 % x since

R (x; x0) =
2

3
�
p
3

3
= R (x0; x) ;

x % x00 since

R (x; x00) =

p
2

3
�
p
2 + 1

3
= R (x00; x) ;

x00 % x0 since

R (x0; x00) =

p
2 + 1

3
=
5 + 2

p
2

9
� 5

9
=

p
5

3
= R (x00; x0) :

But transitivity requires that x0 % x and x % x00 only if x0 % x00; so
x00 % x0 violates transitivity.

7.E.1

(a)

Player 1�s pure strategies specify: 1�s move at the �rst information set
(L; M; or R), 1�s move at the third information set (x or y), given that M
was played initially, and 1�s move at the third information set (x or y), given
that R was played initially. Listing actions in that order, the pure strategies
are:

A1 =

8<:
L; x; x L; x; y L; y; x L; y; y
M; x; x M; x; y M; y; x M; y; y
R; x; x R; x; y R; y; x R; y; y

9=; :
Player 1�s strategies are the mixed pro�les �1 2 �A1 [0; 1] such that

P
k2A1 �

k
1 =

1:
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Player 2�s pure strategies are:

A2 = fl; rg :

Player 2�s strategies are the mixed pro�les �2 2 [0; 1]� [0; 1] such that �l2 +
�r2 = 1.

(b)

Suppose player 2 adopts mixed strategy �2 2 f�g � f1� �g ; i.e. player
2 assigns some frequency � to action l and frequency (1� �) to action r.
Let player 1�s behavioral strategy be as follows. At the �rst information set,
play L with probability u1; M with probability u2; and R with probability
1�u1�u2: At the information set reached by playingM initially, play x with
probability v and y with probability (1� v) : At the information set reached
by playing R initially, play x with probability w and y with probability
(1� w) : The set of player 1�s behavioral strategies consists of triple lists of
probabilities (one list for each information set):

B1 = f(u1; u2; 1� u1 � u2) ; (v; 1� v) ; (w; 1� w) : u1; u2; v; w 2 [0; 1]g :

Given a behavioral strategy for player 1, the probability that the game
reaches a given terminal node is:

Pr (T0 j s1 2 B1) = u1

Pr (T1 j s1 2 B1) = u2�v

Pr (T2 j s1 2 B1) = u2� (1� v)
Pr (T3 j s1 2 B1) = u2 (1� �) v
Pr (T4 j s1 2 B1) = u2 (1� �) (1� v)
Pr (T5 j s1 2 B1) = (1� u1 � u2)�w
Pr (T6 j s1 2 B1) = (1� u1 � u2)� (1� w)
Pr (T7 j s1 2 B1) = (1� u1 � u2) (1� �)w
Pr (T8 j s1 2 B1) = (1� u1 � u2) (1� �) (1� w) :

If player 1 instead plays a mixed strategy, the probability distribution over
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terminal nodes is:

Pr (T0 j s1 2 A1) = �Lxx1 + �Lxy1 + �Lyx1 + �Lyy1

Pr (T1 j s1 2 A1) =
�
�Mxx
1 + �Mxy

1

�
�

Pr (T2 j s1 2 A1) =
�
�Myx
1 + �Myy

1

�
�

Pr (T3 j s1 2 A1) =
�
�Mxx
1 + �Mxy

1

�
(1� �)

Pr (T4 j s1 2 A1) =
�
�Myx
1 + �Myy

1

�
(1� �)

Pr (T5 j s1 2 A1) =
�
�Rxx1 + �Ryx1

�
�

Pr (T6 j s1 2 A1) =
�
�Rxy1 + �Ryy1

�
�

Pr (T7 j s1 2 A1) =
�
�Rxx1 + �Ryx1

�
(1� �)

Pr (T8 j s1 2 A1) =
�
�Rxy1 + �Ryy1

�
(1� �) :

Setting

Pr (T j s1 2 A1) = Pr (T j s1 2 B1)

for all T , we obtain conditions on the mixed strategy pro�le for player 1 that
leads to the same distribution of realizations as a given behavioral strategy:

�Lxx1 + �Lxy1 + �Lyx1 + �Lyy1 = u1�
�Mxx
1 + �Mxy

1

�
� = u2�v�

�Myx
1 + �Myy

1

�
� = u2� (1� v)�

�Mxx
1 + �Mxy

1

�
(1� �) = u2 (1� �) v�

�Myx
1 + �Myy

1

�
(1� �) = u2 (1� �) (1� v)�

�Rxx1 + �Ryx1

�
� = (1� u1 � u2)�w�

�Rxy1 + �Ryy1

�
� = (1� u1 � u2)� (1� w)�

�Rxx1 + �Ryx1

�
(1� �) = (1� u1 � u2) (1� �)w�

�Rxy1 + �Ryy1

�
(1� �) = (1� u1 � u2) (1� �) (1� w) :
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Simplifying and eliminating redundant conditions, we end up with

�Lxx1 + �Lxy1 + �Lyx1 + �Lyy1 = u1

�Mxx
1 + �Mxy

1 = u2v

�Myx
1 + �Myy

1 = u2 (1� v)
�Rxx1 + �Ryx1 = (1� u1 � u2)w:

(The reduction to �ve conditions is straightforward; a bit of algebra shows
that one more can be eliminated since they are linearly dependent withP

k2A1 �
k
1 = 1.) Any mixed strategy that satis�es this set of equations is

realization-equivalent to the behavioral strategy. Clearly, the set of solutions
is nonempty (in fact, it is in�nite), hence there exist realization-equivalent
mixed strategies for every behavioral strategy.

(c)

Suppose player 1 adopts mixed strategy s1 = �1 =
�
�Lxx1 � � ��Ryy1

�
: A

realization-equivalent behavioral strategy s1 = ((u1; u2; 1� u1 � u2) ; (v; 1� v) ; (w; 1� w))
must satisfy the conditions just derived in part (b). Solve the set of equations
for u1; u2; v; and w:

u1 = �Lxx1 + �Lxy1 + �Lyx1 + �Lyy1

u2 = �Mxx
1 + �Mxy

1 + �Myx
1 + �Myy

1

v =
�Mxx
1 + �Mxy

1

�Mxx
1 + �Mxy

1 + �Myx
1 + �Myy

1

w =
�Rxx1 + �Ryx1

�Rxx1 + �Rxy1 + �Ryx1 + �Ryy1

:

The solution is nonempty (and unique); hence there exists a realization-
equivalent behavioral strategy for every mixed strategy.

(d)

Intuitively, the game is no longer one of perfect recall because, at the
second information set, player 1 does not remember his initial move (M or
R). Formally, there exist now decision nodes x and x0 for player 1 where
H (x) = H (x0) ; and the only predecessor of x and x0 (the initial node) has
an action leading to x but not to x0:
Player 1�s set of pure strategies has changed to

A01 =

8<:
L; x L; y
M; x M; y
R; x R; y

9=;
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since player 1 can no longer distinguish between the initial moves M and R
when choosing x or y: Player 2�s strategies are unaltered.
Suppose again that player 2 adopts mixed strategy �2 2 f�g � f1� �g :

Player 1�s behavioral strategy is as follows. At the �rst information set,
play L with probability u1; M with probability u2; and R with probability
1 � u1 � u2: At the second information set, play x with probability t and y
with probability (1� t) : The set of behavioral strategies consists of pairs of
probability lists:

B01 = f(u1; u2; 1� u1 � u2) ; (t; 1� t) : u1; u2; t 2 [0; 1]g :

Given behavioral strategy ((u1; u2; 1� u1 � u2) ; (t; 1� t)) for player 1, the
probability distribution over terminal nodes is:

Pr (T0 j s1 2 B01) = u1

Pr (T1 j s1 2 B01) = u2�t

Pr (T2 j s1 2 B01) = u2� (1� t)
Pr (T3 j s1 2 B01) = u2 (1� �) t
Pr (T4 j s1 2 B01) = u2 (1� �) (1� t)
Pr (T5 j s1 2 B01) = (1� u1 � u2)�t
Pr (T6 j s1 2 B01) = (1� u1 � u2)� (1� t)
Pr (T7 j s1 2 B01) = (1� u1 � u2) (1� �) t
Pr (T8 j s1 2 B01) = (1� u1 � u2) (1� �) (1� t) :

If player 1 adopts a mixed strategy, the probability distribution over terminal
nodes is:

Pr (T0 j s1 2 A01) = �Lx1 + �Ly1
Pr (T1 j s1 2 A01) = �Mx

1 �

Pr (T2 j s1 2 A01) = �My
1 �

Pr (T3 j s1 2 A01) = �Mx
1 (1� �)

Pr (T4 j s1 2 A01) = �My
1 (1� �)

Pr (T5 j s1 2 A01) = �Rx1 �

Pr (T6 j s1 2 A01) = �Ry1 �

Pr (T7 j s1 2 A01) = �Rx1 (1� �)
Pr (T8 j s1 2 A01) = �Ry1 (1� �) :

Setting

Pr (T j s1 2 A01) = Pr (T j s1 2 B01)
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for all T and eliminating redundancies:

�Lx1 + �Ly1 = u1

�Mx
1 = u2t

�My
1 = u2 (1� t)
�Rx1 = (1� u1 � u2) t:

There are in�nitely many solutions for �1, hence there still exist realization-
equivalent mixed strategies for every behavioral strategy.
The converse fails in the presence of perfect recall. If we solve for u1; u2;

and t, there are four linearly independent equations (and
P

k2A1 �
k
1 = 1) in

three unknowns. Using the �rst three conditions,

u1 = �Lx1 + �Ly1
u2 = �Mx

1 + �My
1

t =
�Mx
1

�Mx
1 + �My

1

:

But the fourth condition is not generally compatible:

t =
�Rx1

1� u1 � u2

=
�Rx1

�Rx1 + �Ry1
:

Unless �Rx1
�Rx1 +�Ry1

=
�Mx
1

�Mx
1 +�My

1

(i.e. unless the mixed strategy is such that the

conditional probability of x given initial moveM equals the conditional prob-
ability of x given initial move R), the solution is empty and there is no
realization-equivalent behavioral strategy.

8.B.1

A strictly dominant strategy yields the highest payo¤ among all available
strategies, regardless of other players�actions. Formally, strategy si 2 Si is
strictly dominant if ui (si; s�i) > ui (s0i; s�i) for all s

0
i 6= si and any s�i 2 S�i.

To show that a strictly dominant strategy exists, it is enough to demonstrate
that the strategy si which maximizes i�s payo¤ does not depend on s�i, i.e.
in the context of the problem, the bene�t-maximizing choice of e¤ort hi does
not depend on other h�i (hence the optimal strategy si is a constant e¤ort
hi with respect to h�i).
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Supposing that the subsidy would be distributed equally among the I
�rms in the industry (this assumption is merely for convenience; it does not
a¤ect the validity of the argument), each �rm�s payo¤ is:

ui (si; s�i) =
�
P

i hi + �
Q
i hi

I
� w2i :

The �rst-order condition for payo¤ maximization is:

@ui (si; s�i)

@hi
=
�+ �

Q
�i hi

I
� 2wi

@wi
@hi

= 0:

(If) For � = 0, the �rst-order condition reduces to �
I
�2wi @wi@hi

= 0. Clearly,
the optimal choice of hi does not depend on h�i; hence h�i that satis�es the
�rst-order condition is a strictly dominant strategy.
(Only if) For � 6= 0, h�i that satis�es �rst-order condition is a function of

h�i, so there is no strictly dominant strategy.

8.B.4

The set of strategies surviving iterated deletion of strictly dominated
strategies is invariant to the order of deletion.
Proof. Let � be an arbitrary game with initial strategy set S0: Suppose
iterated deletion of strictly dominated strategies, in some order, maximally
reduces the strategy set to S: Now consider another order of deletion that
maximally reduces ~S0 = S0 to ~S: The claim is that S = ~S. So we need to
prove two inclusions: S � ~S and ~S � S:
First we dispose of the trivial case that there are no strictly dominated

strategies in S0: Then S = S0 = ~S0 = ~S; and we are done. Now suppose S0
does contain strictly dominated strategies, so S � S0 and ~S0 � ~S:

For S � ~S, the argument is by induction. Let
n
~Si

on
i=0

be a sequence of

strategy sets associated with a sequence of games
n
~�i

on
i=0

such that ~Si+1 =

~Si n si, where si is a strictly dominated strategy in game ~�i; and ~Sn = ~S:
The inductive hypothesis is that S � ~Si: The inductive hypothesis holds
for i = 0; since ~S0 = S0 and S � S0. Generalizing, say that the inductive
hypothesis holds for i; and consider i+1: Given that S � ~Si (by assumption)
and ~Si+1 = ~Si n si (by de�nition), S � ~Si+1 if and only if si =2 S:
We know that there exists s0i 2 ~Si that dominates si in ~�i: (Write this as

si � s0i:) Because S � ~Si, si � s0i in ~�i implies si � s0i in �. So if s
0
i 2 S;

then si =2 S, since it is dominated. If s0i =2 S; then there exists s00i 2 S
that transitively dominates s0i and also si. To make this explicit, de�ne the
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transitive closure of the strict domination relation � as follows: s0i �� s00i if
there exists a sequence s0i; : : : ; s

00
i such that every element strictly dominates

the element preceding it. Notice that s0i �� s00i implies s
0
i � s00i : Because

s0i =2 S only if there exists s00i 2 S such that s0i �� s00i ; and since si � s0i; we
can construct such a sequence from si to s00i , and as s

00
i 2 S; it is necessary

that si is strictly dominated in S: From this, we have si =2 S and consequently
S � ~Si+1 for all i, which proves inductively that S � ~S:
For the reverse inclusion, it su¢ ces to observe that S was chosen arbi-

trarily, so S � ~S also implies ~S � S (we could just rename the sets, and the
proof would be identical). Hence S = ~S; which con�rms the claim that any
order of deletion leads to the same set of strategies. (It su¢ ces to consider
pure strategies, since a mixed strategy is dominated if and only if all pure
strategies in its support are dominated.)

8.C.4
(a)

Suppose player 2 assigns probability p to action U (and 1� p to D), and
player 3 assigns probability q to action l (and 1 � q to r). Then player 1�s
expected utility from pure strategies L; M , and R is:

E [U (L)] = q (� + 4") + (1� q) (� � 4")
= � + (2q � 1) 4"

E [U (M)] = (pq + (1� p) (1� q)) (� � �) + (p (1� q) + (1� p) q)
�
� +

�

2

�
= � + (3p� 6pq + 3q � 2) �

2
E [U (R)] = q (� � 4") + (1� q) (� + 4")

= � + (1� 2q) 4"

If q = 1
2
;

E [U (M)] = � �
�

4
< � = E [L] = E [R] :

If q < 1
2
; player 1�s payo¤ is increasing in p; since @ E[M ]

@p
= (3� 6q) �

2
> 0:

So it su¢ ces to show that E [M ] is not a best response if p = 1: In this case,

E [U (M)] = � + (1� 3q)
�

2
:
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Since � < 4",

E [U (R)] = � + (1� 2q) 4" > � + (1� 2q) �

= � + (1� 3q) �
2
+
� (1� q)

2
> E [U (M)] :

If q > 1
2
; player 1�s payo¤ is increasing in p; since @ E[M ]

@p
= (3� 6q) �

2
< 0:

It su¢ ces to show that E [M ] is not a best response if p = 0: In this case,

E [U (M)] = � + (3q � 2)
�

2
:

Since � < 4",

E [U (L)] = � + (2q � 1) 4" > � + (2q � 1) �
= � + (3q � 2) �

2
+
�q

2
> E [U (M)] :

We have shown that, for any randomization that players 2 and 3 may
adopt, there is a pure strategy for player 1 that outperforms M , so M is
never a best response.

(b)

If player 1 assigns probability z to action L (and 1 � z to R), we show
that there always exists a randomization for players 2 and 3 such thatM has
a higher expected payo¤ than f(L; z) ; (R; 1� z)g :
Suppose z � 1

2
: Then if p = 1 and q = 0;

E [U (M)] = � +
�

2

and

E [U (f(L; z) ; (R; 1� z)g)] = z E [U (L)] + (1� z) E [U (R)]
= z (� � 4") + (1� z) (� + 4")
= � + 4"� 8"z
� �

< E [U (M)] :

Alternatively, suppose z < 1
2
: Then if p = 0 and q = 1;

E [U (M)] = � +
�

2
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and

E [U (f(L; z) ; (R; 1� z)g)] = z E [U (L)] + (1� z) E [U (R)]
= z (� + 4") + (1� z) (� � 4")
= � � 4"+ 8"z
< �

< E [U (M)] :

(c)

If players 2 and 3 assign equal frequencies to fU; rg and fD; lg ; then

E [U (M)] = � +
�

2

and

E [U (f(L; z) ; (R; 1� z)g)] =
1

2
(z (� � 4") + (1� z) (� + 4"))

+
1

2
(z (� + 4") + (1� z) (� � 4"))

= �

< E [U (M)] :

Hence there exists a randomization for players 2 and 3 over correlated
strategies such that M is outperforms any randomization for player 1 over L
and R.

8.D.9

(a)

Without any other information, it seems reasonable for player 2 to choose
M, which gives a certain payo¤of 0. Player 1�s action is not predictable, since
there is no dominant strategy. The slight potential gains from other actions
player 2 may take are o¤set by possibilities of signi�cant loss.

(b)

There are two Nash equilibria in pure strategies: fU;LLg and fD;Rg :
In a mixed-strategy equilibrium, let player 1 assign probability p to action
U and 1 � p to action D: Player 2 can mix in several di¤erent ways, but
only a best response to f(U; p) ; (D; 1� p)g constitutes a Nash equilibrium.
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The optimal probabilities are determined by the condition that the expected
payo¤ for player i must be the same for all actions in the support of i�s
equilibrium mixed strategy.
Some observations on the support of player 2�s equilibrium mixed strat-

egy:

� LL must be one of the actions over which player 2 randomizes; other-
wise D is strictly dominant for player 1, and then R is the unique best
response for player 2.

� Player 2 can only randomize over LL and one of L or M or R. For if
player 2 randomizes over LL and L; then p = 51

52
from

2p� 100 (1� p) = p� 49 (1� p) :
But if player 2 randomizes over LL and M , then p = 50

51
from

2p� 100 (1� p) = 0:
And if player 2 randomizes over LL and R, then p = 1

2
from

2p� 100 (1� p) = �100p+ 2 (1� p) :
Since the three conditions for p are incompatible, no two actions of L;
M; and R could be simultaneously in the support of an equilibrium
mixed strategy.

� Since player 2 has a pure strategy that delivers a certain payo¤ of zero
(M), a mixed strategy that has negative expected payo¤ can never be
optimal. But if p = 1

2
; the expected payo¤s to player 2 of LL and R are

clearly negative, hence the expected payo¤of randomizing over LL and
R is negative. Therefore f(LL; q) ; (R; 1� q)g is not a best response to��
U; 1

2

�
;
�
D; 1� 1

2

�	
for any q.

� If p = 50
51
; player 2 has a pure strategy that delivers a positive expected

payo¤:

U2

�
L;

��
U;
50

51

�
;

�
D;

1

51

���
= p� 49 (1� p) = 1

51
> 0:

On the other hand,

U2

�
LL;

��
U;
50

51

�
;

�
D;

1

51

���
= U2

�
M;

��
U;
50

51

�
;

�
D;

1

51

���
= 0;

so randomizing over LL and M has zero expected payo¤. But then
f(LL; q) ; (M; 1� q)g is not a best response to f(U; p) ; (D; 1� p)g :
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The only Nash equilibrium in pure strategies is one where player 2 ran-
domizes over LL and L: We have already seen that p = 51

52
: Similarly, q = 1

2

follows from

100q � 100 (1� q) = �100q + 100 (1� q) :

The expected payo¤s are

U1 (�) = p (100q � 100 (1� q)) + (1� p) (�100q + 100 (1� q))
= 0

and

U2 (�) = q (2p� 100 (1� p)) + (1� q) (p� 49 (1� p))

=
1

26
;

so the mixed strategies are really best responses. The Nash equilibrium in
pure strategies is completely described by���

U;
51

52

�
;

�
D;

1

52

��
;

��
LL;

1

2

�
;

�
L;
1

2

���
:

(c)

The pure strategy chosen in (a), namely M , is not part of any Nash
equilibrium pro�le. But it is rationalizable: e.g. if player 1 randomizes
between U and D with p = 1

2
; then M is the best response.

(d)

With pre-play communication, any of the three Nash equilibria is im-
plementable. Since the pure strategy equilibria Pareto-dominate the mixed
strategy equilibrium, it may be expected that either fU;LLg or fD;Rg is
played.

9.C.2

As inMWG, example 9.C.3, any belief such that (�1; �2) 2
���
0; 2

3

�
; 1� �1

�	
causes the incumbent to accommodate with probability 1, in which case the
entrant plays In1 with probability 1 and the belief is inconsistent. Hence, in
any weak PBE, �1 � 2

3
:
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In case �1 >
2
3
; the incumbent will certainly �ght, since

E [UI (F )] = �1
> �2�1 + (1� �1) = E [UI (A)] :

This makes it optimal for the entrant to stay out because, with 
 2 (�1; 0),

E [UE (0)] = 0

> 
 = E [UE (2)]

> �1 = E [UE (1)] :

A set of weak PBE is therefore characterized by (�0; �1; �2) = (1; 0; 0) ;
(�F ; �A) = (1; 0) ; and unique beliefs (�1; �2) 2

���
2
3
; 1
�
; 1� �1

�	
: Here

the incumbent�s beliefs need not be consistent with the entrant�s strategy,
since the incumbent�s information set is never reached.
If �1 =

2
3
; the incumbent is indi¤erent between �ghting and accomodat-

ing:

E [UI (F )] = �1
= �2�1 + (1� �1) = E [UI (A)] :

Therefore, any randomization is a best response for the incumbent. But
the particulars of the incumbent�s randomization determine the entrant�s
willingness to randomize. Observe from E [UE (0)] = 0; E [UE (1)] = ��F +
3 (1� �F ) ; and E [UE (2)] = 
�F + 2 (1� �F ):

E [UE (0)] = E [UE (1)]() �F =
3

4

(E [UE (0)] � E [UE (1)] () �F � 3
4
and E [UE (0)] � E [UE (1)] () �F �

3
4
),

E [UE (0)] = E [UE (2)]() �F =
2

2� 


(E [UE (0)] � E [UE (2)]() �F � 2
2�
 and E [UE (0)] � E [UE (2)]() �F �

2
2�
 ), and

E [UE (1)] = E [UE (2)]() �F =
1


 + 2

(E [UE (1)] � E [UE (2)]() �F � 1

+2

and E [UE (1)] � E [UE (2)]() �F �
1

+2
).
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The entrant randomizes over all three actions only if E [UE (0)] = E [UE (1)] =
E [UE (2)] ; i.e. if �F = 3

4
= 2

2�
 = 1

+2
: This is only possible if 
 =

�2
3
: Note that, since the incumbent�s information set is reached with posi-

tive probability, beliefs must be consistent in equilibrium. In other words,
the entrant must play 1 and 2 with probabilities 2

3
and 1

3
at the informa-

tion set (play 1 twice as often as 2). This leads to another set of weak
PBE equilibria in the event that 
 = �2

3
; characterized by f(�0; �1; �2)g =��

x; 2
3
(1� x) ; 1

3
(1� x)

�	
; (�F ; �A) =

�
3
4
; 1
4

�
; and (�1; �2) =

�
2
3
; 1
3

�
; where

x 2 (0; 1).
Next, consider equilibria where the entrant randomizes over two actions.

Since the incumbent�s beliefs must be consistent with the entrant�s actions,
we can rule out randomizations over 0 and 1 and over 0 and 2 (which would
assign probability zero to either 1 or 2). Randomization over 1 and 2 requires
E [UE (1)] = E [UE (2)] and E [UE (1)] � E [UE (0)] ; i.e. �F = 1


+2
and �F �

3
4
; or 
 � �2

3
: Therefore, in the event that 
 � �2

3
; there is another weak

PBE, characterized by (�0; �1; �2) =
�
0; 2

3
; 1
3

�
; (�F ; �A) =

�
1

+2
; 
+1

+2

�
; and

(�1; �2) =
�
2
3
; 1
3

�
.

Finally, the entrant plays 0 with certainty (pure strategies 1 and 2 are
ruled out by the consistency condition) if E [UE (0)] > E [UE (1)] and E [UE (0)] >

E [UE (2)] ; i.e. �F > 3
4
and �F > 2

2�
 ; or �F > max
h
3
4
; 2
2�


i
: If 
 � �2

3
;

then 2
2�
 �

3
4
; if 
 � �2

3
; then 2

2�
 �
3
4
: Hence, in the event that 
 �

�2
3
; there is a set of weak PBE characterized by (�0; �1; �2) = (1; 0; 0) ;

f(�F ; �A)g 2
n�h

2
2�
 ; 1

i
; 1� �F

�o
; and (�1; �2) =

�
2
3
; 1
3

�
: In the event that


 � �2
3
; there is a set of weak PBE characterized by (�0; �1; �2) = (1; 0; 0) ;

f(�F ; �A)g 2
���

3
4
; 1
�
; 1� �F

�	
; and (�1; �2) =

�
2
3
; 1
3

�
:

In summary, the weak PBE of the game are:

� For 
 2 (�1; 0): (�0; �1; �2) = (1; 0; 0) ; (�F ; �A) = (1; 0) ; f(�1; �2)g 2���
2
3
; 1
�
; 1� �1

�	
:

� For 
 2
�
�2
3
; 0
�
: (�0; �1; �2) =

�
0; 2

3
; 1
3

�
; (�F ; �A) =

�
1

+2
; 
+1

+2

�
;

(�1; �2) =
�
2
3
; 1
3

�
and (�0; �1; �2) = (1; 0; 0) ; f(�F ; �A)g 2

n�h
2
2�
 ; 1

i
; 1� �F

�o
;

(�1; �2) =
�
2
3
; 1
3

�
:

� For 
 = �2
3
: f(�0; �1; �2)g =

��
x; 2

3
(1� x) ; 1

3
(1� x)

�	
; (�F ; �A) =�

3
4
; 1
4

�
; (�1; �2) =

�
2
3
; 1
3

�
; where x 2 (0; 1) :

� For 
 2
�
0;�2

3

�
: (�0; �1; �2) = (1; 0; 0) ; f(�F ; �A)g 2

���
3
4
; 1
�
; 1� �F

�	
;

(�1; �2) =
�
2
3
; 1
3

�
:
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13.B.2

A competitive equilibrium with unobservable types is characterized by

�� = f� : r (�) � w�g
w� = E [� j � 2 ��] ;

where �� is the set of types that accept employment at the wage w� o¤ered
by �rms. In a Pareto optimal allocation of labor, workers accept employment
if � � r (�) and decline employment if � < r (�) : By assumption, there exists
�̂ 2

�
�; �
�
such that � > r (�) if �̂ > � and � < r (�) if �̂ < �: Hence, Pareto

optimality involves that workers accept employment if �̂ � � and decline
employment if �̂ < �:
This implies �� =

n
� : r (�) � �̂

o
; so in a Pareto optimal competitive

equilibrium we must have w� = �̂: But since f (�) has full support, there

exist workers with � strictly below �̂ in �� =
h
�; �̂
i
: Then

E [� j � 2 ��] < �̂ = w�;

which is inconsistent with competitive equilibrium. It follows that the Pareto
optimal allocation is not feasible in a competitive equilibrium in this case.

13.B.4

The no-trade theorem requires the additional assumptions that prior be-
liefs and the distribution of signals are, respectively, the same for both agents
and common knowledge. Since both agents care only about the expected
value of the asset, they value it equally before signals are observed.
The valuation of the asset is a random variable V (!) on a state space 


that includes the actual state �!. Given that �! occurs, 1 receives a random
signal �1 and updates E [V (!)] to E [V (!) j �1 (�!)] ; whereas 2 receives a ran-
dom signal �2 and updates E [V (!)] to E [V (!) j �2 (�!)] : If trade took place,
it would become common knowledge that signals have been observed which
cause both sides to wish to trade. Thus, it would be common knowledge that
�! belongs to the event

S = f! : E [V (!) j �1 (!)] < p;E [V (!) j �2 (!)] > pg :
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With common priors, the implication is that � (! j �1 (�!)) = � (! j �2 (�!)) ;
so

E [V (!) j �1 (�!)] =
Z
S

V (!)� (! j �1 (�!)) d!

=

Z
S

V (!)� (! j �2 (�!)) d! = E [V (!) j �2 (�!)] :

Therefore, S is in fact empty; there is no state in which the mutual willingness
to trade could be common knowledge.
Intuitively, the fact that 2 is willing to buy at some price p informs 1 that

2 has received a more favorable signal about the likely value of the asset, so 1
updates her expectation and rejects p. Similarly, the fact that 1 is willing to
sell at p informs 2 that 1 has received a less favorable signal about the likely
value of the asset, so 2 updates her expectation and rejects p. If o¤ers can
be renegotiated, expectations are updated until both value the asset equally,
so (by assumption) they will never trade.
The key step is clearly the equality of the posteriors when readiness to

trade is common knowledge. This is the "agreeing to disagree" result. Sup-
pose that, after receiving private signals at �!, 1 knows that �! 2 P1 (�1 (�!)) ;
and 2 knows that �! 2 P2 (�2 (�!)), where P1; P2 � 2
 are sets of possible
states. Moreover, 1 holds belief � (! j �1 (�!)) on P1 (�1 (�!)) ; and 2 holds be-
lief � (! j �2 (�!)) on P2 (�2 (�!)) ; and this is commonly known. Precisely, the
event

F =
n
! : �

�
E j ~�1

�
= ��1; �

�
E j ~�2

�
= ��2

o
:

is common knowledge. The signals ~�1 with the property �
�
E j ~�1 (!)

�
= ��1

(i.e., from the perspective of 2, who observes ��1 but not �1; the candidate
signals that could have lead 1 to conclude ��1) induce a partition of F into sets

P1

�
~�1 (!)

�
of states where 1 believes ��1: An analogous statement holds for

2: This implies �
�
E j ~�1 (F )

�
= ��1 and �

�
E j ~�2 (F )

�
= ��2: But ~�1 (F ) =

~�2 (F ) ; by the partitional nature of information, so ��1 = ��2: Since E was
chosen arbitrarily, the posterior beliefs indeed agree.

13.B.5

(a)

Let E [�] � r > � and E [� j � 2 ?] = �. To see that w = E [�] and
� =

�
�; �
�
is a competitive equilibrium, notice that, since w � r (�) for all �;

� = f� : r (�) � wg =
�
�; �
�
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(i.e. all workers accept employment), and then

w = E
�
� j � 2

�
�; �
��
= E [�] :

To see that w = � and � = ? is a competitive equilibrium, observe that,
since w < r (�) for all �;

� = f� : r (�) � wg = ?

(i.e. all workers decline employment), and then (by assumption)

w = E [� j � 2 ?] = �:

There are no other competitive equilibria. If � is a strict, nonempty sub-
set of

�
�; �
�
; there exists �̂ 2

�
�; �
�
such that workers with � < �̂ decline

employment. Then E [� j � 2 �] > E [�] = r; and so w� > r; implying
�� = f� : r (�) � wg =

�
�; �
�
6= �:

Let � � r. To see that w = E [�] and � =
�
�; �
�
is a competitive

equilibrium, notice that, since E [�] � �; we have w � r (�) for all �; so

� = f� : r (�) � wg =
�
�; �
�

(i.e. all workers accept employment), and then

w = E
�
� j � 2

�
�; �
��
= E [�] :

There are no other competitive equilibria. If � is a strict, nonempty subset of�
�; �
�
; the argument is as above. If � = ?; then w� = E [� j � 2 ?] = � � r

(by assumption), so �� = f� : r (�) � wg =
�
�; �
�
6= �:

Let r (�) > E [�] for all �; and E [� j � 2 ?] = �. To see that w = � and
� = ? is a competitive equilibrium, observe that, by E [�] � �; we have
r > � = w for all �; so

� = f� : r (�) � wg = ?

(i.e. all workers decline employment), and then

w = E
�
� j � 2

�
�; �
��
= E [�]

by assumption. But contrary to the claim, the equilibriummay be nonunique,
since w� = E [� j � 2 �] > E [�] if workers with � � �̂ (for some �̂ 2

�
�; �
�
)

accept employment. Depending on r and the distribution of �; it is possible
that w� � r and �� = f� : r (�) � wg =

h
�̂; �
i
6= ?:
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(b)

Since the �rms�pro�t is always zero in competitive equilibrium, Pareto
dominance can be discussed only with reference to workers. In the no-
employment equilibrium, all workers earn the reservation payo¤ r: In the
full-employment equilibrium, workers earn E [�] : Clearly, if E [�] > r; the
full-employment equilibrium Pareto dominates.

(c)

For E [�] > r; the claims follow directly from MWG proposition 13.B.1(i).
If E [�] = r; the two competitive equilibria from part (a), i.e. w = E [�],
� =

�
�; �
�
and w = �, � = ?, are SPNE by MWG proposition 13.B.1(ii).

(E [�] = r implies that, in the full-employment as in the no-employment
competitive equilibrium, all workers earn r, the payo¤ of the high-wage com-
petitive equilibrium.) If E [�] < r, there are many SPNE, in all of which
�rms o¤er w < r; and no worker accepts employment.

(d)

As in (b), we may discuss the Pareto dominance of competitive equilib-
ria without reference to �rms, since they necessarily earn zero pro�t. The
highest-wage competitive equilibrium is therefore trivially a Pareto optimum,
given the information constraints (i.e. given that � is not directly observed).
The constraint strictly binds whenever some worker with type � > r declines
employment, or some worker with type � < r accepts employment. This is
typically the case with unobservable types, where every worker is paid the
same equilibrium wage E [� j � 2 �] :

13.C.4

In a separating PBE, �rms and workers play best responses, and beliefs
of �rms about workers�types are correct. After observing their types � 2�
�; �
�
, workers pick an education level e that maximizes u (�) = w (e (�)) �

c (e (�) j �). Since the type distribution is continuous (and has positive prob-
ability everywhere), the payo¤ function is everywhere di¤erentiable, so work-
ers��rst-order condition can be derived by di¤erentiating u with respect to
e:

@w (e� (�))

@e
=
@c (e� (�) j �)

@e
=
2e� (�)

�
:
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A �rm�s optimal wage o¤er is w� (e (�)) = E [� j e (�)] = � in a sepa-
rating equilibrium. Di¤erentiating both sides with respect to �; we have
@w�(e(�))

@e
@e(�)
@�

= 1; so

@w� (e (�))

@e
=

1
@e(�)
@�

:

By equating the expressions for @w
�(e(�))
@e

; the condition for joint optimization
can be written as:

2e� (�)
@e� (�)

@�
= �:

Rearranging this to 2e� (�) @e� = �@�, integration with respect to � is straight-
forward and gives

e� (�)2 =
�2

2
+ k;

where k is the constant of integration. From e� (�) =
q

�2

2
+ k = 0, it follows

that k = � �2

2
; so

e� (�) =

s
�2 � �2

2
:

Solving this expression for � and using the condition for a separating
equilibrium, w� (e) = �;

w� (e) =

q
2e�2i + �

2:

The education choice function e� (�) ; the wage o¤er function w� (e) ; and a
consistent system of beliefs � (e) ; which assigns to every signal e a probability
distribution over �, constitute the PBE. In a separating equilibrium, the
wages are conditioned on the signal such that workers have an incentive to
reveal their type in choosing an education level. Therefore � (e) is consistent
if �rms associate education levels correctly with types, i.e. � (e) assigns
probability 1 to � and probability to 0 to ~� 6= �; for all e.

13.D.1

The zero-pro�t trait of SPNE means, in the full-information case, that
�rms pay wages equal to a type�s product:

wH � w (�H) = �H (1 + �t��H )
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and

wL � w (�L) = �L (1 + �t��L ) :

Workers choose e¤ort levels that maximize their respective objectives,

uH = wH � c (tH ; �H) = �H (1 + �tH)� c (tH ; �H)

and

uL = wL � c (tL; �L) = �L (1 + �tL)� c (tL; �L) :

The �rst-order conditions show that t��H and t��L are determined by

@c (t��H ; �H)

@tH
= ��H

and

@c (t��L ; �L)

@tL
= ��L:

Since c (�) is strictly convex in t, the full-information equilibrium is unique
for given �; �; and functional form for c (�).
If types are unobservable, the full-information optimal wages are not fea-

sible strategies for the �rms. In principle, there could be pooling and sep-
arating equilibria, i.e. either equal wages for all types or wages that vary
with type and provide an incentive to "reveal" types. However, this model
does not admit pooling equilibria, since it is pro�table for �rms to deviate
from uniform wage o¤ers and design contracts that screen out low types. In
a separating equilibrium, low types must be paid their full-information wage,
w (t��L ) = �L (1 + �t

��
L ) : Clearly, w (tL) � �L (1 + �tL) in equilibrium, since

every worker has at least this level of productivity, so �rms always �nd it
pro�table to attract a worker who is paid less by o¤ering a slightly higher
wage. The zero-pro�t condition also implies w (tL) � �L (1 + �tL) ; because
else we must have w (tH) < �H (1 + �tH) ; so that �rms just break even.
But then there exists a pro�table contract for a rival �rm that screens out
low types and attracts all high types; thus w (tL) > �L (1 + �tL) would re-
sult in negative expected pro�t for the �rm that o¤ers the contract.The low
types choose the e¢ cient level of e¤ort t��L (as in the full-information case)
in response to this wage function.
The equilibrium o¤er to the high type, (w (t�H) ; t

�
H), must be incentive

compatible, so that

uL (tH) = w (t
�
H)� c (t�H ; �L) � w (t��L )� c (t��L ; �L) = uL (t��L )
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holds, inducing t��L from the low type. Equilibrium contracts must satisfy the
additional condition that the high type prefers (w (t�H) ; t

�
H) to any contract

that o¤ers w (t�H) � E� [� (1 + �t
� (�))] : Otherwise, �rms have a positive-

pro�t incentive to deviate to a pooling contract. Since E� [� (1 + �t� (�))]
decreases in the ratio of low types to high types in the economy, the set
of SPNE increases in this ratio. One separating equilibrium corresponds to
the full-information equilibrium: w (t�H) = �H (1 + �t

�
H) ; and the high type

optimally chooses t�H that ful�lls the �rst-order condition.

13.D.2

(a)

With an insurance policy (M;R), wealth is W � M in case of no loss
(whereW is initial wealth), andW�M+R�L (where L is the magnitude of
the loss). Given W; the policy therefore determines state-contingent wealth.

(b)

The argument given here is heuristic; for more detail, refer to the graphi-
cal derivation and compare with the monopolistic insurance model. A SPNE
is a separating equilibrium with zero pro�ts and truthful "reporting" of types,
i.e. incentive compatibility. The high-risk type must be fully insured at the
actuarially fair price, r (tH). Firms are willing to provide full insurance that
is actuarially fair to high-risk types, since there are no types with higher
pH , so �rms always pro�t by attracting those who pay more than r (tH) by
o¤ering slightly cheaper insurance. Given that actuarially fair insurance is
available, high-risk types accept it in equilibrium. The zero-pro�t condi-
tion also implies that insurance for high-risk types cannot sell for less than
the actuarially fair price; else insurance for low-risk types must exceed the
actuarially fair price, r (tL), so that �rms break even. But then there ex-
ists a pro�table contract for a rival insurer that screens out high risks and
attracts all low risks; hence the �rm that insures high risks would earn nega-
tive expected pro�t. This argument shows that in any SPNE actuarially fair
insurance is o¤ered to high-risk types, and purchased.
The equilibrium o¤er of insurance to the low-risk type must be incentive

compatible, so that

E [uH (tH)] � E [uH (tL)]

holds, inducing tH from the high-risk type. Since insurance is valuable to
the low risks and (at fair odds) costless to the principals, low risks bid for
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the maximum coverage they can get within this constraint. Thus, incentive
compatibility for high risks must bind. But the constraint does not allow
low risks to insure fully, for such a policy would have to be cheaper than the
high risk policy (given that low risks value insurance less) and thus attract
the high risks.
Since equilibrium insurance for the high-risk type is actuarially fair, it is

linear in pL; and therefore induces a unique SPNE, if any. For a SPNE to
exist, low-risk types must prefer low-risk insurance to any pooling contract.
This implies that existence of the SPNE depends on having a high enough
ratio of high-risk to low-risk types in the economy.

14.C.2

If the state of the world is publically observed, then the principal solves:

max
wH ;eH�0
wL;eL�0

[� (� (eH)� wH) + (1� �) (� (eL)� wL)]

s.t. �v (wH � g (eH j �H)) + (1� �) v (wL � g (eL j �L)) � �u:

Denote the optimal mechanism that satis�es the �rst-order conditions,

wi = v
�1 (�u) + g (ei j �i)

and

@� (ei)

@ei
=
@g (ei j �i)

@ei
;

by (w��i ; e
��
i ). The principal�s expected payo¤ is

�̂�� = � (� (e��H )� w��H ) + (1� �) (� (e��L )� w��L )
= � (� (e��H )� g (e��H j �H)) + (1� �) (� (e��L )� g (e��L j �L))� v�1 (�u) :

If, on the other hand, the state of the world is privately observed by the
agent, then the principal solves:

max
wH ;eH�0
wL;eL�0

[� (� (eH)� wH) + (1� �) (� (eL)� wL)]

s.t. �v (wH � g (eH j �H)) + (1� �) v (wL � g (eL j �L)) � �u
wH � g (eH j �H) � wL � g (eL j �H)
wL � g (eL j �L) � wH � g (eH j �L) :
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We are to show that, when the agent is risk-neutral, she accepts a wage
w� (�) = � � � which gives the principal

�̂� = � (� (e�H)� w�H) + (1� �) (� (e�L)� w�L)
= � = �̂��;

or in other words, the agent is willing to "rent the �rm" at the price � = �̂��:
(This is intuitively quite obvious, since a risk-neutral agent does not value
insurance, so she requires no premium for incurring all the risk and provide
optimal e¤ort under perfectly aligned incentives.)
It is straightforward to show that the agent�s participation and incentive

constraints are satis�ed if � = �̂��; by subsitution of

wH = � (e��H )� �̂��

= � (e��H )� � (� (e��H )� g (e��H j �H))� (1� �) (� (e��L )� g (e��L j �L))� v�1 (�u)
= (1� �)� (e��H ) + �g (e��H j �H)� (1� �)� (e��L ) + (1� �) g (e��L j �L) + v�1 (�u)

and

wL = � (e��L )� �̂��

= � (e��L )� � (� (e��H )� g (e��H j �H))� (1� �) (� (e��L )� g (e��L j �L))� v�1 (�u)
= ��� (e��H ) + �g (e��H j �H) + �� (e��L ) + (1� �) g (e��L j �L) + v�1 (�u) :

into each constraint. E.g., by the linearity of v, the participation constraint
may be rewritten as follows:

v (� (wH � g (eH j �H)) + (1� �) (wL � g (eL j �L))) � �u
=) � (wH � g (eH j �H)) + (1� �) (wL � g (eL j �L))� v�1 (�u) � 0
=) �wH + (1� �)wL � �g (eH j �H)� (1� �) g (eL j �L)� v�1 (�u) � 0:

Substituting

�wH + (1� �)wL = �g (e��H j �H) + (1� �) g (e��L j �L) + v�1 (�u) ;

we �nd that the participation constraint holds with equality.
To verify the incentive constraints, note simply that the agent�s optimiza-

tion problem (given the proposed contract),

max
e2feH ;eLg

[� (w (� (e))� g (eH j �H)) + (1� �) (w (� (e))� g (eL j �L))]

s.t. �v (wH � g (eH j �H)) + (1� �) v (wL � g (eL j �L)) � �u
wH � g (eH j �H) � wL � g (eL j �H)
wL � g (eL j �L) � wH � g (eH j �L) ;
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reduces to the full-information problem of the principal, since

w (� (e))� g (ei j �i) = � (e)� �+ v�1 (�u)� wi

and ��+v�1 (�u) is constant, so does not enter decision making. This implies
that the agent chooses e��i in each state.
The revelation mechanism which implements the full-information out-

come in the limited-information case is the pair (wi; ei) = (� (ei)� �; e��i ) ;
with � = �̂��, which - as we just argued - induces the agent to "disclose" the
true state of the world i.

14.C.9

(a)

The full-information optimal insurance contract solves:

max
c1;c2

Z
i

�
�i
�
W � L� ci2

�
+
�
1� �i

� �
W � ci1

��
f
�
�i
�
di

s.t. �iu
�
ci2
�
+
�
1� �i

�
u
�
ci1
�
� �ui for all i.

There is a unique participation constraint for every i because the contract
must be acceptable to the agent whatever his type (the type is assumed to
be observed by the agent before deciding on the contract). The participa-
tion constraint holds with equality, since the insurer is a monopolist and
extracts all surplus. First-order conditions are, for every i, �i = 1

u0(ci��1 )
and

�i = 1

u0(ci��2 )
(where �i is the Lagrange multiplier of type i�s participation

constraint), hence u0 (ci��1 ) = u0 (ci��2 ) and c
i��
1 = ci��2 � �ci (the risk-averse

agent is fully insured, given his type). Then the participation constraint
reduces to

�iu
�
�ci
�
+
�
1� �i

�
ui
�
�ci
�
= u

�
�ci
�
= �u;

so �ci = u�1 (�u) :
The agent�s reservation utility is the expected wealth if uninsured:

�u = �u (W � L) + (1� �)u (W ) :

Therefore, the optimal insurance contract speci�es (ci��1 ; c
i��
2 ) for all i, where

ci��1 = u�1
�
�iu (W � L) +

�
1� �i

�
u (W )

�
ci��2 = u�1

�
�iu (W � L) +

�
1� �i

�
u (W )

�
:
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(b)

In case of accident, the insurer receives the liability W � L� c2 and the
agent has wealth c2; if there is no accident, the insurer receives a premium
W � c1 and the agent has wealth c1. The principal solves:

maxc

�
�
�
�L
�
W � L� cL2

�
+ (1� �L)

�
W � cL1

��
+(1� �)

�
�H
�
W � L� cH2

�
+ (1� �H)

�
W � cH1

�� �
s.t. (PL) �Lu

�
cL2
�
+ (1� �L)u

�
cL1
�
� �uL

(PH) �Hu
�
cH2
�
+ (1� �H)u

�
cH1
�
� �uH

(IL) �Lu
�
cL2
�
+ (1� �L)u

�
cL1
�
� �Lu

�
cH2
�
+ (1� �L)u

�
cH1
�

(IH) �Hu
�
cH2
�
+ (1� �H)u

�
cH1
�
� �Hu

�
cL2
�
+ (1� �H)u

�
cL1
�
:

The reservation utilities derive from the uninsured scenario:

�uL = �Lu (W � L) + (1� �L)u (W )
�uH = �Hu (W � L) + (1� �H)u (W ) :

Substituting:

W � c1 = W � u�1 (u (c1))
W � L� c2 = W � L� u�1 (u (c2)) ;

and assuming, subject to veri�cation, that (PH) and (IL) are redundant, and
(PL) and (IH) bind, the principal�s reduces to:

maxu

�
�
�
W � �L

�
L+ u�1u

�
cL2
��
� (1� �L)u�1u

�
cL1
��

+(1� �)
�
W � �H

�
L+ u�1u

�
cH2
��
� (1� �H)u�1u

�
cH1
�� �

s.t. (PL) �Lu
�
cL2
�
+ (1� �L)u

�
cL1
�
= �uL

(IH) �Hu
�
cH2
�
+ (1� �H)u

�
cH1
�
= �Hu

�
cL2
�
+ (1� �H)u

�
cL1
�
:

To make the problem tractable, think of the principal as choosing utility
levels for the agents that maximize expected pro�t. Call the Lagrange mut-
lipliers for the constraints �PL and �IH . First-order conditions with respect
to (i) u

�
cL1
�
, (ii) u

�
cL2
�
, (iii) u

�
cH1
�
, and (iv) u

�
cH2
�
are:

(i) �� (1� �L) (u�1)0
�
u
�
cL1
��
+ �PL (1� �L)� �IH (1� �H) = 0

(ii) ���L (u�1)0
�
u
�
cL2
��
+ �PL�L � �IH�H = 0

(iii) � (1� �) (1� �H) (u�1)0
�
u
�
cH1
��
+ �IH (1� �H) = 0

(iv) � (1� �) �H (u�1)0
�
u
�
cH2
��
+ �IH�H = 0:

Rearrange (iii) and (iv) for �IH :

(iii) �IH = (1� �) (u�1)
0 �
u
�
cH1
��

(iv) �IH = (1� �) (u�1)
0 �
u
�
cH2
��
:

48



Christian Roessler (U Melbourne)

Equating, we �nd that pro�t maximization implies full insurance for type H:

cH1 = c
H
2 � cH :

Moreover, notice that, since u is strictly concave (because the agent is risk-
averse), u�1 is strictly convex. In particular, (u�1)0 (�) > 0: This implies,
from either (iii) or (iv), that �IH > 0; i.e. the IH constraint binds. Next,
sum (i) through (iv) and cancel out the �IH terms:

�� (1� �L)
�
u�1
�0 �
u
�
cL1
��
+ �PL (1� �L)� �IH (1� �H)

���L
�
u�1
�0 �
u
�
cL2
��
+ �PL�L � �IH�H

� (1� �) (1� �H)
�
u�1
�0 �
u
�
cH1
��
+ �IH (1� �H)

� (1� �) �H
�
u�1
�0 �
u
�
cH2
��
+ �IH�H

= �� (1� �L)
�
u�1
�0 �
u
�
cL1
��
+ �PL (1� �L)� ��L

�
u�1
�0 �
u
�
cL2
��
+ �PL�L

� (1� �) (1� �H)
�
u�1
�0 �
u
�
cH1
��
� (1� �) �H

�
u�1
�0 �
u
�
cH2
��

= 0:

Solving for �PL, we �nd

�PL = � (1� �L)
�
u�1
�0 �
u
�
cL1
��
+ ��L

�
u�1
�0 �
u
�
cL2
��

+(1� �) (1� �H)
�
u�1
�0 �
u
�
cH1
��
+ (1� �) �H

�
u�1
�0 �
u
�
cH2
��

> 0:

Therefore, the PL and IH constraints indeed bind, as projected. Simplify the
constraints as follows (using u

�
cL2
�
� u

�
cL1
�
� vL and cH1 = cH2 � cH):

(PL) �L
�
u
�
cL2
�
� u

�
cL1
��
+ u

�
cL1
�
� �LvL + u

�
cL1
�
= �uL

(IH) u
�
cH
�
= �H

�
u
�
cL2
�
� u

�
cL1
��
+ u

�
cL1
�
� �HvL + u

�
cL1
�
:

Also, use PL to write:

�uL = �Lu
�
cL2
�
+ (1� �L)u

�
cL1
�

= �Lu
�
cL2
�
+ u

�
cL2
�
� u

�
cL2
�
+ (1� �L)u

�
cL1
�

= u
�
cL2
�
� (1� �L)

�
u
�
cL2
�
� u

�
cL1
��

= u
�
cL2
�
� (1� �L) vL:

Substitute u
�
cL2
�
= �uL + (1� �L) vL and u

�
cL1
�
= �uL � �LvL into the prin-

cipal�s objective to get a problem in vL:

maxvL

�
�
�
W � �L

�
L+ u�1

�
�uL + (1� �L) vL

��
� (1� �L)u�1

�
�uL � �LvL

��
+(1� �)

�
W � �HL� u�1u

�
cH
�� �

s.t. (PL) �L
�
�uL + (1� �L) vL

�
+ (1� �L)

�
�uL � �LvL

�
= �uL

(IH) u
�
cH
�
= �H

�
�uL + (1� �L) vL

�
+ (1� �H)

�
�uL � �LvL

�
:

49



Christian Roessler (U Melbourne)

Think of the principal now as choosing the utility di¤erence for type L
between the two states in a pro�t-maximizing contract. (It will be zero if
and only if L is fully insured.) Maximizing the Lagrangian with respect to
vL:

��L (1� �L)
�
u�1
�0 �
�uL � �LvL

�
� ��L (1� �L)

�
u�1
�0 �
�uL + (1� �L) vL

�
� (1� �) 

+�PL [�L (1� �L)� (1� �L) �L]
+�IH [(1� �H) �L � �H (1� �L)]

= 0;

where


 �
�
u�1
�0 �
u
�
cH
��
u0
�
cH
�
> 0;

since u�1 is strictly convex, u is strictly concave. The �PL term cancels
out, and �IH = (1� �) (u�1)0

�
u
�
cH
��
from above. Dividing through by

��L (1� �L), and rearranging:�
u�1
�0 �
�uL � �LvL

�
�
�
u�1
�0 �
�uL + (1� �L) vL

�
=

1� �
�

1

�L (1� �L)



��
cH
�0 �
vL
�
+ (�H � �L)

1

u0 (cH)

�
:

The righthand side is strictly positive, since
�
cH
�0 �
vL
�
> 0; cH must increase

in insurance for type L because the incentive compatibility constraint for H
binds. Hence�

u�1
�0 �
�uL � �LvL

�
>
�
u�1
�0 �
�uL + (1� �L) vL

�
;

which implies ��LvL > (1� �L) vL, or

vL < 0:

Recall that vL = u
�
cL2
�
� u

�
cL1
�
. This means that

cL1 > c
L
2 ;

in other words, L is not fully insured.
We should check that the two ignored constraints are really satis�ed. If

cL1 > c
L
2 , then �H > �L implies

�Lu
�
cL2
�
+ (1� �L)u

�
cL1
�
> �Hu

�
cL2
�
+ (1� �H)u

�
cL1
�
;
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which is the IL constraint. PH is not so easy to verify - given that the other
constraints hold, PH may fail when the parameters of the problem are such
that no equilibrium exists. We can use

�uL = �Lu (W � L) + (1� �L)u (W )
> �Hu (W � L) + (1� �H)u (W )
= �uH

and PL to show that

�uL = �Lu
�
cL2
�
+ (1� �L)u

�
cL1
�

= �L
�
u
�
cL2
�
� u

�
cL1
��
+ u

�
cL1
�

< �H
�
u
�
cH2
�
� u

�
cH1
��
+ u

�
cL1
�

= �Hu
�
cH2
�
+ u

�
cL1
�
� �Hu

�
cH1
�
:

Hence PH holds if u
�
cH1
�
is not too large relative to u

�
cL1
�
; an obvious

statement (saying that the price of insurance for H should not be too high).
This condition could be characterized more meaningfully, but a full discussion
would lead too far a�eld into existence conditions for an equilibrium.
Generally, the low type is underinsured and would like to purchase more

insurance at better-than-fair odds (from the perspective of the insurer). This
is obvious from the fact that L is risk-averse and therefore values insurance,
whereas the principal is risk-neutral and can provide fair insurance at no
cost. But increasing the L type�s coverage, while maintaining incentive com-
patibility for the H type (remember that IH binds), would require that the
insurer decrease the coverage or cost of insurance for high types. This makes
the provision of additional insurance to L costly to the principal, and in
equilibrium the L type does not value insurance enough to compensate the
principal fully.

(c)

Both in 14.C.9 (monopolist principal) and 13.D.2 (competitive princi-
pal), high risks are fully insured, and low risks are partially insured. The
di¤erences are (i) that the competitive insurer earns zero pro�t, whereas the
monopolist insurer generally earns positive pro�t, and (ii) that the L type
can have a surplus in the competitive case (participation constraint does not
bind), but not in the monopolist case (participation constraint binds). More-
over, a monopolist principal is more likely not to o¤er insurance to low risks
at all, if the ratio of H to L types in the economy is small. In this case,
the cost of designing the low-risk contract so that it avoids pooling is high,
particularly if the principal is able to extract monopoly rents from high risks.
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15.B.1

(a)

Nonsatiation implies Walras�law, so

p1x1i + p2x2i = !i

= p1!1i + p2!2i

for all i.
Adding the equations for consumer 1 and 2, and rearranging,

p1x11 + p2x21 + p1x12 + p2x22 = p1!11 + p2!21 + p1!12 + p2!22

p1

2X
i=1

x1i + p2

2X
i=1

x2i = p1

2X
i=1

!1i + p2

2X
i=1

!2i

p1

 
2X
i=1

x1i � !1

!
+ p2

 
2X
i=1

x2i � !2

!
= 0;

where !1 =
P

i !1i and !2 =
P

i !2i:

(b)

If the market for good 1 clears, then
P

i x1i � !1 = 0: This implies, from
(a),

p2

 
2X
i=1

x2i � !2

!
= 0;

i.e.
P

i x2i � !2 = 0 (the market for good 2 clears).

15.B.6

The equilibrium is determined by the agent�s objectives,

u1 (x11; x21) =
1q

1
x211
+
�
12
37

�3 1
x221

u2 (x12; x22) =
1q�

12
37

�3 1
x212
+ 1

x222

;

the agent�s budget constraints,

p1x11 + p2x21 = p1!11 + p2!21 = p1

p1x12 + p2x22 = p1!12 + p2!22 = p2;
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and the market clearing condition,

x�11 + x
�
12 = 1:

(The second market will clear if the �rst market clears.)
The objective functions are strictly increasing in x1 and x2; so that Wal-

ras�law holds. The �rst-order conditions of the �rst agent�s maximization
problem,

max
x11:x21

u1 + �1 (p1 � p1x11 � p2x21) ;

are:  
x��211 +

�
12

37

�3
x��221

!� 3
2

x��311 = ��1p1 
x��211 +

�
12

37

�3
x��221

!� 3
2 �
12

37

�3
x��321 = ��1p2:

Second-order conditions for a maximum hold for all x�.
Thus:

x�11 =

�
p1
p2

�� 1
3
�
12

37

��1
x�21:

Using x21 =
p1
p2
(1� x11) from the budget constraint,

x�11 =
1

12
37

�
p1
p2

�� 2
3
+ 1

x�21 =

p1
p2�

12
37

��1 �p1
p2

� 2
3
+ 1

:

The �rst-order conditions of the second agent�s maximization problem,

max
x12:x22

u2 + �2 (p2 � p1x12 � p2x22) ;

are:  �
12

37

�3
x��212 + x��222

!� 3
2 �
12

37

�3
x��312 = ��1p1 �

12

37

�3
x��212 + x��222

!� 3
2

x��322 = ��1p2:
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Thus:

x�12 =

�
p1
p2

�� 1
3
�
12

37

�
x�22:

Using x22 = 1� p1
p2
x12 from the budget constraint,

x�12 =

�
p1
p2

��1
�
12
37

��1 �p1
p2

�� 2
3
+ 1

x�22 =
1

12
37

�
p1
p2

� 2
3
+ 1

:

Now market clearing requires that

x�11 + x
�
12 = 1

1

12
37

�
p1
p2

�� 2
3
+ 1

+

�
p1
p2

��1
�
12
37

��1 �p1
p2

�� 2
3
+ 1

= 1:

Simplifying:�
p1
p2

��1
� 37
12

�
p1
p2

�� 2
3

+
37

12

�
p1
p2

�� 1
3

� 1 = 0:

After a change of variables, taking y �
�
p1
p2

�� 1
3
; this is a cubic equation in

y:

y3 � 37
12
y2 +

37

12
y � 1 = 0:

Clearly, y1 = 1 is a solution. The polynomial can be factored as

(y � 1)
�
y2 � 25

12
y + 1

�
= 0;

and the remaing roots are found by solving the quadratic equation y2� 25
12
y+

1 = 0 for y2 = 3
4
and y3 = 4

3
: Reversing the change of variables, p1

p2
= y�3 and

the three solutions are:
p1
p2

= 1

p1
p2

=
64

27
p1
p2

=
27

64
:
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The three Walrasian equilibria are:

p1
p2

= 1

x� =

��
37

49
;
12

49

�
;

�
12

49
;
37

49

��
p1
p2

=
64

27

x� =

��
148

175
;
64

175

�
;

�
27

175
;
111

175

��
p1
p2

=
27

64

x� =

��
111

175
;
27

175

�
;

�
64

175
;
148

175

��
:

15.B.7

For strongly montone, continuous, and convex preference relations, the
Pareto set in the Edgeworth box is connected.
Proof. The result follows from an application of the maximum theorem,
which states that the solution to a parameterized family of optimization
problems is continuous in the parameter, if the objective function is con-
tinuous and the constraint set is continuous and compact. The trick is to
formulate the problem so that it �ts the conditions of the maximum theorem.
To that end, de�ne the Pareto set as the set of allocations x� (u2) =

(x�1 (u2) ;x
�
2 (u2)) ; where x

�
1 (u2) is the solution to

x�1 (u2) = argmax
x1
u1 (x1)

s.t. u2 (! � x1) � u2;

and

x�2 (u2) = ! � x�1 (u2) :

In other words, we consider a family of problems in which 2 is given a minimal
utility u2 2 [u2 (0) ; u2 (!)] ; and 1�s utility is maximized subject to this
constraint. It is easy to see that P = fx� (u2) : u2 2 [u2 (0) ; u2 (!)]g is indeed
the Pareto set. Since u2 (x) is necessarily in the interval for all allocations,
and x�1 (u2) maximizes u1 (x1ju2 = u2) in any Pareto-optimal allocation, P
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contains the Pareto set. On the other hand, the Pareto set contains P because
any allocation where x�1 (u2) maximizes u1 (x1ju2 = u2) and u2 (x) is optimal
given x�1 (it is, due to monotonicity) is Pareto-optimal.
We have: (i) a family of optimization problems valued by x� 2 R2, pa-

rameterized by u2; with a continuous objective function u1; (ii) a constraint
set C (u2) = fx1 : u2 (! � x1) � u2g that is continuous (by continuity of
u2) and compact (closed and bounded). Under these conditions, the maxi-
mum theorem guarantees that the solution correspondence x� (u2) is upper-
hemicontinuous. Since preferences are convex, x� (u2) is in fact a function
(there is a unique optimal allocation for every u2), and therefore continuous.
What we have shown is that the Pareto set is the continuous image of

the interval I = [u2 (0) ; u2 (!)] under the function

f (u2) = (x
�
1 (u2) ;x

�
2 (u2)) =

�
arg max

x12C(u2)
u1 (x1) ; ! � x�1 (u2)

�
constructed above. Every interval is a connected set, and every continuous
image of a connected set is connected. To see this, consider a nonempty
open set of allocations A � f(I) with a nonempty open complement Ac in
I: (I.e. suppose f(I) is not connected.) Since I is connected, there exists
(by the de�nition of connectedness) no partition of I into nonempty open
sets. By continuity of f , the inverse images of A and Ac (i.e. the sets
f�1 (A) = fu2 2 I : x� (u2) 2 Ag and f�1 (Ac) = fu2 2 I : x� (u2) 2 Acg) are
disjoint and open. Therefore, one of f�1 (A) or f�1 (Ac) must be empty,
implying that either A or Ac is empty - a contradiction. Hence we argue that
the Pareto set is connected, as it is the continuous image of a connected set.

Now suppose that the preferences are also homothetic. Then the points
of tangency lie on a ray from the origin. But the allocations where the
indi¤erence curves are tangent contain the Pareto set. Since the Pareto set
is connected, Pareto-optimal allocations lie on both sides of the 45 degree
line only if there exists a Pareto-optimal allocation on the 45 degree line.
But then all Pareto-optimal allocations must lie on the 45 degree line, since
it is a ray from the origin. Therefore, in the case of homothetic preferences,
the Pareto set lies weakly on one side of the 45 degree line.

15.C.2

The equilibrium (p;x) =
�
w
p
; x1; x2

�
is determined by:

(1) Consumer�s objective function: u(x1; x2) = lnx1 + lnx2
(2) Consumer�s budget constraint: px2 � w (L� x1) + �
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(3) Firm�s objective function: p
p
z � wz

(4) Clearing condition for the goods market:
p
z� = x�2

(5) Clearing condition for the factor market: z� = L�x�1 = 1�x�1:

The consumer solves

max
x1;x2

lnx1 + lnx2 + � (w (L� x1) + � � px2) :

(Since the objective function is concave, the budget constraint holds with
equality and �rst-order conditions are su¢ cient for a maximum.) Note that
� is a function of z, but not of x1 or x2: From �rst-order conditions:

w

p
=
x�2
x�1
:

The �rm solves

max
z
p
p
z � wz:

First-order condition:

w

p
=

1

2
p
z�
:

(Again the �rm�s objective function is concave, and the �rst-order condition
is su¢ cient for a maximum.)
Impose the goods market clearing condition to rewrite the �rm�s �rst-

order condition as

w

p
=

1

2x�2
:

Solve the �rst-order conditions for x�2 in terms of x
�
1:

x�2 =

r
x�1
2
:

The factor market clearing condition (with z� replaced from the good market
condition) gives:p

1� x�1 = x�2
x�1 = 1� x�22

= 1� x
�
1

2

x�1 =
2

3
;
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so

x�2 =
1p
3
:

It remains to �nd the equilibrium relative price:

w

p
=

1

2x�2

=

p
3

2
:

Substituting into the pro�t function:

� = p
p
z� � wz�

= p
p
1� x�1 � w (1� x�1)

=
1

2
p
3
p:

15.D.8

After substituting z21 = z1 � z11 and z22 = z2 � z21; the objective is:

max
z11;z12

f (z) = z
2
3
11z

1
3
12 + (z1 � z21)

1
3 (z2 � z22)

2
3 :

Because factor markets clear in a competitive economy, costs are constant
and do not a¤ect the optimal allocation of inputs to technologies. We must,
however, keep nonnegativity constraints in mind:

z11 � 0

z11 � z1

z12 � 0

z12 � z2:

Suppose the solution is interior. Then the nonnegativity constraints do not
bind and the �rst-order conditions are:

@f

@z11
=

2

3
z
�� 1

3
11 z

1
3
12 �

1

3
(z1 � z�11)

� 2
3 (z2 � z12)

2
3 = 0

@f

@z21
=

1

3
z
2
3
11z

�� 2
3

12 � 2
3
(z1 � z11)

1
3 (z2 � z�12)

� 1
3 = 0:
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These imply, respectively,

2z
�� 1

3
11 z

1
3
12 = (z1 � z�11)

� 2
3 (z2 � z12)

2
3

z�11
z12

= 8

�
z1 � z�11
z2 � z12

�2
and

z
2
3
11z

�� 2
3

12 = 2 (z1 � z11)
1
3 (z2 � z�12)

� 1
3

z11
z�12

=
p
8

�
z1 � z11
z2 � z�12

� 1
2

:

Equating the righthand expressions, we obtain:

z1 � z�11
z2 � z�12

=
1

2
:

Alternatively, the �rst-order conditions can be transformed into

1p
8

r
z�11
z12

=
z1 � z�11
z2 � z12

and

1

8

�
z11
z�12

�2
=
z1 � z11
z2 � z�12

:

Equating the lefthand expressions,

z�11
z�12

= 2:

Now we can solve for the interior solution in terms of endowments:

z�11 = z1 �
1

2
(z2 � z�12)

= z1 �
1

2

�
z2 �

z�11
2

�
z�11 =

4

3
z1 �

2

3
z2

z�12 =
z�11
2
=
2

3
z1 �

1

3
z2

z�21 = z1 � z�11 =
2

3
z2 �

1

3
z1

z�22 = z2 � z�12 =
4

3
z2 �

2

3
z1:
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In specialized solutions, either z11 = z12 = 0 or z21 = z22 = 0 (since no
output can be produced by either technology if one of the inputs is zero, any
other corner allocation would be wasteful). In the �rst case, @f

@z11
< 0 and

@f
@z12

< 0: In the second case, the inequalities are reversed. Therefore, the
�rst condition for a specialized solution (with z21 = z22 = 0) is:

z1 � z�11
z2 � z12

<
1

2
) z1
z2
<
1

2
:

The input vectors is then z0 = (z11; z12; z21; z22) = (0; 0; z1; z2) : The second
condition for specialized solution (with z11 = z1; z12 = z2) is:

z�11
z�12

> 2) z1
z2
> 2;

with input vector z00 = (z11; z12; z21; z22) = (z1; z2; 0; 0) : Hence, the interior
solution occurs if and only if

1

2
� z1
z2
� 2:

In a competitive economy, input prices equal the marginal value products
(which are constant under the constant returns assumption). Thus:

w�1 = p1
@f (z�)

@z1
=
@f (z�)

@z1

w�2 = p2
@f (z�)

@z2
=
@f (z�)

@z2
:

Since

f (z�) = z
� 2
3
11 z

� 1
3
12 + (z1 � z�11)

1
3 (z2 � z�12)

2
3

=

�
4

3
z1 �

2

3
z2

� 2
3
�
2

3
z1 �

1

3
z2

� 1
3

+

�
2

3
z2 �

1

3
z1

� 1
3
�
4

3
z2 �

2

3
z1

� 2
3

= 2
2
3

�
2

3
z1 �

1

3
z2

� 2
3
�
2

3
z1 �

1

3
z2

� 1
3

+ 2
2
3

�
2

3
z2 �

1

3
z1

� 1
3
�
2

3
z2 �

1

3
z1

� 2
3

= 2
2
3

�
2

3
z1 �

1

3
z2

�
+ 2

2
3

�
2

3
z2 �

1

3
z1

�
=

2
2
3

3
(z1 + z2) ;

we have

w�1 = w
�
2 =

2
2
3

3
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in the interior solution. In the specialized solutions, f (z0) = z
2
3
1 z

1
3
2 and

f (z00) = z
1
3
1 z

2
3
2 ; respectively, so:

w01 = p1
@f (z0)

@z1
=
@f (z0)

@z1
=
2

3

�
z2
z1

� 1
3

w02 = p2
@f (z0)

@z2
=
@f (z0)

@z2
=
1

3

�
z1
z2

� 2
3

:

and

w001 = p1
@f (z00)

@z1
=
@f (z00)

@z1
=
1

3

�
z2
z1

� 2
3

w002 = p2
@f (z00)

@z2
=
@f (z00)

@z2
=
2

3

�
z1
z2

� 1
3

:

In summary, the complete solution is as follows. If 1
2
� z1

z2
� 2; then the

optimal inputs allocation is:

z�11 =
4

3
z1 �

2

3
z2

z�12 =
2

3
z1 �

1

3
z2

z�21 =
2

3
z2 �

1

3
z1

z�22 =
4

3
z2 �

2

3
z1;

and equilibrium input prices are:

w�1 = w
�
2 =

2
2
3

3
:

If z1
z2
< 1

2
; then the optimal inputs allocation is:

z
0

11 = 0

z012 = 0

z021 = z1

z022 = z2;

and equilibrium input prices are:
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w01 =
2

3

�
z2
z1

� 1
3

w02 =
1

3

�
z1
z2

� 2
3

:

If z1
z2
> 2; then the optimal inputs allocation is:

z
0

11 = z1

z012 = z2

z021 = 0

z022 = 0;

and equilibrium input prices are:

w001 =
1

3

�
z2
z1

� 2
3

w002 =
2

3

�
z1
z2

� 1
3

:

15.D.9

Heckscher-Ohlin theorem: In a 2x2 model (tradable goods 1 and 2, non-
tradable factors A and B), where two economies have identical CRS tech-
nologies, identical increasing, concave, and homogeneous utility functions,
and good 1 is intensive in factor A, the economy that is relatively abundant
in factor A exports good 1.
Proof. Free trade implies uniform goods prices across trading economies.
Therefore, if two economies have identical homogeneous preferences, i.e.
identical and budget-invariant marginal rates of substitution, each economy
in a 2x2 model exports the good of which it produces relatively more than
the other economy. Hence it is su¢ cient to prove that an economy which
is relatively abundant in a factor will produce relatively more of the good
which is intensive in that factor. Denoting the economy�s ouput vector by
(y1; y2) and the economy�s input vector by (zA; zB), we should establish that

@ y1
y2

@ zA
zB

> 0
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if a1A
a1B

> a2A
a2B

at all factor prices wA
wB
. (Recall that a1A is the optimal quantity

of input A in the production of one unit of good 1.)
The clearing conditions for the factor markets are:

zA = a1Ay1 + a2Ay2

zB = a1By1 + a2By2:

Solving for y1 and y2;

y1 =
a2BzA � a2AzB
a1Aa2B � a2Aa1B

y2 =
a1AzB � a1BzA
a1Aa2B � a2Aa1B

:

Thus,

y1
y2

=
a2BzA � a2AzB
a1AzB � a1BzA

=
a2B

zA
zB
� a2A

a1A � a1B zAzB

=
a2B
a1B

zA
zB
� a2A

a2B
a1A
a1B

� zA
zB

:

Di¤erentiating:

@ y1
y2

@ zA
zB

=
a2B
a1B

a1A
a1B

� zA
zB
+ zA

zB
� a2A

a2B�
a1A
a1B

� zA
zB

�2
=

a2B
a1B

a1A
a1B

� a2A
a2B�

a1A
a1B

� zA
zB

�2 :
Clearly, if a1A

a1B
> a2A

a2B
, then @ y1

y2
=@ zA

zB
is indeed positive. As we have argued

at the outset, this completes the proof of the theorem. To see why, suppose
two economies coexist in autarky in a 2x2 world. Good 1 is intensive in input
A, and one economy is relatively abundant in input A: As was just shown,
this economy will produce relatively more of good 1 (and of course relatively
less of good 2). If preferences are identical and scale-invariant, the price of
good 1 (in terms of good 2) must be lower in the economy that produces
relatively more of good 1. If we allow the economies to trade, the relatively
cheaper good will be exported and the relatively more expensive good will
be imported.
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