
OJB Documentation

1. OJB

1.1. ObJectRelationalBridge - OJB

1.1.1. Summary

ObJectRelationalBridge (OJB) is an Object/Relational mapping tool that allows transparent persistence for Java Objects
against relational databases.

1.1.1.1. flexibility

OJB supports multiple persistence APIs to provide users with their API of choice:

• A full featured ODMG 3.0 compliant API. (See the ODMG Tutorial for an introduction.)
• A JDO compliant API. We currently provide a plugin to the JDO Reference Implementation (RI). Combining the JDO RI

and our plugin provides a JDO 1.0 compliant o/r solution.
A full JDO implementation is scheduled for OJB 2.0. (See JDO tutorial for an introduction to the JDO programming
model.)

• An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG have in common. (See OTM
tutorial for details).

• A low-level PersistenceBroker API which serves as the OJB persistence kernel. The OTM-, ODMG- and
JDO-implementations are build on top of this kernel.
This API can also be used directly by applications that don't need full fledged object level transactions (See the Persistence
Broker Tutorial for details).

See the FAQ for a detailed view of the OJB layering.

1.1.1.2. scalability

OJB has been designed for a large range of applications, from embedded systems to rich client application to multi-tier J2EE
based architectures.

OJB integrates smoothly into J2EE Application servers. It supports JNDI lookup of datasources. It ships with full JTA and
JCA Integration. OJB can be used within JSPs, Servlets and SessionBeans. OJB provides special support for Bean Managed
EntityBeans (BMP).

1.1.1.3. functionality

OJB uses an XML based Object/Relational Mapping. The mapping resides in a dynamic MetaData layer which can be
manipulated at runtime through a simple Meta-Object-Protocol (MOP) to change the behaviour of the persistence kernel.

OJB provides several advanced O/R features like an Object Caching, lazy materialization through virtual proxies or a
distributed lock-management with configurable Transaction-Isolation Levels. Optimistic and pessimistic Locking is supported.

OJB provides a flexible configuration and plugin mechanism that allows to select from set of predefined components or to
implement your own extensions and plugins.

A more complete featurelist can be found here.

Page 1
Copyright © All rights reserved.

error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:otm-tutorial
error:#site:otm-tutorial
error:#site:pb-tutorial
error:#site:pb-tutorial
error:#site:faq/apis
error:#site:object-cache
error:#site:basic-technique/using-proxy
error:#site:lock-manager
error:#site:features

Learn more about the OJB design principles in this document.

1.2. OJB - Features

1.2.1. Features

• Support of standard and non-standard API's:
• PB api (non-standard)
• OTM api (non-standard)
• ODMG api (standard)
• JDO api (standard)

• The PersistenceBroker kernel api and all top-level api (ODMG, OTM, JDO) allows Java Programmers to store and retrieve
Java Objects in/from (any) JDBC-compliant RDBMS

• Transparent persistence: Persistent classes don't have to inherit from a persistent base class or to implement an interface.
• Scalable architecture that allows to build massively distributed and clustered systems.
• Configurable persistence by reachability: All Objects associated to a persistent object by references can made persitent too.
• Extremly flexible design with pluggable implementation of most service classes like PersistenceBroker, ObjectCache,

SequenceManager, RowReader, ConnectionFactory, ConnectionManager, IndirectionHandler, SQLGenerator,
JdbcAccess, ... and so on.

• Quality assurance taken seriously: More than 600 JUnit-TestCases for regression tests. JUnit tests integrated into the build
scripts.

• Mapping support for 1:1, 1:n and m:n associations.
• Configurable collection queries to control loading of relationships. See QueryCustomizer.
• Automatic and manual assignment of foreign key values.
• The Object / Relational mapping is defined in an XML Repository. The mapping is completely dynamic and can be

manipulated at runtime for maximum flexibility
• Easy use of multiple databases.
• Configurable Lazy Materialization through Proxy support in the PersistenceBroker. The user can implement specific Proxy

classes or let OJB generate dynamic Proxies.
• Support for Polymorphism and Extents. You can use Interface-types and abstract classes as attribute types in your

persistent classes. Queries are also aware of extents: A query against a baseclass or interface will return matches from
derived classes, even if they are mapped to different DB-tables

• Support for Java Array- and Collection-attributes in persistent classes. The attribute-types can be Arrays,
java.util.Collection or may be user defined collections that implement the interface
ojb.broker.ManageableCollection.

• Sequence-Managing . The SequenceManager is aware of "extents" and maintains uniqueness of ids accross any number of
tables. Sequence Numbering can be declared in the mappping repository.
Native Database based Sequence Numbering is also supported.

• Reusing Prepared Statements, internal connection pooling.
• Integrates smoothly in controlled environments like EJB containers
• Full JTA and JCA (in progress) Integration.
• Support for prefetched relationships to minimize the number of queries.
• ODMG compliant API, a Tutorial, and TestCases are included.
• JDO 1.0.1 compliant API (based on jdori, native implementation in progress), a Tutorial, and TestCases are included.
• Distributed Lockmanagement supporting four pessimistic Transaction Isolation Levels (uncommited or "dirty" reads,

commited reads, repeatable reads, serializable transactions).
• Optimistic locking support. Users may declare int or long fields as version attributes or java.sql.Timestamp

fields as timestamp attributes.
• Support of distributed caches.
• Comes along with fully functional demo applications running against HSQLDB.
• Provides Commons-Logging and Log4J logging facilities.

OJB Documentation

Page 2
Copyright © All rights reserved.

error:#site:links
error:#site:basic-technique
error:#site:test-suite
error:#site:basic-technique
error:#site:advanced-technique
error:#site:basic-technique/cascading
error:#site:basic-technique/linking
error:#site:metadata
error:#site:faq/multiple-databases
error:#site:basic-technique/using-proxy
error:#site:advanced-technique/polymorphism
error:#site:advanced-technique/types-for-associations
error:#site:sequence-manager
error:#site:connection
error:#site:deployment/j2ee-server
error:#site:query/prefetched-relationships
error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:lock-manager
error:#site:faq/optimistic-locking
error:#site:object-cache/distributed-cache
error:#ext:commons-logging
error:#ext:log4j

• 100 %: pure Java, Open Source, Apache License

Note:
- OQL is currently not fully implemented (Aggregations and Method Invocations)
- ODMG implicit locking is partly implemented but does currently not maintain transaction isolation properly. To achieve safe transaction isolation client application must use
explicit lock acquisition

1.3. Status

1.3.1. PB API (Persistence Broker API)

The PB API implementation is stable.

1.3.2. OTM API (Object Transaction Manager API)

The OTM Object Transaction Manager API is in beta status with this release.

1.3.3. ODMG API

The ODMG API implementation is stable, but there some known issues - see release-notes

Note:
OQL is currently not fully implemented (Aggregations and Method Invocations).
ODMG implicit locking is partly implemented but does currently not maintain transaction isolation properly. To achieve safe transaction isolation client application must use
explicit lock acquisition.

1.3.4. JDO API

By providing a plugin to the SUN JDO Reference Implementation we provide a complete JDO 1.0.1 prototype O/R mapping
tool. A complete Apache licensed JDO implementation is scheduled for OJB 2.0.

1.4. OJB - Mail Lists

1.4.1. Mailing Lists

These are the mailing lists that have been established for this project. For each list, there is a subscribe, unsubscribe, and an
archive link.

List Name Subscribe Unsubscribe Archive

Objectbridge User List Subscribe Unsubscribe Archive

Objectbridge
Developer List

Subscribe Unsubscribe Archive

1.5. OJB - Mail Archives

1.5.1. Mail Archives

archive provider OJB User list OJB Developer
list

searchable remarks

GMANE gmane.comp.jakarta.ojb.usergmane.comp.jakarta.ojb.develyes latest 600
postings available

OJB Documentation

Page 3
Copyright © All rights reserved.

error:#ext:release-notes
error:#ext:ojb/mail/user/subscribe
error:#ext:ojb/mail/user/unsubscribe
error:#ext:ojb/archives/apache/user
error:#ext:ojb/mail/dev/subscribe
error:#ext:ojb/mail/dev/unsubscribe
error:#ext:ojb/archives/apache/dev
error:#ext:ojb/archives/gmane/user
error:#ext:ojb/archives/gmane/dev

via web access.
Unlimited access
through nntp
(news reader)

Apache ojb-user@db.apache.orgojb-dev@db.apache.orgyes --

The Mail Archive ojb-user -- yes --

1.6. OJB - References and Testimonials

1.6.1. References and Testimonials

1.6.1.1. projects using OJB

Jakarta JetSpeed
Jetspeed is an Open Source implementation of an Enterprise Information Portal, using Java and XML.
OJB will be the default persistence model within Jetspeed 2.

The Tammi project
Tammi is a JMX-based Java application development framework and run-time environment providing a service architecture
for J2EE server side Internet applications that are accessible from any device that supports HTTP including mobile (wireless)
handsets.
Future plans include integration of Apache OJB based persistence services to the framework.

The Object Console project
The Object Console is an open web based application meant for the administration of objects via the web. Any object that is
persistable by the ObJectRelationalBridge (OJB) framework can be managed through this tool. In addition, this tool provides
administration functionality for the ObJectRelationalBridge (OJB) framework itself.
Object Console uses Struts and OJB. It ships with full sourcecode and is thus a great source for learning Struts + OJB
techniques.

The IntAct project
The IntAct project establishes a knowledgebase for protein-protein interaction data. It's hosted at EBI - European
Bioinformatics Institute, Cambridge.
IntAct uses OJB as its persistence layer.

Network for Earthquake Engineering Simulation
The NEES program will provide an unprecedented infrastructure for research and education, consisting of networked and
geographically distributed resources for experimentation, computation, model-based simulation, data management, and
communication.
OJB is used as the O/R mapping layer.

The OJB.NET project
OJB.NET is an object-to-relational persistence tool for the .NET platform. It enables applications to transparently store and
retrieve .NET objects using relational databases.
OJB.NET is a port ojb Apache OJB to the .NET platform

The OpenEMed project
OpenEMed is a set of distributed healthcare information service components built around the OMG distributed object
specifications and the HL7 (and other) data standards and is written in Java for platform portability.
OpenEMed uses ODMG as its persistence API. OJB is used as ODMG compliant O/R tool.

1.6.1.2. user testimonials

OJB Documentation

Page 4
Copyright © All rights reserved.

error:#ext:ojb/archives/apache/user
error:#ext:ojb/archives/apache/dev
error:#ext:ojb/archives/mail-archive/user
error:#ext:jetspeed-2
error:#ext:tammi
error:#ext:ojbc
error:#ext:intact
error:#ext:nees
error:#ext:ojb-net
error:#ext:openemed

"We're using OJB in two production applications at the Northwest Alliance for Computational Science and Engineering
(NACSE). One is a data mining toolset, and the other is a massive National Science Foundation project that involves huge
amounts of data, and about 20 or 25 universities and research groups like mine.
In fact, I've begun making OJB sort of a de-facto standard for NACSE java/database development. I've thrown out EJB's for
the most part and I've tried JDO from Castor, but I'm sticking with OJB. Maybe we'll reconsider JDO when the OJB
implementation is more complete."

"We are planning a November 2003 production deployment with OJB and WE LOVE IT!! We have been in development on a
very data-centric application in the power industry for about 5 months now and OJB has undoubtedly saved us countless hours
of development time. We have received benefits in the following areas:
-> Easily adapts to any data model that we've thrown at it. No problems mapping tables with compound keys, tables mapping
polymorphic relationships, identity columns, etc.
-> Seemlesly switches between target DB platforms. We develop and unit test on our local workstations with HSQLDB and
PostgreSQL, and deploy to DB2 using the Type 4 JDBC driver from IBM. Works great!
-> Makes querying a breeze with the PersistenceBroker API
Overall we have found OJB to be very stable (and we've really tested it out quite a bit). The only issues we've got outstanding
at the moment is support for connections to multiple databases, but I've noticed in CVS that the OJB guys are already fixing
this for OJB 0.9.9."

"We've been using it in "production" for a long time now, from about version 0.9.4, I believe. It has been very robust. We don't
use all of its features. We've only see to failures of our persistent store in about 9 months, and I'm not sure they were due to
OJB."

"So yes, we have made a quite useful mediumsized production website based on OJB (with JBoss, Jakarta Jetspeed, Jakarta
Turbine and Jakarta Jelly, three Tomcats, OpenSymhony OSCache and for the database MSSQL server, all running on
Win2000.) It is attracting between 600 and 9000 (peak) users a day, and runs smoothly for extended periods of time. And no, I
can not actually show you the wonders of the editorial interface of the content management system, because it is hidden behind
a firewall.
I feel OJB is quite useful in production, but you certainly have to know what you are doing and what you are trying to achieve
with it. And there have been some tricky aspects, but these could be solved by simple workarounds and small hacks.
The main thing about OJB is that AFAIK it has an overall clean design, and it far beats making your own database abstraction
layer and object/relational mapper. We certainly do not use all of it, only the Persistence Broker parts, so there was less to
learn. We love the virtual proxy and collection proxy concepts, the criteria objects for building queries, and the nice little
hidden features that you find when you start to learn the system."

"My Company is building medium to large scale, mission critical applications (100 - 5.000 concurrent users) for our
customers. Our largest customer is KarstadtQuelle, Europes largest retail company. The next big system that will go in
production (in June) is the new logistics system for the stationary logistics of Karstadt.
Of course we are using OJB in those Systems! We have several OJB based systems now in production for over a year. We
never had any OJB related problems in production.
Most problems we faced during development were related to the learning curve developers had to face who were new to O/R
mapping."

"I've also worked with OJB on high-load situations in J2EE environments. We're using JRun and/or Orion with OJB in a
clustered/distributed environment. This is a National Science Foundation project called the Network for Earthquake
Engineering Simulation (NEES).
The only major problem that we ran into was the cache. JCS just isn't good, and hasn't seemed to get much better over the last
year. We ended up plugging in Tangosol's Coherence Clustered Cache into the system. We can also do write-behinds, and
buffered data caching that is queued for transaction. That's important to us because we're dealing with very expensive scientific
data that _can't_ get lost if a db goes down. Some of these Tsunami experiments can get pretty expensive.
Otherwise, we use mostly the PersistenceBroker, and a little of the ODMG. Performance seems better on PB, but less
functional. It's not really that much of a problem anyway, because we can cheaply and quickly add app-servers to the cluster."

OJB Documentation

Page 5
Copyright © All rights reserved.

1.7. Links and further readings

1.7.1. Summary

This page contains interesting links and recommended readings that will help to learn more about OJB concepts, related
projects, didactic material, research reports etc.

1.7.2. Design

OJB is based on a variety of conceptual sources. In this section I'll give a summary about the most prominent influences.

1. Craig Larmans Applying UML and Patterns
2. The Siemens Guys "Pattern-Oriented Software Architecture"
3. Scott Amblers classic papers on O/R mapping
4. The "Crossing Chasms" paper from Brown et. al.
5. The GOF Design Patterns
(sorted by relevance)

1. The most important input came from Applying UML and Patterns. It contains a chapter describing the design of a
PersistenceBroker based approach persistence layer. His presentation contains a lot of other good ideas (e.g. usage of Proxies,
caching etc.) I implemented a lot of his things 1:1. This book is a must have for all OJB developers !

2. Larman does not cover the dynamic metadata concept. He mentiones that such a thing would be possible, but does not go
into details. As I had been a fan of MetaLevel architectures for quite a while I wanted to have such a thing in OJB too !!!

mop-gif
I took the concepts from the book Pattern-Oriented Software Architecture. They have a chapter on the Reflection pattern (aka
Open Implementation, Meta-Level Architecture).
They even provide an example how to apply this pattern to a persistence layer.
There is another Architectural pattern from this book that I am using: The Microkernel pattern.
My idea was to have a kernel (the PersistenceBroker) that does all the hard work (O/R mapping, JDBC access, etc.)
High Level object transaction frameworks like a ODMG or JDO implementations are clients to the PersistenceBroker kernel in
this concept!

3. I read Scott Amblers papers before starting OJB. Sure! There are several things in OJB that are from his classic The design
of a robust persistence layer and from his Mapping Objects To Relational Databases. Most prominent: The PersistenceBroker
concept.
I incorporated the Query API from the OpenSource project COBRA that applies Amblers PersistentCriteria concept.
Reading Amblers paper on these topics is a must.

But IMO these are the only aspects of Amblers presentation that map directly to OJB. Here are the concepts that differ:

• Amblers concept relies on a persistent base class.
• caching is not covered by his design
• his concept of OID does not fit for legacy databases with compound PKs.
• The OJB proxy concept is quite different (Ambler has proxy functionality in his PersistentObject base class.)
• OJB does not use Insert- and UpdateCriteria
• OJB uses a different mapping approach (A full metadata layer)

OJB Documentation

Page 6
Copyright © All rights reserved.

http://www.craiglarman.com/book_applying_2nd/Applying_2nd.htm
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://hillside.net/patterns/books/Siemens/book.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://www.ambysoft.com/
http://www.ambysoft.com/persistenceLayer.html
http://www.ambysoft.com/persistenceLayer.html
http://www.ambysoft.com/mappingObjects.html
http://www.kimble.easynet.co.uk/cobra/index.htm

4. For several detail questions (like mapping inheritance hierarchies) I consulted crossing chasms. This is also a very good
source for all O/R implementors.

5. For all the "small things" I'm using the common GOF patterns like Factory, Observer, Singleton, Proxy, Adaptor, State,
Command, etc.

Here is a thesis describing concepts very similar to OJB.
As I read this paper I saw a lot of thing inspired by OJB. It's giving a nice introduction into the PersistenceBroker pattern and
related topics.

The PARC software design area pioneering in Metalevel computation, aspect oriented programming etc.

1.7.3. Further readings on O/R mapping

• ObjectArchitects O/R pattern page
• JavaSkyLine page on database integration
• Barry and Associates page on O/R mapping
• Portland Pattern Repository page on O/R
• Martin Fowlers book "Pattern of Enterprise Application Architecture" covers many O/R patterns that can be found in OJB.

Here you will find an online catalog of these patterns.

1.7.4. Patterns

• The Hillside Pattern page
• The Portland Pattern Repository

1.7.5. OJB tutorials

• The famous Beer4All Struts/OJB tutorial by Chuck Cavaness
• A presentation on OJB held at the Atlanta Java Users Group by Chuck Cavaness
• An extensive tutorial on OJB by John Carnell
• Roberto Ghizzioli's tutorial on Struts, OJB, and nested tags
• An introductory tutorial on the O'Reilly site.

1.7.6. Books covering OJB

• The O'Reilly book on Struts programming by Chuck Cavaness has a whole chapter about how to build an applications
model layers based on OJB. A must reading for everyone intending to use Struts and OJB. All source code from the book
can be found here: Struts Programming sources.

• There's also a WROX book on Struts + OJB All source code from the book can be found here: Professional Struts and OJB
sources.

• Enterprise Java Development on a Budget

2. Download

3. Development

3.1. Coding Standards

3.1.1. Coding Standards

This document describes a list of coding conventions that are required for code submissions to the project. By default, the
coding conventions for most Open Source Projects should follow the existing coding conventions in the code that you are
working on. For example, if the bracket is on the same line as the if statement, then you should write all your code to have that
convention.

OJB Documentation

Page 7
Copyright © All rights reserved.

http://members.aol.com/kgb1001001/Chasms.htm
http://hillside.net/patterns/books/DPBook/DPBook.html
http://www2.parc.com/csl/groups/sda/projects.shtml
http://www.objectarchitects.de/ObjectArchitects/orpatterns/
http://www.javaskyline.com/database.html
http://www.service-architecture.com/object-relational-mapping/articles/
http://c2.com/cgi/wiki?ObjectRelationalMapping
http://www.martinfowler.com/eaaCatalog/
http://www.martinfowler.com/eaaCatalog/
http://hillside.net/patterns/
http://c2.com/cgi/wiki?CategoryPattern
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/struts-ojb.zip?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/cavaness-ajug-slides.pdf?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/ojb-dataccess.pdf?rev=HEAD
http://www.robertoghizzioli.it/jcomm/jcomm_tutorial.html
http://www.onjava.com/pub/a/onjava/2003/01/08/ojb.html
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://examples.oreilly.com/jakarta/
http://www.amazon.com/exec/obidos/tg/detail/-/1861007817/qid=1054655953/sr=8-1/ref=sr_8_1/103-9325116-6675068?v=glance&s=books&n=507846
http://web.wrox.com/download/code/professional/7817.zip
http://web.wrox.com/download/code/professional/7817.zip
http://www.amazon.com/exec/obidos/ASIN/1590591259/qid%3D1082279566/sr%3D11-1/ref%3Dsr%5F11%5F1/103-0814434-1236616

If you commit code that does not follow these conventions, you are responsible for also fixing your own code.

Below is a list of coding conventions that are specific to Turbine, everything else not specificially mentioned here should
follow the official Sun Java Coding Conventions.

1. Brackets should begin and end on a new line and should exist even for one line statements. Examples:

if (foo)
{

// code here
}

try
{

// code here
}
catch (Exception bar)
{

// code here
}
finally
{

// code here
}

while (true)
{

// code here
}

2. Though it's considered okay to include spaces inside parens, the preference is to not include them. Both of the following are
okay:

if (foo)

or

if (foo)

3. 4 space indent. NO tabs. Period. We understand that many developers like to use tabs, but the fact of the matter is that in a
distributed development environment where diffs are sent to the mailing lists by both developers and the version control
system (which sends commit log messages), the use tabs makes it impossible to preserve legibility.

In Emacs-speak, this translates to the following command:

(setq-default tab-width 4 indent-tabs-mode nil)

4. Unix linefeeds for all .java source code files. Other platform specific files should have the platform specific linefeeds.

5. JavaDoc MUST exist on all methods. If your code modifications use an existing class/method/variable which lacks
JavaDoc, it is required that you add it. This will improve the project as a whole.

6. The Jakarta/Turbine License MUST be placed at the top of each and every file.

7. If you contribute to a file (code or documentation), add yourself to the authors list at the top of the file. For java files the
preferred Javadoc format is:

@author John Doe

8. All .java files should have a @version tag like the one below.

OJB Documentation

Page 8
Copyright © All rights reserved.

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

@version $Id: code-standards.xml,v 1.1 2004/06/20 09:12:35 tomdz Exp $

9. Import statements must be fully qualified for clarity.

import java.util.ArrayList;
import java.util.Hashtable;

import org.apache.foo.Bar;
import org.apache.bar.Foo;

And not

import java.util.*;
import org.apache.foo.*;
import org.apache.bar.*;

X/Emacs users might appreciate this in their .emacs file.

(defun apache-jakarta-mode ()
"The Java mode specialization for Apache Jakarta projects."
(if (not (assoc "apache-jakarta" c-style-alist))

;; Define the Apache Jakarta cc-mode style.
(c-add-style "apache-jakarta" '("java" (indent-tabs-mode . nil))))

(c-set-style "apache-jakarta")
(c-set-offset 'substatement-open 0 nil)
(setq mode-name "Apache Jakarta")

;; Turn on syntax highlighting when X is running.
(if (boundp 'window-system)

(progn (setq font-lock-support-mode 'lazy-lock-mode)
(font-lock-mode t))))

;; Activate Jakarta mode.
(if (fboundp 'jde-mode)

(add-hook 'jde-mode-hook 'apache-jakarta-mode)
(add-hook 'java-mode-hook 'apache-jakarta-mode))

Thanks for your cooperation.

4. Documentation

4.1. Documentation

4.1.1. Introduction

This section contains all documentation about OJB (except the wiki doc).

If you're new to OJB, we recommend that you start with reading the Getting Started section and the FAQ.

There are tools for building the metadata mapping files used by OJB. Information about them can be found here.

• Tutorials
Tutorials for the API's supported by OJB.

• Reference Guides
OJB reference guides.

• Howto's
Howto's provided by OJB users and committers.

OJB Documentation

Page 9
Copyright © All rights reserved.

error:#ext:wiki-page
error:#site:getting-started
error:#site:faq
error:#site:large-metadata
error:#site:tutorials/summary
error:#site:guides/summary
error:#site:howto/summary

• Testing
Info about OJB's quality assurance and test writing.

4.2. Frequently Asked Questions

4.2.1. Questions

1. General
• Why OJB? Why do we need another O/R mapping tool?
• How is OJB related to ODMG and JDO?
• What are the OJB design principals?
• Where can I learn more about Object/Relational mapping in general?
• How OJB performance compares to native JDBC programming?
• How OJB performance compares to other O/R mapping tools?
• Is OJB ready for production environments?

2. Getting Started
• Help! I'm having problems installing and using OJB!
• Help! I still have serious problems installing OJB!
• OJB does not start?
• Does OJB support my RDBMS?
• What are the OJB internal tables for?
• What does the exception Could not borrow connection from pool mean?
• Any tools help to generate the metadata files?

3. OJB api's
• What are the differences between the PersistenceBroker API and the ODMG API? Which one should I use in my

applications?
• I don't like OQL, can I use the PersistenceBroker Queries within ODMG?
• The OJB JDO implementation is not finished, how can I start using OJB?

4. Howto
• How to use OJB with my RDBMS?
• What are the best settings for maximal performance?
• How to page and sort?
• What about performance and memory usage if thousands of objects matching a query are returned as a Collection?
• When is it helpful to use Proxy Classes?
• How can I convert data between RDBMS and OJB?
• How can I trace and/or profile SQL statements executed by OJB?
• How does OJB manage foreign keys?
• How does OJB manage 'null' for primitive primary key?
• How to lookup object by primary key?
• Difference between getIteratorByQuery() and getCollectionByQuery()?
• How can Collections of primitive typed elements be mapped?
• How could class 'myClass' represent a collection of 'myClass' objects
• How to lookup PersistenceBroker instances?
• How to access ODMG?
• Needed to put user/password of database connection in repository file?
• Many different database user - How do they login?
• How do I use multiple databases within OJB?
• How does OJB handle connection pooling?
• Can I directly obtain a java.sql.Connection within OJB?
• Is it possible to perform my own sql-queries in OJB?
• Start OJB without a repository file?
• Connect to database at runtime?

OJB Documentation

Page 10
Copyright © All rights reserved.

error:#site:testing/summary

• Add new persistent objects metadata (class-descriptor) at runtime?
• Global metadata changes at runtime?
• Per thread metadata changes at runtime?
• Is it possible to use OJB within EJB's?
• Can OJB handle ternary (or higher) associations?
• How to map a list of Strings
• How to set up Optimistic Locking
• How to use OJB in a cluster
• How to work with the ObjectCacheEmptyImpl
• JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

4.2.2. Answers

4.2.2.1. 1. General

1.1. Why OJB? Why do we need another O/R mapping tool?

here are some outstanding OJB features:

• It's fully ODMG 3.0 compliant
• It will have a full JDO implementation
• It's higly scalable (Loadbalanced Multiserver scenario)
• It provides multiple APIs:

• The full fledged ODMG-API,
• The JDO API (planned)
• and the PersistenceBroker API. This API provides a O/R persistence kernel which can be used to build higher level

APIs (like the ODMG and JDO Implementations)
• It's able to handle multiple RDBMS simultaneously.
• it has a slick MetaLevel Architecture: By changing the MetaData at runtime you can change the O/R mapping behaviour.

(E.G. turning on/off usage of Proxies.)
• It has a simple CacheMechanisms that is fully garbage collectable by usage of weak references.
• It has a simple and clean pattern based design.
• It uses a configurable plugin concept. This allows to replace components (e.g. the ObjectCache) by user defined

Replacements.
• It has a modular architecture (you can quite easily reuse some components in your own applications if you don't want to

use the whole thing:
• The PersistenceBroker (e.g. to build your own PersistenceManager)
• The Query Interface as an abstract query syntax
• The OQL Parser
• The MetaData Layer
• The JDBC Accesslayer

• It has a very sharp focus: It's concerned with O/R mapping and nothing else.

Before making OJB an OpenSource project I had a look around at the emerging OpenSource O/R scene and was asking myself
if there is really a need for yet another O/R tool. I came to the conclusion that there was a need for OJB because:

• There was no ODMG/JDO compliant opensource tool available
• There was no scalable opensource O/R tool available
• there was no tool available with the idea of a PersistenceBroker Kernel that could be easiliy extended
• The tools available had no dynamic MetaData architectures.
• The tools available were not as clearly designed as I hoped, thus extending one of them would have been very difficult.

1.2. How is OJB related to ODMG and JDO?

OJB Documentation

Page 11
Copyright © All rights reserved.

ODMG is a standard API for Object Persistence specified by the ODMG consortium (www.odmg.org). JDO is Sun's API
specification for Object Persistence. ODMG may well be regarded as a Precursor to JDO. In fact JDO incorporates many ideas
from ODMG and several people who have been involved in the ODMG spec are now in the JDO team.
I assume JDO will have tremendous influence on OODBMS-, RDBMS-, J2EE-server and O/R-tool-vendors to provide
compliant products.
OJB wants to provide first class support for JDO and ODMG APIs.

OJB currently contains of four main layers, each with its own API:

1. A low-level PersistenceBroker API which serves as the OJB persistence kernel. The PersistenceBroker also provides a
scalable multi-server architecture that allows to used it in heavy-duty app-server scenarios.
This API can also be used directly by applications that don't need full fledged object level transactions (see PB tutorial for
details).

2. An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG have in common as Object
level transactions, lock-management, instance lifecyle etc. (See OTM tutorial for details.) The OTM is work in progress.

3. A full featured ODMG 3.0 compliant API. (See ODMG tutorial for an introduction.)
Currently this API is implemented on top the PersistenceBroker. Once the OTM layer is finished ODMG will be
implemented on top of OTM.

4. A JDO compliant API. This is work in progress. (See JDO tutorial for an introduction.)
Currently this API is implemented on top the PersistenceBroker. Once the OTM layer is finished JDO will be implemented
on top of OTM.

The following graphics shows the layering of these APIs. Please note that the layers coloured in yellow are not yet
implemented.

OJB Layer

1.3. What are the OJB design principals?

OJB has a "pattern driven" design. Please refer to this document for more details

1.4. Where can I learn more about Object/Relational mapping in general?

We have a link list pointing to further readings.

1.5. How OJB performance compares to native JDBC programming?

See page Performance.

1.6. How OJB performance compares to other O/R mapping tools?

See page Performance.

1.7. Is OJB ready for production environments?

Depends on your production environment. If you want to program an aeroplane autopilot system you should not use Java at all.
(according to the official disclaimer).
But I assume we are talking about enterprise business applications, aren't we? And for such applications it's a clear yes. OJB is
used in production application since version 0.5. We have about 6.000 downloads each month (and growing) and a large user
base using it in a wide spectrum of production scenarios.
We provide a regression test suite for Quality Assurance. You can use this testsuite to check if OJB works smoothly in your
target environment. (see supported platforms documentation)
We also provide a performance testsuite that compares OJB performance against native JDBC. This test will give you an
impression of the performance impact OJB will have in your target environment. (see Performance testsuite documentation)
OJB is also the persistence layer of choice in several books on programming J2EE based enterprise business systems. (see our

OJB Documentation

Page 12
Copyright © All rights reserved.

error:#site:pb-tutorial
error:#site:otm-tutorial
error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:links/design
error:#site:links/more-or
error:#site:performance
error:#site:performance
error:#site:platform
error:#site:performance

links and references section)
Reference projects and user testimonials are listed here.

4.2.2.2. 2. Getting Started

2.1. Help! I'm having problems installing and using OJB!

Please read the Getting Started document. OJB is a powerful and complex system - installing and configuring OJB is not a
trivial task. Be sure to follow all the steps mentioned in that document - don't skip any steps when first installing OJB on your
systems.

If you are having problems running OJB against your target database, read the respective platform documentation. Before you
try to deploy OJB to your environment, read the deployment guide.

2.2. Help! I still have serious problems installing OJB!

The following answer is quoted from the OJB user-list. It is from a reply to a user who had serious problems getting started
with OJB.

I would say it was stupid not to understand OJB. How can you know what another programmer wrote. I've been a Java
programmer for quite some time and I could show you stuff I wrote that I know you wouldn't understand. I'll just break it down
the best I can on what, where and why.

OJB is a data persistence layer for Java. I'll just use an example of how I use it. I have an RDMS. I would like to save Java
object states to this database and I would like to be able to search this information as well. If you serialize objects it's hard to
search and if you use SQL it won't work with any different database. Plus it's a mess having to work with all that SQL in your
code. And by using SQL you don't get to work with just Java objects. But, with OJB your separated from having to work
outside the object world and unlike serialization you can preform SQL like searches on your data. Also, there's things like
caching and connection pooling in OJB that help with performance. After setting up OJB you will use either PB-API or
ODMG or JDO to access your information in a object centric manner. PB API is a non-standard O/R mapping API with many
features and great flexibility. All top-level API's like ODMG or JDO build on top of the PB-api. ODMG is a standard for the
api for accessing your data. That means you can use any ODMG compliant api if you don't want to use OJB. The JDO part is
like ODMG except it's the SUN JDO standard. I use ODMG because the JDO interface is not ready yet.

OJB is easy to use. I'll just break it down into two sides. There's the side your writing your code for your application and
there's the side that you configure to make OJB connect to your database. Starting with your application side, all that is needed
is to use the interface you wish. I use ODMG because JDO is not complete yet. Here's a link to the ODMG part with some
code for examples.
That's all you need on the application side. Next there's the configuration side. This is the one your fighting with. Here you
need to setup the core tables for OJB and you will define the classes you wish to store in your database.

First thing to do is to build the cvs's with the default database HSQL, because you know it will work. If you get past this point
you should have a working OJB compiled. Now if your using JDK 1.4 you will need to set in build.properties
JDBC=+JDBC30 and do a ant preprocess first. Next you will do a ant junit and this will build OJB and test everything for
you. If you get a build successful then your in business. Then you will want to run ant jar to create the OJB jar to put in your
/lib. You will need a couple other jars in you /lib directory to make it all work. See this page for those.
http://jakarta.apache.org/ojb/deployment.html

Next you will need some xml and configuration files in your class path for OJB. You will find those files under
{$OJB_base_dir}/target/test/ojb. All the repository.xml's and OJB.properties for sure. With all these files in place with your
application you should be ready to use OJB and start writing your application.

Finally you will want to setup your connection to your database and define your classes you will be storing in your database. In
the repository.xml file you can configure your JDBC parameters so OJB can connect to your database. You will also need your
JDBC jar somewhere in your class path. Then you will define your classes in the repository_user.xml file. Look here for

OJB Documentation

Page 13
Copyright © All rights reserved.

error:#site:links
error:#site:references
error:#site:getting-started
error:#site:platform
error:#site:deployment
error:#site:odmg-tutorial

examples. http://jakarta.apache.org/ojb/tutorial1.html Note you will want to comment out the junit part in repository.xml
because it's just for testing.

The final thing to do is to make sure the OJB core tables are in your database. Look on this page for the core tables. These core
tables are used by OJB to store internal data while it's running. It needs these. Then there's the tables you define. The ones you
mapped in the repository_user.xml file.

Sorry if any of this is off. OJB is growing so fast that it's hard to keep up with all changes. The order I gave the steps in is just
how I would think it's understood better. You can go in any order you want. The steps I've shown are mostly for deployment.
Hope this helps you understand OJB a little better. I'm not sure if this is what your wanting or not.

2.3. OJB does not start?

If you carefully attended the installing hints there may be something wrong with your metadata mapping defined in the
repository file or one the included sub files.

• Are you included all configuration files in classpath?
• On update to a new release, make sure you replaced all configuration files
• Check your metadata mapping - typos,... ?

If something going wrong while OJB read the metadata files you can enable debug log level for
org.apache.ojb.broker.metadata.RepositoryXmlHandler and
org.apache.ojb.broker.metadata.ConnectionDescriptorXmlHandler to get more detailed information.

Note:
If OJB default logging was used, change entries for these classes in OJB.properties file (this may change in future).

2.4. Does OJB support my RDBMS?

please refer to this document.

2.5. What are the OJB internal tables for?

Please refer to this document.

2.6. What does the exception Could not borrow connection from pool mean?

There can be several reasons

2.7. Any tools help to generate the metadata files?

Please refer to this document.

4.2.2.3. 3. OJB api's

3.1. What are the differences between the PersistenceBroker API and the ODMG API? Which one should I use in my applications?

The PersistenceBroker (PB) provides a minimal API for transparent persistence:

• O/R mapping
• Retrieval of objects with a simple query interface from RDBMS
• storing (insert, update) of objects to RDBMS
• deleting of objects from RDBMS

This is all you need for simple applications as in tutorial1.

OJB Documentation

Page 14
Copyright © All rights reserved.

error:#site:platform
error:#ext:repository.xml
error:#ext:ojb.properties
error:#site:platform
error:#site:platform
error:#site:large-metadata

The OJB ODMG implementation uses the PB as its persistence kernel. But it provides much more functionality to the
application developer. ODMG is a full fledged API for Object Persistence, including:

• OQL Query interface
• real Object Transactions
• A Locking Mechanism for management of concurrent threads (apps) accessing the same objects
• predefined persistent capable Collections and Hashtables

Some examples explaining the implications of these functional differences:

1. Say you use the PB to query an object O that has a collection attribute col with five elements a,b,c,d,e. Next you delete
Objects d and e from col and store O again with PersistenceBroker.store(O);
PB will store the remaining objects a,b,c. But it will not delete d and e ! If you then requery object O it will again contain
a,b,c,d,e !!!
The PB keeps no transactional state of the persistent Objects, thus it does not know that d and e have to be deleted. (as a
side note: deletion of d and e could also be an error, as there might be references to them from other objects !!!)
Using ODMG for the above scenario will eliminate all trouble: Objects are registered to a transaction so that on commit of
the transaction it knows that d and e do not longer belong to the collection. the ODMG collection will not delete the objects
d and e but only the REFERENCES from the collection to those objects!

2. Say you have two threads (applications) that try to access and modify the same object O. The PB has no means to check
whether objects are used by concurrent threads. Thus it has no locking facilities. You can get all kind of trouble by this
situation. The ODMG implementation has a Lockmanager that is capable of synchronizing concurrent threads. You can
even use four transaction isolation levels:
read-uncommitted, read-committed, repeatable-read, serializable.

In my eyes the PB is a persistence kernel that can be used to build high-level PersistenceManagers like an ODMG or JDO
implementation. It can also be used to write simple applications, but you have to do all management things (locking, tracking
objects state, object transactions) on your own.

3.2. I don't like OQL, can I use the PersistenceBroker Queries within ODMG?

Yes you can! The ODMG implementation relies on PB Queries internally! Several users (including myself) are doing this.

If you have a look at the simple example below you will see how OJB Query objects can be used withing ODMG transactions.
The most important thing is to lock all objects returned by a query to the current transaction before starting manipulating these
objects.
Further on do not commit or close the obtained PB-instance, this will be done by the ODMG transaction on tx.commit()
/ tx.rollback().

Transaction tx = odmg.newTransaction();
tx.begin();
....
// cast to get intern used PB instance
PersistenceBroker broker = ((HasBroker) tx).getBroker();
...
// build query
QueryByCriteria query = ...
// perform PB-query
Collection result = broker.getCollectionByQuery(query);
// use result
...

tx.commit();
...

3.3. The OJB JDO implementation is not finished, how can I start using OJB?

I recommend to not use JDO now, but to use the existing ODMG api for the time being.

OJB Documentation

Page 15
Copyright © All rights reserved.

Migrating to JDO later will be smooth if you follow the following steps. I recommend to first divide your model layer into
Activity- (or Process-) classes and Entity classes.

Entity classes represent classes that must be made persistent at some point in time, say a "Customer" or a "Order" object. These
persistent classes and the repsective O/R mapping in repository.xml will remain unchanged.

Activities are classes that perform business tasks and work upon entities, e.g. "edit a Customer entry", "enter a new Order"...
They implement (parts of) use cases.

Activities are driving transactions against the persistent storage.

I recommend to have a Transaction interface that your Activities can use. This Transaction interface can be implemented by
ODMG or by JDO Transactions (which are quite similar). The implementation should be made configurable to allow to switch
from ODMG to JDO later.

The most obvious difference between ODMG and JDO are the query languages: ODMG uses OQL, JDO define JDOQL. As
an OO developer you won't like both of them. I recommend to use the ojb Query objects that allow an abstract syntax
representation of queries. It is possible to use these queries within ODMG transactions and it will also be possible to use them
within JDO Transactions. (this is contained in the FAQ too).

Using your own Transaction interface in conjunction with the OJB query api will provide a simple but powerful abstraction of
the underlying persistence layer.

We are using this concept to provide an abstract layer above OJB-ODMG, TopLink and LDAP servers in my company.
Making it work with OJB-JDO will be easy!

4.2.2.4. 4. Howto

4.1. How to use OJB with my RDBMS?

please refer to this document.

4.2. What are the best settings for maximal performance?

See performance section.

4.3. How to page and sort?

Sorting can be configured by org.apache.ojb.broker.query.Criteria::orderBy(column_name).

There is no paging support in OJB. OJB is concerned with Object/Relational mapping and not with application specific
presentation details like presenting a scrollable page of items.

OJB returns query results as Collections or Iterators.

You can easily implement your partial display of result data by using an Iterator as returned by
ojb.broker.PersistenceBroker::getIteratorByQuery(...).

4.4. What about performance and memory usage if thousands of objects matching a query are returned as a Collection?

You can do two things to enhance performance if you have to process queries that produce thousands of result objects:

1. Use getIteratorByQuery() rather than getCollectionByQuery(). The returned Iterator is lazy and does not materialize
Objects in advance. Objects are only materialized if you call the Iterators next() method. Thus you have total control about
when and how many Objects get materialized! Please see here for proper handling.

2. You can define Proxy Objects as placeholder for your persistent business objects. Proxys are lighweight objects that
contain only primary key information. Thus their materialization is not as expensive as a full object materialization. In your

OJB Documentation

Page 16
Copyright © All rights reserved.

error:#site:platform
error:#site:performance

case this would result in a collection containing 1000 lighweight proxies. Materialization of the full objects does only occur
if the objects are accessed directly. Thus you can build similar lazy paging as with the Iterator. You will find examples in
the OJB test suite (src-distribution only: [db-ojb]/src/test). More info about Proxy object here.

The Perfomance of 1. will be better than 2. This approach will also work for VERY large resultsets, as there are no references
to result objects that would prevent their garbage collectability.

4.5. When is it helpful to use Proxy Classes?

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes can help you in reducing
unneccessary db lookups. Example:

Say you load a ProductGroup object from the db which contains a collection of 15 Article objects.

Without proxies all 15 Article objects are immediately loaded from the db, even if you are not interested in them but just want
to lookup the description-attribute of the ProductGroup object.

With a proxy class, the collection is filled with 15 proxy objects, that implement the same interface as the "real objects" but
contain only an OID and a void reference.

Once you access such a proxy object it loads its "real subject" by OID and delegates the method call to it.

have a look at section proxy usage of page basic technique.

4.6. How can I convert data between RDBMS and OJB?

For Example I have a DB column of type INTEGER but a class atribute of type boolean. How can I provide an automatic
mapping with OJB?

OJB provides a concept of ConversionStrategies that can be used for such conversion tasks. Have a look at the respective
document.

4.7. How can I trace and/or profile SQL statements executed by OJB?

OJB ships with out of the box support for P6Spy. P6Spy is a JDBC proxy. It delegates all JDBC calls to the real JDBC driver
and traces all calls to a log file.

In the file build.properties you have to set the switch useP6Spy to true in order to activate it:

The useP6Spy switch determines if the tracing JDBC driver P6Spy
is used.
If you enable this switch, you must also edit the file
jakarta-ojb/src/test/org/apache/ojb/spy.properties
to tell P6Spy which JDBC driver to use and where to write the log.
By default the HSQLDB driver is used.
useP6Spy=true

This setup uses P6Spy to trace and profile all executed SQL to a file target/test/ojb/spy.log. It also measures the
time needed to execute each statement!

4.8. How does OJB manage foreign keys?

Automatically! you just define 1:1, 1:n or m:n associations in the repository_user.xml file. OJB does the rest!

Please refer to basic technique and xml-metadata repository for details.

4.9. How does OJB manage 'null' for primitive primary key?

Primitive values (int, long, ...) can't be null, so OJB interpret '0' as null for primitive PK/FK fields in persistent objects.

OJB Documentation

Page 17
Copyright © All rights reserved.

error:#site:basic-technique/using-proxy
error:#site:basic-technique/using-proxy
error:#site:basic-technique
error:#site:jdbc-types
error:#site:jdbc-types
error:#site:basic-technique
error:#site:repository

Thus primitive PK fields of persistent objects should never be represented by a '0' value in DB and never used as a sequence
key value.
This is only true for primitive PK/FK fields (e.g. Integer(0) is allowed). All other fields have 'normal' behavior.

4.10. How to lookup object by primary key?

Please see PB tutorial section.

4.11. Difference between getIteratorByQuery() and getCollectionByQuery()?

The first one returns an org.apache.ojb.broker.OJBIterator instance. The returned Iterator instance is lazy and
does not materialize Objects in advance. Objects are only materialized from the underlying query result set if you call the
Iterators next() method. If all objects materialized or the calling org.apache.ojb.broker.PersistenceBroker
instance was closed or transaction demarcations ends the Iterator instance release all used resources (e.g. used Statement and
ResultSet instances).

Method getCollectionByQuery() use an Iterator to materialize all objects first and then return the materialized objects
within the java.util.Collection instance.

Note:
If method getIteratorByQuery() was used keep in mind that the used Iterator instance is only valid as long as the used
org.apache.ojb.broker.PersistenceBroker instance ends transaction or be closed. So it is NOT possible to get an Iterator, close the PersistenceBroker and pass
the Iterator instance to a servlet or client. In that case use getCollectionByQuery().

4.12. How can Collections of primitive typed elements be mapped?

The first thing to ask is: How are these primitive typed elements (Strings are also treated as primitive types here) stored in the
database.
1) are they treated as ordinary domain objects and stored in a separate table?
2) are they serialized into a Varchar field?
3) are they stored as a comma separated varchar field?
4) is each element of the vector or array stored in a separate column? (this solution does only work for a fixed number of
elements!)
Follow these steps for solution 3):
a) simply define ordinary collection-descriptors as for every other collection of domain objects.
b) use the Object2ByteArrFieldConversion. See jdbc-types.html for details on conversion strategies.
c) use the StringVector2VarcharFieldConversion. See jdbc-types.html for details on conversion strategies.
d) provide a field-descriptor for each element.

4.13. How could class 'myClass' represent a collection of 'myClass' objects

OJB can handle such recursive associations without problems.

• add a collection attribute 'myClasses' to the class myClass this collection will hold the associated myClass objects.
• you have to decide wether this assosciation is 1:n or m:n.

for 1:n you just need an additional foreignkey attribute in the MY_CLASS table. Of course you'll also need a matching
attribute in the class myClass.
For a m:n association you'll have to define a intermediary table to hold the mapping entries.

• define a collection-descriptor tag in the class-descriptor of myClass in repository.xml. Follow the
steps in basic technique on 1:n and m:n.

4.14. How to lookup PersistenceBroker instances?

The org.apache.ojb.broker.PersistenceBrokerFactory make several methods available:

OJB Documentation

Page 18
Copyright © All rights reserved.

error:#site:sequence-manager
error:#site:sequence-manager
error:#site:pb-tutorial/find-by-pk
error:#site:basic-technique

public PersistenceBroker createPersistenceBroker(PBKey key) throws PBFactoryException;

public PersistenceBroker createPersistenceBroker(String jcdAlias, String user, String password)
throws PBFactoryException;

public PersistenceBroker defaultPersistenceBroker() throws PBFactoryException;

Method defaultPersistenceBroker() can be used if the attribute default-connection is set true in
jdbc-connection-descriptor. It's a convenience method, useful when only one database is used.

The standard way to lookup a broker instance is via org.apache.ojb.broker.PBKey by specify jcdAlias (specified in
the repository file (or sub file)), user and passwd. If the user and password is already set in jdbc-connection-descriptor it is
possible to lookup the broker instance only be specify the jcdAlias in PBKey:

PBKey pbKey = new PBKey("myJcdAliasName");
PersistenceBroker broker = PersitenceBrokerFactory.createPersistenceBroker(pbKey);

See here too.

4.15. How to access ODMG?

Obtain a org.odmg.Implementation instance first, then create new org.odmg.Database instance and open this
instance by setting the used jcd-alias name:

Implementation odmg = OJB.getInstance();
Database database = odmg.newDatabase();
database.open("jcdAliasName#user#password", Database.OPEN_READ_WRITE);

The user and password separated by # hash only needed, when the user/passwd not specified in the connection metadata
(jdbc-connection-descriptor).

4.16. Needed to put user/password of database connection in repository file?

There is no need to put user/password in the repository file (more exact in the jdbc-connection-descriptor). You
can pass this information at runtime. See Many different database user - How do they login?.

Only if you want to use convenience PersistenceBroker lookup method of PersistenceBrokerFactory, OJB
needs all database connection information in the configuration files. More details see repository file doc - section
jdbc-connection-descriptor default-connection attribute

See lookup PB api.
See lookup ODMG api.

PBKey pbKey = new PBKey(jcdAlias, user, passwd);
PersistenceBroker broker = PersistenceBrokerFactory.createPersistenceBroker(pbKey);
// or using a convenience (when default-connection was set in jdbc-connection-descriptor)
PersistenceBroker broker = PersistenceBrokerFactory.defaultPersistenceBroker();

4.17. Many different database user - How do they login?

There are two ways to do that. Define for each user a jdbc-connection-descriptor (unattractive way, because we
have to add each new user to repository file), or let OJB handle this for you.
For it define one jdbc-connection-descriptor, now you can use the same jcdAlias name with different
User/Password. OJB copy the defined jdbc-connection-descriptor and replace the username and password
with the given User/Password.

PersistenceBroker-api example:

PBKey user_1 = new PBKey(jcdAlias,username, passwd);

OJB Documentation

Page 19
Copyright © All rights reserved.

error:#site:repository/jdbc-connection-descriptor
error:#ext:repository_database.xml
error:#site:repository/jdbc-connection-descriptor
error:#site:repository
error:#site:repository

PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(user_1);
...

ODMG-api example:

Implementation odmg = OJB.getInstance();
Database db = odmg.newDatabase();
db.open("jcdAlias#username#passwd", Database.OPEN_READ_WRITE);
...

Keep in mind, when the connection-pool element enables connection pooling, every user get its separate pool. See How
does OJB handle connection pooling?.

4.18. How do I use multiple databases within OJB?

Define for each database a jdbc-connection-descriptor, use the different jcdAlias names in the repositry file to
match the according database.

<jdbc-connection-descriptor
jcd-alias="myFirstDb"
...

>
...

</jdbc-connection-descriptor>

<jdbc-connection-descriptor
jcd-alias="mySecondDb"
...

>
...

</jdbc-connection-descriptor>

Note:
OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform environment (or made work with an
JTA/JTS implementation).

4.19. How does OJB handle connection pooling?

Please have a look in section Connection Handling.

4.20. Can I directly obtain a java.sql.Connection within OJB?

Please have a look in section Connection Handling.

4.21. Is it possible to perform my own sql-queries in OJB?

There are serveral ways in OJB to do that.
If you completely want to bypass the OJBquery-api see Can I directly obtain a java.sql.Connection within OJB?.
A more elegant way is to use a QueryBySQL object:

String sql =
"SELECT A.Artikel_Nr FROM Artikel A, Kategorien PG"
+ " WHERE A.Kategorie_Nr = PG.Kategorie_Nr"
+ " AND PG.Kategorie_Nr = 2";
// get the QueryBySQL
Query q2 = QueryFactory.newQuery(Article.class, sql);

Iterator iter2 = broker.getIteratorByQuery(q2);
// or
Collection col2 = broker.getCollectionByQuery(q2);

OJB Documentation

Page 20
Copyright © All rights reserved.

error:#site:repository
error:#site:deployment/j2ee-server
error:#site:connection/connection-pooling
error:#site:connection/obtain-connection

4.22. Start OJB without a repository file?

See section Metadata Handling.

4.23. Connect to database at runtime?

See section Metadata Handling.

4.24. Add new persistent objects metadata (class-descriptor) at runtime?

See section Metadata Handling.

4.25. Global metadata changes at runtime?

Please see section Metadata Handling.

4.26. Per thread metadata changes at runtime?

Please see section Metadata Handling.

4.27. Is it possible to use OJB within EJB's?

Yes, see deployment instructions in the docs. Additional you can find some EJB example beans in package
org.apache.ojb.ejb under [jakarta-ojb]/src/ejb.

4.28. Can OJB handle ternary (or higher) associations?

Yes, that's possible. Here is an example. With a ternary relationship there are three (or more) entities 'related' to each other. An
example would be Developer, Language and Project.

Each entity is mapped to one table (DEVELOPER, LANGUAGE and PROJECT). To represent the combinations of these entities
we need an additional bridge table (PROJECTRELATIONSHIP)with three columns holding the foreign keys to the other
three tables (just like an m:n association is represented by an intermediary table with 2 columns).

To handle this table with OJB we have to define a class that is mapped on it. This Relationship class can then be used to
perform queries/updates as with any other persistent class. Here is the layout of this class:

public class ProjectRelationship {
Integer developerId;
Integer languageId;
Integer projectId;

Developer developer;
Language lanuage;
Project project;

/** setters and getters not shown for brevity**/
}

Here is the respective extract from the repository :

<class-descriptor
class="ProjectRelationship"
table="PROJECTRELATIONSHIP"

>
<field-descriptor

name="developerId"
column="DEVELOPER_ID"
jdbc-type="INTEGER"

OJB Documentation

Page 21
Copyright © All rights reserved.

error:#site:metadata/without-repository
error:#site:metadata/connect-at-runtime
error:#site:metadata/metadata-at-runtime
error:#site:metadata
error:#site:metadata
error:#site:deployment

primarykey="true"
/>
<field-descriptor

name="languageId"
column="LANGUAGE_ID"

jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="projectId"
column="PROJECT_ID"

jdbc-type="INTEGER"
primarykey="true"

/>
<reference-descriptor

name="developer"
class-ref="Developer"

>
<foreignkey field-id-ref="developerId" />

</reference-descriptor>
<reference-descriptor

name="language"
class-ref="Language"

>
<foreignkey field-id-ref="languageId" />

</reference-descriptor>
<reference-descriptor

name="project"
class-ref="Project"

>
<foreignkey field-ref="projectId" />

</reference-descriptor>
</class-descriptor>

Here is some sample code for storing a relationship :

Developer dev = ; // create or retrieve
Project proj = ; // create or retrieve
Language lang = ; // create or retrieve

ProjectRelationship rel = new ProjectRelationship();
rel.setDeveloper(dev);
rel.setLanguage(lang);
rel.setProject(proj);

broker.store(r);

In the next code sample we are looking up all Projects that Developer "Bob" has done in "Java".

Criteria criteria = new Criteria();
criteria.addEqualTo("developer.name","Bob");
cirteria.addEquatTo("language.name","Java");

Query q = new QueryByCriteria(ProjectRelationship.class, criteria, true);
Iterator iter = Broker.getIteratorByQuery(q);

// now iterate over the collection and retrieve all projects:
while (iter.hasNext())
{

ProjectRelationship rel = (ProjectRelationship) iter.next();
System.out.println(rel.getProject().toString());

}

You could also have on the Project class-descriptor a collection-descriptor that returns all relationships associated
with the Project. If it was call "projectRelationships" the following would give you all projects that have a relationship with
"bob" and the language "java".

Criteria criteria = new Criteria();

OJB Documentation

Page 22
Copyright © All rights reserved.

criteria.addEqualTo("projectRelationships.developer.name","bob");
cirteria.addEquatTo("projectRelationships.language.name","java");

Query q = new QueryByCriteria(Project.class, criteria, true);
Collection projects = Broker.getCollectionByQuery(q);

This is the layout of the Project class:

public class Project {
Integer id;
String name;
Collection projectRelationships;

/** setters and getters not shown for brevity**/
}

This is the class-descriptor of the Project class:

<class-descriptor
class="Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="name"
column="NAME"

jdbc-type="VARCHAR"
/>
<collection-descriptor

name="projectRelationships"
element-class-ref="ProjectRelationship"

>
<inverse-foreignkey field-ref="projectId" />

</collection-descriptor>
</class-descriptor>

4.29. How to map a list of Strings

You can not map a list of Strings with a collection descriptor. A collection descriptor can only be used if the element class is a
persistent class too. But element-class-ref="java.lang.String" won't work, because it's no persistent entity class!
Follow these steps to provide a mapping for an attribute holding alist of Strings. Let's assume your persistent class has an
attribute listOfStrings holding a list of Strings:

protected Collection listOfStrings;

The database table mapped to the persistent class has a colum LIST_OF_STRINGS of type VARCHAR that is used to hold all
strings.

<field-descriptor
name="listOfStrings"
column="LIST_OF_STRINGS"
jdbc-type="VARCHAR"
conversion=

"o.a.ojb.broker.accesslayer.conversions.StringVector2VarcharFieldConversion"
/>

4.30. How to set up Optimistic Locking

Optimistic locking use an additional column (Timestamp or Integer) which is incremented each time changes are committed to
the object, and is utilizied to determine whether an optimistic transaction should succeed or fail. Optimistic locking is fast,

OJB Documentation

Page 23
Copyright © All rights reserved.

because it checks data integrity only at update time.

1. In your table you need a dedicated column of type INTEGER or TIMESTAMP. Say the column is typed as INTEGER and
named VERSION_MAINTAINED_BY_OJB.

2. You then need a (possibly private) attribute in your java class corresponding to the column. Say the attribute is defined as:

private int versionMaintainedByOjb;
3. in repository.xml you need a field-descriptor for this attribute. this field-descriptor must specify locking="true"
4. The resulting field-descriptor will look as follows:

<field-descriptor
name="versionMaintainedByOjb"
column="VERSION_MAINTAINED_BY_OJB"
jdbc-type="INTEGER"
locking="true"

/>

For further reference see also the repository documentation.

4.31. How to use OJB in a cluster

Q: I'm running a web site in a load-balanced/cluster environment. Multiple servlet engines (different VMs/HTTP sessions),
each running an OJB instance, against a single shared database. How should OJB be configured to get the concurrent servlet
engines synchronized properly?

transactional isolation and locking
If you are using the PersistenceBroker API use optimistic locking (OL) to let OJB handle write conflicts. To use OL define a
TIMESTAMP or INTEGER column and the respective Java attribute for it. In the field-descriptor of this attribute set the
attribute locking="true".
If you are working with the ODMG API distributed pessemistic locking should be used, by setting the respective flag in
OJB.properties.

sequence numbers
Use a SequenceManager that is safe across multiple JVMs. The NextVal based SequenceManagers or any other
SequenceManager based on database mechanisms will be fine.

caching
You could use different caching implementations

1. Use the EmptyCacheImpl to avoid any dirty reads. (But: The EmptyCache cannot handle cyclic structures on load!)
2. Use the PerBrokerCache Implementation to avoid dirty reads.
3. Use the OSCache cache implementation as distributed object cache.

There is also a complete howto document available that covers these topics.

4.32. How to work with the ObjectCacheEmptyImpl

Q: I just tried to turn caching off by using ObjectCacheEmptyImpl setting in ObjectCacheClass, and it seems to continuously
loop through the SQL statement infinitely. The default works fine though.
Any ideas why this might be?

A: The Problem you see is due to circular references in your data. Say A references B and B has a backreference to A.
Now we load A from the DB. If autoretrieve="true" for the reference-descriptor defining the reference to B, OJB will also load
B. If autoretrieve="true" for the B-reference-descriptor describing the back-reference to A, OJB must retrieve A. And here is
the key point.
If we use the defaultcache A will be in the cache already, as it was loaded first. So OJB will simply lookup A from the cache.
No endless recursion!
But if we use the emptycache, A will not be cached. So OJB must load A from the DB. And then again B is retrieved, etc., etc.
There's you endless recursion.

OJB Documentation

Page 24
Copyright © All rights reserved.

error:#site:repository/field-descriptor
error:#site:lock-manager
error:#site:sequence-manager
error:#site:object-cache
error:#site:clustering

In other words: A non-empty cache is needed to allow proper loading of circular references. (Other O/R tools like TopLink
work the same way).
If you still want to use the EmptyCacheImpl you should set autoretrieve="false" and load references explicitely by
broker.retrieveReference(...).

4.33. JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

As specified by JDO all persistent classe must implement the interface javax.jdo.spi.PersistenceCapable. If a
class does not implement this interface a JDO implementation does not know how to handle it.
On the other hand the JDO spec claims to provide transaparent persistence. That is no persistence class is required to
implement a specific interface or to be derived from a special base class.
Sounds like a contradiction? It is! The JDO spec resolves this contradiction by stating that a JDO implemention is responsible
to add the methods required by javax.jdo.spi.PersistenceCapable to the the user classes. This "injection" could
be achieved by Pre- or Post-processing. The strategy most implementations use is called "bytecode-enhancement". This is a
postprocesing step that adds the required methods to the .class files of the persistent user classes.
The JDO Reference implementation also uses bytecode-enhancement. In order to enhance the Product class to implement the
javax.jdo.spi.PersistenceCapable interface use the ant target "enhance-jdori" before launching the tutorial5
application. This is documentated in the first section of tutorial4.html.

4.3. ObJectRelationalBridge - Getting Started

This document will guide you through the very first steps of setting up a project with OJB. To make this easier, OJB comes
with a blank project template called ojb-blank which you're encouraged to use. You can download it here.

For the purpose of this guide, we'll be showing you how to setup the project for a simple application that handles products and
uses MySQL. This is continued later on in the next tutorial parts.

4.3.1. Acquiring ojb-blank

First off, OJB uses Ant to build, so please install it prior to using OJB. In addition, please make sure that the environment
variables ANT_HOME and JAVA_HOME are correctly set to the top-level folders of your Ant distribution and your JDK
installation, respectively.

Next download the latest ojb-blank and OJB binary distributions. You can also start with the source distribution rather than the
binary as the unit tests provide excellent sample code and you can build the ojb-blank project on your own with it.

The ojb-blank project contains all libraries necessary to get running. However, there may be additional libraries required when
you venture deeper into OJB's APIs. See here for a list of additional libraries.
Most notably, you'll probably want to add the jdbc driver for you database unless you plan to use the embedded Hsqldb
database for which the ojb-blank project is pre-configured (including all necessary jars).

4.3.2. Contents of ojb-blank

Copy the ojb-blank.jar file to your project directory and unpack it via the command

jar xvf ojb-blank.jar

This will unpack it into the ojb-blank directory under wherever you unpacked it from. You can move things out of that
directory into your project directory, or, more simply, rename the ojb-blank directory to be whatever you want your project
directory to be named.
After you unpacked the jar, you'll get the following directory layout:

\ojb-blank
.classpath
.project

OJB Documentation

Page 25
Copyright © All rights reserved.

error:#ext:ojb/binaries-version
error:#site:documentation/tutorials/summary
error:#ext:ant
error:#ext:ojb/binaries-version
error:#ext:ojb/source-version
error:#site:deployment/additional-jars
error:#ext:hsqldb
error:#ext:hsqldb

build.properties
build.xml
\lib
\src

\java
\resources
\schema
\test

Here's a quick rundown on what the individual directories and files are:

.classpath, .project
An Eclipse project for your convenience. You can simply import it into Eclipse via File -> Import... -> Existing
Project into Workspace.
build.xml, build.properties
The Ant build script and the build properties. These are described in more detail below.
lib
Contains the libraries necessary to compile and run your project. If you want to use a different database than
Hsqldb, then put the jars of your jdbc driver in here.
src/java
Put your java source code here.
src/resources
Contains the runtime configuration files for OJB. For more detail see below.
src/schema
Here you will find a schema containing tables that are required by certain components of OJB such as clustered
locking and OJB managed sequences. More information on these tables is available in the platform
documentation. The schema is in a database-independent format that can be used by Torque or commons-sql
to create the database.
The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a build target that can be invoked
on your schema (see below for details). Therefore, this directory also contains the build script of Torque, but
you won't need to invoke it directly.
src/java
Place your unit tests in here.

4.3.2.1. Sample project

For our sample project, we should rename the directory to something more fitting, like productmanager.

Also, since we're using MySQL, we put the MySQL jar of the jdbc driver, which is called something like
mysql-connector-java-[version]-stable-bin.jar, into the lib subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are dealing with, we will silently
assume that it is already present in the src/java subdirectory.
If you don't want to write the code yourself, you can use the code from one of the tutorials which you can download here.

Warning:
Note that if you do not intent to use JDO, then you should delete the files in the ojb.apache.ojb.tutorial5, otherwise you'll get compilation errors.

4.3.3. The build files

4.3.3.1. Configuration via build.properties

The next step is to adapt the build files, especially the build.properties file to your environment. It basically contains
two sets of information, the database settings and the build configuration. While you shouldn't have to change the latter, the
database settings probably need to be adapted to suit your needs:

OJB Documentation

Page 26
Copyright © All rights reserved.

error:#ext:eclipse
error:#site:platform
error:#site:platform
error:#ext:torque
error:#ext:jakarta/commons-sql
error:#ext:mysql/driver
error:#site:documentation/tutorials/summary
error:#ext:ojb/binaries-version

Property Purpose

jcdAlias The name of the connection. You should leave
the default value, which is default.

databaseName This is the name of the database, per default
ojb_blank.

databaseUser The user name for accessing the database
(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

databasePassword Password for the user, per default empty.

dbmsName The type of database, which is one of the
following:
Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or
above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.
Please note that this setting is case-sensitive.
Per default, Hsqldb is used, which is an
embedded database. All files required for this
database come with the ojb-blank project.

jdbcRuntimeDriver The fully-qualified classname of the jdbc driver.
For Hsqldb this is org.hsqldb.jdbcDriver.

jdbcLevel The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.
For the Hsqldb jdbc driver this is 2.0.

urlProtocol The protocol of the database url (see below),
usually jdbc.

urlSubprotocol The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsqldb.

urlDbalias This is the address that points the jdbc driver to
the database. For Hsqldb this is per default the
database name.

torque.database If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbmsName which defines the database for OJB.
Currently, these values are defined:
axion, cloudscape, db2, db2400, hypersonic
(which is Hsqldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.
Default value is hypersonic for use with
Hsqldb.

torque.database.createUrl This specifies the url that Torque will use in
order to create the database. Depending on the
database, this may be the same as the normal

OJB Documentation

Page 27
Copyright © All rights reserved.

error:#ext:hsqldb

access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

If you know how the jdbc url for connecting to your database looks like, then you can derive the settings databaseName,
databaseName, databaseName and databaseName easily:
Assume this url is given as:
jdbc:mysql://localhost:3306/myDatabase

then these properties are

Property Value

databaseName myDatabase

urlProtocol jdbc

urlSubprotocol mysql

urlDbalias //localhost/myDatabase

4.3.3.2. Building via build.xml

After setting up the build you're probably eager to actually build the project. Here's the actions that you can perform using the
Ant build file build.xml:

Action (target in the build.xml file) What it does

clean Cleans up all files from the previous build.

compile Compiles your java source files to
build/classes. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

build Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the build.properties file, most
notably the repository_database.xml
which will be located in the build/resources
directory after the build.
After you run this action, your application is
ready to go (if the action ran successfully, of
course).

jar A convenience action that packs your
successfully build application into a jar.

xdoclet Creates the runtime configuration files that
describe the repository, from javadoc comments
embedded in your java source files. Details on
how to this are given in the tutorials and in the
documentation of the XDoclet OJB module.

setup-db Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module and
on the Torque homepage.

enhance-jdori This is a sample target that shows how a class

OJB Documentation

Page 28
Copyright © All rights reserved.

error:#ext:repository_database.xml
error:#site:documentation/tutorials/summary
error:#site:xdoclet-module
error:#site:xdoclet-module
error:#ext:torque

meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation. It uses the Product
class from the JDO tutorial (tutorial 5).

So, a typical build would be achieved with this Ant call:
ant build

If you want to create the database as well, and you have javadoc comments in your source code that describe the repository,
then you would call Ant this way:
ant build setup-db

This will perform in that order the actions build, xdoclet (invoked automatically from the next action) and setup-db.
Of course, you do not need to use Torque to setup your database, but it is a convenient way to do so.

4.3.3.3. Sample project

First we change the database properties to these values (assuming that Torque will be used to setup the database):

Property Value

jcdAlias We leave the default value of default.

databaseName Since the application manages products, we call
the database productmanager.

databaseUser This depends on your setup. For the purposes of
this guide, let's call him steve.

databasePassword Again depending on your setup. How about
secret (you know that you should not use this
password in reality ?!).

dbmsName MySQL

jdbcRuntimeDriver Its called com.mysql.jdbc.Driver.

jdbcLevel For the newer Mysql drivers this is 3.0.

urlProtocol The default of jdbc will do.

urlSubprotocol For MySQL, we're using mysql.

urlDbalias Assuming that the database runs locally on the
default port, we have
//localhost/${databaseName}.

torque.database We want to use Torque, so we put mysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.
The url that we should use to do so, is the
normal url used to access the database minus
the database name. So the value here is:
${urlProtocol}:${urlSubProtocol}://localhost/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. The build.properties file now looks like this (the comments have
been removed for brevity):

jcdAlias=default
databaseName=productmanager
databaseUser=steve

OJB Documentation

Page 29
Copyright © All rights reserved.

error:#ext:sun/jdo
error:#ext:sun/jdo
error:#site:jdo-tutorial

databasePassword=secret

dbmsName=MySQL
jdbcLevel=3.0
jdbcRuntimeDriver=com.mysql.jdbc.Driver
urlProtocol=jdbc
urlSubprotocol=mysql
urlDbalias=//localhost/${databaseName}

torque.database=mysql
torque.database.createUrl=${urlProtocol}:${urlSubprotocol}://localhost/

jar.name=projectmanager.jar

source.dir=src
source.java.dir=${source.dir}/java
source.resource.dir=${source.dir}/resources
source.test.dir=${source.dir}/test
source.schema.dir=${source.dir}/schema

build.dir=build
build.lib.dir=lib
build.classes.dir=${build.dir}/classes/
build.resource.dir=${build.dir}/resources/

target.dir=target

Looks like we're ready for building. Again, we're assuming that the source code is already present. So we're invoking Ant now
in the top-level folder productmanager:

ant build setup-db

which should (assuming five java classes) produce an output like this

Buildfile: build.xml

compile:
[mkdir] Created dir: /home/steve/projects/productmanager/build
[mkdir] Created dir: /home/steve/projects/productmanager/build/classes
[javac] Compiling 5 source files to /home/steve/projects/productmanager/build/classes

build:
[copy] Copying 10 files to /home/steve/projects/productmanager/build/resources

xdoclet:
[ojbdoclet] (XDocletMain.start 47) Running <ojbrepository/>
[ojbdoclet] Generating ojb repository descriptor (build/resources//repository_user.xml)
[ojbdoclet] Type test.Project
[ojbdoclet] Processed 5 types
[ojbdoclet] Processed 5 types
[ojbdoclet] (XDocletMain.start 47) Running <torqueschema/>
[ojbdoclet] Generating torque schema (build/resources//project-schema.xml)
[ojbdoclet] Processed 5 types

setup-db:

check-use-classpath:

check-run-only-on-schema-change:

sql-check:

sql:
[echo] +--+
[echo] | |
[echo] | Generating SQL for YOUR Torque project! |
[echo] | Woo hoo! |
[echo] | |

OJB Documentation

Page 30
Copyright © All rights reserved.

[echo] +--+

sql-classpath:
[torque-sql] Using contextProperties file:

/home/steve/projects/productmanager/build.properties
[torque-sql] Using classpath
[torque-sql] Generating to file

/home/steve/projects/productmanager/build/resources/report.productmanager.sql.generation
[torque-sql] Parsing file: 'ojbcore-schema.xml'
[torque-sql] (transform.DTDResolver 128) Resolver: used database.dtd from

org.apache.torque.engine.database.transform package
[torque-sql] Parsing file: 'project-schema.xml'
[torque-sql] (transform.DTDResolver 140) Resolver: used

http://jakarta.apache.org/turbine/dtd/database.dtd

sql-template:

create-db-check:

create-db:
[torque-data-model] Using classpath
[torque-data-model] Generating to file

/home/steve/projects/productmanager/build/resources/create-db.sql
[torque-data-model] Parsing file: 'ojbcore-schema.xml'
[torque-data-model] (transform.DTDResolver 128) Resolver: used database.dtd from

org.apache.torque.engine.database.transform package
[torque-data-model] Parsing file: 'project-schema.xml'
[torque-data-model] (transform.DTDResolver 140) Resolver: used

http://jakarta.apache.org/turbine/dtd/database.dtd
[echo]
[echo] Executing the create-db.sql script ...
[echo]
[sql] Executing file:

/home/steve/projects/productmanager/build/resources/create-db.sql
[sql] 2 of 2 SQL statements executed successfully

insert-sql:
[torque-sql-exec] Our new url -> jdbc:mysql://localhost/productmanager
[torque-sql-exec] Executing file:

/home/steve/projects/productmanager/build/resources/project-schema.sql
[torque-sql-exec] Executing file:

/home/steve/projects/productmanager/build/resources/ojbcore-schema.sql
[torque-sql-exec] 50 of 50 SQL statements executed successfully

BUILD SUCCESSFUL

That was it. You now have your database setup properly. Go on, have a look:

mysql -u steve productmanager

mysql> show tables;

There, all tables for your project, as well as the tables required for some OJB functionality which we also used in the above
process (you can recognize them by their names which start with ojb_).

4.3.4. The runtime configuration files

The last thing missing for actually running your project is to adapt the runtime configuration files used by OJB. There are
basically three sets of configuration that need to be provided: configuration of the OJB runtime, description of the database
connection, and description of the repository.

4.3.4.1. Configuring the OJB runtime

With the OJB.properties file and OJB-logging.properties (both located in src/resources), you configure and finetune the
runtime aspects of OJB. For a simple application you'll probably won't have to change anything in them, though.

OJB Documentation

Page 31
Copyright © All rights reserved.

error:#site:ojb-properties
error:#site:logging

4.3.4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection descriptors. These are usually
defined in a file called repository_database.xml (located in src/resources). In the ojb-blank project, the build
file will setup this file for you and place it in the build/resources directory.

4.3.4.3. Configuring the repository

Finally you need to configure the repository. It consists of descriptors that define which java classes are mapped in what way
to which database tables, and it is typically contained in the repository_user.xml file. This is the most complicated
configuration part which will be explained in much more detail in the rest of the tutorials.
An convenient way of creating the repository metadata is to use the XDoclet OJB module. Basically, you put specific Javadoc
comments into your source code, which are then processed by the build file (xdoclet and setup-db targets) and the
repository metadata and the database schema are generated.

4.3.4.4. Sample project

Actually, there is not much to do here. For our simple sample application the default properties of OJB work just fine, so we
leave OJB.properties and OJB-logging.properties untouched.

Also, the build file generated the connection descriptor for us, and we were using the XDoclet OJB module and Torque to
generate the repository metadata and database for us. For instance, the processed connection descriptor (file
build/resources/repository_database.xml) looks like this:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="MySQL"
jdbc-level="3.0"
driver="com.mysql.jdbc.Driver"
protocol="jdbc"
subprotocol="mysql"
dbalias="//localhost/productmanager"
username="steve"
password="secret"
eager-release="false"
batch-mode="false"
useAutoCommit="1"
ignoreAutoCommitExceptions="false"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>
<connection-pool

maxActive="21"
validationQuery="" />

<sequence-manager className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">
<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>
<attribute attribute-name="globalSequenceId" attribute-value="false"/>
<attribute attribute-name="globalSequenceStart" attribute-value="10000"/>

</sequence-manager>
</jdbc-connection-descriptor>

If you're curious as to what this stuff means, check this reference guide.

The repository metadata (file build/resources/repository_user.xml) starts like:

<class-descriptor
class="productmanager.Product"

OJB Documentation

Page 32
Copyright © All rights reserved.

error:#site:repository/jdbc-connection-descriptor
error:#site:documentation/tutorials/summary
error:#site:xdoclet-module
error:#site:jdbc-connection-descriptor

table="Product"
>

<field-descriptor
name="name"
column="name"
jdbc-type="VARCHAR"
length="32"

>
</field-descriptor>
<field-descriptor

name="price"
column="price"
jdbc-type="FLOAT"

>
</field-descriptor>
<field-descriptor

name="stock"
column="stock"
jdbc-type="INTEGER"

>
</field-descriptor>
<field-descriptor

name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"

>
</field-descriptor>

</class-descriptor>
...

Now you should be able to run your application:

cd build/resources

java productmanager.Main

Of course, you'll need to setup the CLASSPATH before running your application. You'll should add all jars from the lib
folder except the ones for Torque (torque-[version].jar, velocity-[version].jar and
commons-collections-[version].jar) and for the XDoclet OJB module (xdoclet-[version].jar,
xjavadoc-[version].jar and xdoclet-ojb-module-[version].jar).

It is important to note that OJB per default assumes the OJB.properties and OJB-logging.properties files in the
directory where you're starting the application. Hence, we changed to the build/resources directory before running the
application. This of course requires the compiled classes to be on the classpath, as well (directory build/classes).

Per default, the same applies to the other configuration files (repository*.xml) but you can change this in the
OJB.properties file.

4.3.5. Learning More

After you've have learned about building and configuring projects that use OJB, you should check out the tutorials to learn
how to specify your persistent classes and how to use OJB's APIs to perform database operations. The Mapping Tutorial in
particular shows you how to map your classes to tables in an RDBMS.

4.4. Tutorials

4.4.1. Tutorial Summary

4.4.1.1. Tutorials

Here can be found a summary of all tutorials.

OJB Documentation

Page 33
Copyright © All rights reserved.

error:#site:documentation/tutorials/summary
error:#site:mapping-tutorial

• Object-Relational Mapping
The Object-Relational Mapping tutorial walks though a basic metadata mapping for an object to a relational database.

• The Persistence Broker API
The PB tutorial demonstrates how to use the PersistenceBroker API which forms an object persistence kernel for
OJB. While it is the lowest level API provided by OJB it is also exceptionally easy to use.

• The ODMG API
The ODMG API tutorial steps though using the ODMG 3.0 API provided by OJB. This is an industry standard API
designed for Object Databases.

• The JDO API
JDO is a standard API for accessing persistent objects in Java. This tutorial steps through how to use OJB's JDO plugin.

• The Object Transaction Manager
The OTM is OJB's implementation of object level transactions. These are transactions independent of the underlying
relational database providing more efficient resource utilisation and extremely flexible locking semantics.

Further strongly recommended documentation for all beginners:

• OJB Queries
This document explains the usage of the query syntax.

• Basic O/R Technique
This tutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and m:n relations, the auto-xxx
settings for references and proxy objects/collections.

• Tools to build large metadata mappings
Explains how to build large metadata mapping and present useful tools.

4.4.2. Mapping Tutorial

4.4.2.1. What is the Object-Relational Mapping Metadata?

The O/R mapping metadata is the specific configuration information that specifies how to map classes to relational tables. In
OJB this is primarily accomplished through an xml document, the repository.xml file, which contains all of the initial
mapping information.

The Product Class

This tutorial looks at mapping a simple class with no relations:

package org.apache.ojb.tutorials;

public class Product
{

/** product name */
private String name;

/** price per item */
private Double price;

/** stock of currently available items */
private int stock;

...
}

This class has three fields, price, stock, and name, that need to be mapped to the database. Additionally, we will
introduce one artificial field used by the database that has no real meaning to the class, an artificial key primary id:

/** Artificial primary-key */
private Integer id;

OJB Documentation

Page 34
Copyright © All rights reserved.

error:#site:mapping-tutorial
error:#site:pb-tutorial
error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:otm-tutorial
error:#site:query
error:#site:basic-technique
error:#site:large-metadata

Including the primary-key attribute in the class definition is mandatory, but under certain conditions anonymous keys can also
be used to keep this database artifact hidden in the database. However, as access to an artifical unique identifier for a particular
object instance can be useful, particularly in web-based applications, this tutorial will expose it

The Database

OJB is very flexible in terms of how it can map classes to database tables, however the simplest technique for mapping a single
class to a relational database is to map the class to a single table, and each attribute on the class to a single column. Each row
will then represent a unique instance of that class.

The DDL for such a table, for the Product class might look like:

CREATE TABLE Product
(

id INTEGER PRIMARY KEY,
name VARCHAR(100),
price DOUBLE,
stock INTEGER

)

The individual field names in the database and class definition match here, but this is no requirement. They may vary
independently of each other as the metadata will specify what maps to what.

The Metadata

The repository.xml document is split into several physical documents. The repository_user.xml xml file is used
to contain user-defined mappings. OJB uses the other ones for managing other metadata, such as database information.

In general each class will be defined within a class-descriptor element with field-descriptoy child elements for
each field. In addition the mapping of references and collections is described in the basic technique section. This tutorial sticks
to mapping a single, simplistic, class.

The complete mapping for the Product class is as follows:

<class-descriptor
class="org.apache.ojb.tutorials.Product"
table="Product"

>
<field-descriptor

name="id"
column="id"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="name"

/>
<field-descriptor

name="price"
column="price"

/>
<field-descriptor

name="stock"
column="stock"

/>
</class-descriptor>

Examine the class-descriptor element. It has two attributes:

• class - This attribute is used to specify the fully-qualified Java class name for this mapping.

OJB Documentation

Page 35
Copyright © All rights reserved.

error:#site:howto/anonymous-keys
error:#site:basic-technique

• table - This attribute specifies which table is used to store instances of this class.

Other information can be specified here, such as proxies and custom row-readers as specified in the repository.xml
documentation.

Examine now the first field-descriptor element. This is used to describe the id field of the Product class. Two
required attributes are specified:

• name - This specifies the name of the instance variable in the Java class.
• column - This specifies the column in the table specified for this class used to store the value.

In addition to those required attributes, notice that the first element specifies two optional attributes:

• primary-key - This attribute specifies that this field is the primary key for this class.
• autoincrement - The autoincrement attribute specifies that the value will be automatically assigned by OJB sequence

manager. This might use a database supplied sequence, or, by default, an OJB generated value.

Using the XDoclet module

OJB provides an XDoclet module to make generating the repository descriptor and the corresponding table schema easier. An
XDoclet module basically processes custom JavaDoc tags in the source code, and generates files from them. In the case of
OJB, two types of files can be generated: the repository descriptor (repository_user.xml) and a Torque schema which
can be used to create the tables in the database. This provides one important benefit: the descriptor and the database schema are
much more likely in sync with the code thus avoiding errors that are usually hard to find. Furthermore, the XDoclet module
contains some checks that find common mapping errors.

In the above example, the source code for Product class with JavaDoc tags would look like:

package org.apache.ojb.tutorials;

/**
* @ojb.class
*/
public class Product
{

/**
* Artificial primary-key
*
* @ojb.field primarykey="true"
* autoincrement="ojb"
*/
private Integer id;

/**
* product name
*
* @ojb.field length="100"
*/
private String name;

/**
* price per item
*
* @ojb.field
*/
private Double price;

/**
* stock of currently available items
*
* @ojb.field
*/
private int stock;

}

OJB Documentation

Page 36
Copyright © All rights reserved.

error:#site:repository/class-descriptor
error:#site:repository/class-descriptor
error:#site:sequence-manager
error:#site:sequence-manager

As you can see, much of the stuff that is present in the descriptor (and the DDL) is generated automatically by the XDoclet
module, e.g. the table/column names and the jdbc-types. Of course, you can also specify them in the JavaDoc tags, e.g. if they
differ from the java names.

For details on OJB's JavaDoc tags and how to generate and use the mapping files please see the OJB XDoclet Module
documentation.

4.4.2.2. Advanced Topics

Relations

As most object models have relationships between objects, mapping specific types of relationships (1:1, 1:Many, Many:Many)
is important in mapping objects into a relational database. The basic technique tutorial discusses this in great detail.

It is important to note that this metadata mapping can be modified at runtime through the
org.apache.ojb.metadata.MetadataManager class.

Inheritence

OJB can map inheritence hierarchies using a variety of techniques discussed in the Extents and Polymorphism section of the
Advanced O/R Documentation

Anonymous Keys

This tutorial uses explicit keys mapped into the Java class. It is also possible to keep artificial keys completely hidden within
the database. The Anonymous Keys HOWTO explains how this is accomplished.

Large Projects

Projects with small numbers of persistent classes can be mapped by hand, however, many projects can have hundreds, or even
thousands, of distinct classes which must be mapped. In these circumstances managing the class-database mapping by hand is
not viable. The How To Build Mappings HOWTO explores different tools which can be used for managing large-scale
mapping.

Custom JDBC Mapping

OJB maps Java types to JDBC types according to the JDBC Types table. You can, however, define custom JDBC -> Java type
mappings via custom field conversions.

4.4.3. Persistence Broker Tutorial

4.4.3.1. The PersistenceBroker API

Introduction

The PersistenceBroker API provides the lowest level access to OJB's persistence engine. While it is a low-level API compared
to the OTM, ODMG, or JDO API's it is still very straightforward to use.

The core class in the PersistenceBroker API is the org.apache.ojb.broker.PersistenceBroker class. This class
provides the point of access for all persistence operations in this API.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

OJB Documentation

Page 37
Copyright © All rights reserved.

error:#site:xdoclet-module
error:#site:xdoclet-module
error:#site:basic-technique
error:#site:metadata
error:#ext:api/metadata-manager
error:#site:advanced-technique/polymorphism
error:#site:advanced-technique
error:#site:howto/anonymous-keys
error:#site:howto/large-metadata
error:#site:jdbc-types
error:#site:jdbc-types/field-conversion

public class Product
{

/* Instance Properties */

private Double price;
private Integer stock;
private String name;lean

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...

}

The metadata descriptor for mapping this class is described in the mapping tutorial

The source code for this tutorial is available with the source distribution of OJB in the
src/test/org/apache/ojb/tutorials/ directory.

A First Look - Persisting New Objects

The most basic operation is to persist an object. This is handled very easily by just

1. obtaining a PersistenceBroker
2. begin the PB-transaction
3. storing the object via the PersistenceBroker
4. commit transaction
5. closing the PersistenceBroker

For example, the following function stores a single object of type Product.

public static void storeProduct(Product product)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
broker.store(product);
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

Two OJB classes are used here, the PersistenceBrokerFactory and the PersistenceBroker. The
PersistenceBrokerFactory class manages the lifecycles of PersistenceBroker instances: it creates them, pools
them, and destroys them as needed. The exact behavior is very configurable.

In this case we used the static PersistenceBrokerFactory.defaultPersistenceBroker() method to obtain an
instance of a PersistenceBroker to the default data source. This is most often how it is used if there is only one database
for an application. If there are multiple data sources, a broker may be obtained by name (using a PBKey instance as argument
in PersistenceBrokerFactory.createPersistenceBroker(pbKey)).

It is worth noting that the broker.close() call is made within a finally {...} block. This ensures that the broker

OJB Documentation

Page 38
Copyright © All rights reserved.

error:#site:mapping-tutorial
error:#ext:PBExamples

will be closed, and returned to the broker pool, even if the function throws an exception.

To use this function, we just create a Product and pass it to the function:

Product product = new Product();
product.setName("Sprocket");
product.setPrice(1.99);
product.setStock(10);
storeProduct(product);

Once a PersistenceBroker has been obtained, its PersistenceBroker.store(Object) method is used to make
an object persistent.

Maybe you have noticed that there has not been an assignment to product.id, the primary-key attribute. Upon storing
product OJB detects that the attribute is not properly set and assigns a unique id. This automatic assignment of unique Ids
for the attribute id has been explicitly declared in the XML repository file, as we discussed in the .

If several objects need to be stored, this can be done within a transaction, as follows.

public static void storeProducts(Product[] products)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
for (int i = 0; i < products.length; i++)
{

broker.store(products[i]);
}
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

This contrived example stores all of the passed Product instances within a single transaction via the
PersistenceBroker.beginTransaction() and PersistenceBroker.commitTransaction(). These are
database level transactions, not object level transactions.

Querying Persistent Objects

Once objects have been stored to the database, it is important to be able to get them back. The PersistenceBroker API provides
two mechanisms for building queries, by using a template object, or by using specific criteria.

public static Product findByTemplate(Product template)
{

PersistenceBroker broker = null;
Product result = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
QueryByCriteria query = new QueryByCriteria(template);
result = (Product) broker.getObjectByQuery(query);

}
finally
{

OJB Documentation

Page 39
Copyright © All rights reserved.

error:#site:repository
error:#site:query

if (broker != null) broker.close();
}
return result;

}

This function finds a Product by building a query against a template Product. The template should have any properties set
which should be matched by the query. Building on the previous example where a product was stored, we can now query for
that same product:

Product product = new Product();
product.setName("Sprocket");
product.setPrice(new Double(1.99));
product.setStock(new Integer(10));
storeProduct(product);

Product template = new Product();
template.setName("Sprocket");
Product sameProduct = findByTemplate(template);

In the above code snippet, product and sameProduct will reference the same object (assuming there are no additional
products in the database with the name "Sprocket").

The template Product has only one of its properties set, the name property. The others are all null. Properties with null
values are not used to match.

An alternate, and more flexible, way to have specified a query via the PersistenceBroker API is by constructing the criteria on
the query by hand. The following function does this.

public static Collection getExpensiveLowStockProducts()
{

PersistenceBroker broker = null;
Collection results = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

Criteria criteria = new Criteria();
criteria.addLessOrEqualThan("stock", new Integer(20));
criteria.addGreaterOrEqualThan("price", new Double(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getCollectionByQuery(query);

}
finally
{

if (broker != null) broker.close();
}
return results;

}

This function builds a Criteria object and uses it to set more complex query parameters - in this case greater-than and
less-than contraints. Looking at the first constraint put on the criteria, criteria.addLessOrEqualThan("stock",
new Integer(10)); notice the arguments. The first is the property name on the object being queried for. The second is an
Integer instance to be used for the comparison.

After the Criteria has been built, the QueryByCriteria constructor used is also different from the previous example.
In this case the criteria does not know the type of the object it is being used against, so the Class must be specified to the
query.

Finally, notice that this example uses the PersistenceBroker.getCollectionByQuery(...) method instead of
the PersistenceBroker.getObjectByQuery(...) method used previously. This is used because we want all of the
results. Either form can be used with either method of constructing queries. In the case of the
PersistenceBroker.getObjectByQuery(...) style query, the first matching object is returned, even if there are

OJB Documentation

Page 40
Copyright © All rights reserved.

multiple matching objects.

Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting persistent objects. The same
PersistenceBroker.store(Object) method is used to store a modified object as to insert a new one - the difference
between new and modified objects is irrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter confines of SQL inserts and updates.
Basically, OJB will insert a new object into the relational store if the primary key, as specified in the O/R metadata is not in
use. If it is in use, it will update the existing object rather than create a new one.

This allows programmers to treat every object the same way in an object model, whether it has been newly created and made
persistent, or materialized from the database.

Typically, making changes to a peristent object first requires retrieving a reference to the object, so the typical update cycle,
unless the application caches objects, is to query for the object to modify, modify the object, and then store the object. The
following function demonstrates this behavior by "selling" a Product.

public static boolean sellOneProduct(Product template)
{

PersistenceBroker broker = null;
boolean isSold = false;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
QueryByCriteria query = new QueryByCriteria(template);
Product result = (Product) broker.getObjectByQuery(query);

if (result != null)
{

broker.beginTransaction();
result.setStock(new Integer(result.getStock().intValue() - 1));
broker.store(result);
// alternative, more performant
// broker.store(result, ObjectModificationDefaultImpl.UPDATE);
broker.commitTransaction();
isSold = true;

}
}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}
return isSold;

}

This function uses the same query-by-template and PersistenceBroker.store() API's examined previously, but it
uses the store method to store changes to the object it retrieved. It is worth noting that the entire operation took place within a
transaction.

Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished via the PersistenceBroker.delete() method. This
removes the persistent object from the repository, but does not affect any change on the object itself. For example:

public static void deleteProduct(Product product)

OJB Documentation

Page 41
Copyright © All rights reserved.

{
PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
broker.delete(product);
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

This method simply deletes an object from the database.

Find object by primary key

In some cases only the primary key values (single field or n-fields for composed primary keys) of an object are known. In OJB
you have several ways to request the whole object. It is possible to build a query as shown above, but the smarter solution is to
use PersistenceBroker#getObjectByIdentity(Identity oid). An Identity object is a unique representation
of a persistence capable object based on the object primary key values and the top-level class (abstract class, interface or the
class itself, depending on the extent metadata mapping).

For example, to find an Product with an single primary key of '23' do

Identity oid = broker.serviceIdentity().buildIdentity(Product.class, new Integer(23));
Product product = (Product) broker.getObjectByIdentity(oid);

4.4.3.2. Notes on Using the PersistenceBroker API

Pooling PersistenceBrokers

The PersistenceBrokerFactory pools PersistenceBroker instances. Using the
PersistenceBroker.close() method releases the broker back to the pool under the default implementation. For this
reason the examples in this tutorial all retrieve, use, and close a new broker for each logical transaction.

Transactions

Transactions in the PeristenceBroker API are database level transactions. This differs from object level transactions. The
broker does not maintain a collection of modified, created, or deleted objects until a commit is called -- it operates on the
database using the databases transaction mechanism. If object level transactions are required, one ofthe higher level API's
(ODMG, JDO, or OTM) should be used.

Exception Handling

Most PersistenceBroker operations throw a org.apache.ojb.broker.PersistenceBrokerException,
which is derived from java.lang.RuntimeException if an error occurs. This means that no try/catch block is required
but does not mean that it should not be used. This tutorial specifically does not catch exceptions all in order to focus more
tightly on the specifics of the API, however, best usage would be to include a try/catch/finally block around persistence
operations using the PeristenceBroker API.

Additionally, the closing of PersistenceBroker instances is best handled in finally blocks in order to guarantee that
it is run, even if an exception occurs. If the PersistenceBroker.close() is not called then the application will leak

OJB Documentation

Page 42
Copyright © All rights reserved.

error:#ext:identity
error:#site:advanced-technique/extents

broker instances. The best way to ensure that it is always called is to always retrieve and use PersistenceBroker
instances within a try {...} block, and always close the broker in a finally {...} block attached to the try {...}
block.

A better designed getExpensiveLowStockProducts() method is presented here.

public static Collection betterGetExpensiveLowStockProducts()
{

PersistenceBroker broker = null;
Collection results = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

Criteria criteria = new Criteria();
criteria.addLessOrEqualThan("stock", new Integer(20));
criteria.addGreaterOrEqualThan("price", new Double(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getCollectionByQuery(query);

}
catch (PersistenceBrokerException e)
{

// Handle exception
}
finally
{

if (broker != null) broker.close();
}
return results;

}

Notice first that the PersistenceBroker is retrieved and used within the confines of a try {...} block. Assuming
nothing goes wrong the entire operation will execute there, all the way to the return results; line. Java guarantees that
finally {...} blocks will be called before a method returns, so the broker.close() method is only included once, in
the finally block. As an exception may have occured while attempting to retrieve the broker, a not-null test is first
performed before closing the broker.

4.4.4. The ODMG API

4.4.4.1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API provides a higher-level API
and query language based interface over the PersistenceBroker API.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{
/* Instance Properties */

private Double price;
private Integer stock;
private String name;

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...

OJB Documentation

Page 43
Copyright © All rights reserved.

error:#ext:odmg-group
error:#site:pb-tutorial

}

The metadata descriptor for mapping this class is described in the mapping tutorial

The source code for this tutorial is available with the source distribution of OJB in the
src/test/org/apache/ojb/tutorials/ directory.

4.4.4.2. Initializing ODMG

The ODMG implementation needs to have a database opened for it to access. This is accomplished via the following code:

Implementation odmg = OJB.getInstance();
Database db = odmg.newDatabase();
db.open("default", Database.OPEN_READ_WRITE);

/* ... use the database ... */

db.close();

This opens an ODMG Database using the name specified in metadata for the database -- "default" in this case. Notice the
Database is opened in read/write mode. It is possible to open it in read-only or write-only modes as well.

Once a Database has been opened it is available for use. Unlike PersistenceBroker instances, ODMG Database
instances are threadsafe and can typically be used for the entire lifecycle of an application. There is no need to call the
Database.close() method until the database is truly no longer needed.

4.4.4.3. Persisting New Objects

Persisting an object via the ODMG API is handled by writing it to the peristence store within the context of a transaction:

public static void storeProduct(Product product)
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();
tx.begin();
tx.lock(product, Transaction.WRITE);
tx.commit();
}

The OJB.getInstance() function provides the ODMG Implementation instance required for using the ODMG API.
From here on out it is straight ODMG code that should work against any compliant ODMG implementation.

Once the ODMG implementation has been obtained it is used to begin a transaction, obtain a write lock on the Product, and
commit the transaction. It is very important to note that all changes need to be made within transactions in the ODMG API.
When the transaction is committed the changes are made to the database. Until the transaction is committed the database is
unaware of any changes -- they exist solely in the object model.

4.4.4.4. Querying Persistent Objects

The ODMG API uses the OQL query language for obtaining references to persistent objects. OQL is very similar to SQL, and
using it is very similar to use JDBC. The ODMG implementation is used to create a query, the query is specifed, executed, and
a list fo results is returned:

public static Product findProductByName(String name) throws Exception
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();
tx.begin();

OQLQuery query = impl.newOQLQuery();
query.create("select products from "

OJB Documentation

Page 44
Copyright © All rights reserved.

error:#site:mapping-tutorial

+ Product.class.getName()
+ " where name = $1");

query.bind(name);
DList results = (DList) query.execute();
Product product = (Product) results.iterator().next();

tx.commit();
return product;
}

4.4.4.5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then committing the transaction:

public static void sellProduct(Product product, int number)
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();
tx.begin();

tx.lock(product, Transaction.WRITE);
product.setStock(new Integer(product.getStock().intValue() - number));

tx.commit();
}

The sample code obtains a write lock on the object, binding it to the transaction, changes the object, and commits the
transaction. The newly modified Product now has a new stock value.

4.4.4.6. Deleting Persistent Objects

Deleting persistent objects requires directly addressing the Database which contains the persistent object. This can be
obtained from the ODMG Implementation by asking for it. Once retrieved, just ask the Database to delete the object.
Once again, this is all done in the context of a transaction.

public static void deleteProduct(Product product)
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();

tx.begin();
Database db = impl.getDatabase(product);
db.deletePersistent(product);
tx.commit();
}

It is important to note that the Database.deletePerstient() call does not delete the object itself, just the persistent
representation of it. The transient object still exists and can be used however desired -- it is simply no longer persistent.

4.4.4.7. Notes on Using the ODMG API

Transactions

The ODMG API uses object-level transactions, compared to the PersistenceBroker database-level transactions. An ODMG
Transaction instance contains all of the changes made to the object model within the context of that transaction, and will
not commit them to the database until the ODMG Transaction is committed. At that point it will use a database transaction
to ensure atomicity of its changes.

Locks

The ODMG specification includes several levels of locks and isolation. These are explained in much more detail in the Lock

OJB Documentation

Page 45
Copyright © All rights reserved.

Manager documentation.

In the ODMG API, locks obtained on objects are locked within the context of a thread. Any object modified within the context
of a transaction will be stored with the transaction, however changes made to the same object by other threads will also be
stored. The ODMG locking conventions ensure that an object can only be modified within the transaction on the locking
thread.

Persisting Non-Transactional Objects

Frequently, objects will be modified outside of the context of an ODMG transaction, such as a data access object in a web
application. In those cases a persistent object can still be modified, but not directly through the OMG ODMG specification.
OJB provides an extension to the ODMG specification for instances such as this. Examine this code:

public static void persistChanges(Product product)
{

Implementation impl = OJB.getInstance();
TransactionExt tx = (TransactionExt) impl.newTransaction();

tx.begin();
tx.markDirty(product);
tx.commit();

}

In this function the product is modified outside the context of the transaction, and is then the changes are persisted within a
transaction. The TransactionExt.markDirty() method indicates to the Transaction that the passed object has been
modified, even if the Transaction itself sees no changes to the object.

4.4.5. JDO Tutorial

4.4.5.1. Using the ObJectRelationalBridge JDO API

Introduction

This document demonstrates how to use ObjectRelationalBridge and the JDO API in a simple application scenario. The
tutorial application implements a product catalog database with some basic use cases. The source code for the tutorial
application is shipped with the OJB source distribution and resides in the directory
[db-ojb]/src/jdori/org/apache/ojb/tutorial5 .

This document is not meant as a complete introduction to JDO. For more information see: Sun's JDO site.

Note:
OJB does not provide it's own JDO implementation yet. A full JDO implementation is in the scope of the 2.0 release.
For the time being we provide a plugin to the JDO reference implementation called OjbStore. The OjbStore plugin resides in the package
org.apache.ojb.jdori.sql.
The work on the native OJB-JDO implementation has started. A first beta version is announce for OJB 1.1 version.

Running the Tutorial Application

To install and run the demo application please follow the following steps:

1. Download the JDO Reference Implementation from Sun's JDO site.
Extract the archiv to a local directory and copy the files:
• jdori.jar
• jdo.jar
into the OJB [db-ojb]/lib directory.

2. Now compile the sources, setup the test database and perform bytecode enhancement by executing
ant with-jdori prepare-tutorials enhance-jdori

OJB Documentation

Page 46
Copyright © All rights reserved.

error:#site:lock-manager
error:#ext:sun/jdo
error:#ext:sun/jdo

from the ojb toplevel directory.
3. Now you can start the tutorial application by executing bin\tutorial5 or bin/tutorial5.sh from the ojb

toplevel directory.

4.4.5.2. Using the JDO API in the UseCase Implementations

As shown here OJB supports four different API's. The PersistenceBroker, the OTM layer, the ODMG implementation, and the
JDO implementation.

The PB tutorial implemented the sample application's use cases with the PersistenceBroker API. This tutorial will show how
the same use cases can be implemented using the JDO API.

You can get more information about the JDO API at JDO javadocs.

Obtaining the JDO PersistenceManager Object

In order to access the functionalities of the JDO API you have to deal with a special facade object that serves as the main entry
point to all JDO operations. This facade is specified by the Interface javax.jdo.PersistenceManager.

A Vendor of a JDO compliant product must provide a specific implementation of the
javax.jdo.PersistenceManager interface. JDO also specifies that a JDO implementation must provide a
javax.jdo.PersistenceManagerFactory implementation that is responsible for generating
javax.jdo.PersistenceManager instances.

So if you know how to use the JDO API you only have to learn how to obtain the OJB specific PersistenceManagerFactory
object. Ideally this will be the only vendor specific operation.

In our tutorial application the PersistenceManagerFactory object is obtained in the constructor of the Application
class and reached to the use case implementations for further usage:

public Application()
{

factory = null;
manager = null;
try
{

// create OJB specific factory:
factory = new OjbStorePMF();

}
catch (Throwable t)
{

System.out.println("ERROR: " + t.getMessage());
t.printStackTrace();

}
useCases = new Vector();
useCases.add(new UCListAllProducts(factory));
useCases.add(new UCEnterNewProduct(factory));
useCases.add(new UCEditProduct(factory));
useCases.add(new UCDeleteProduct(factory));
useCases.add(new UCQuitApplication(factory));

}

The class org.apache.ojb.jdori.sql.OjbStorePMF is the OJB specific
javax.jdo.PersistenceManagerFactory implementation.

########### TODO: Put information about the .jdo files #############

The PersistenceManagerFactory object is reached to the constructors of the UseCases. These constructors store it in a
protected attribute factory for further usage.

Retrieving collections

OJB Documentation

Page 47
Copyright © All rights reserved.

error:#site:index
error:#site:pb-tutorial
error:#ext:sun/jdo/javadoc

The next thing we need to know is how this Implementation instance integrates into our persistence operations.

In the use case UCListAllProducts we have to retrieve a collection containing all product entries from the persistent
store. To retrieve a collection containing objects matching some criteria we can use the JDOQL query language as specified by
the JDO spec. In our use case we want to select all persistent instances of the class Products. In this case the query is quite
simple as it does not need any limiting search criteria.

We use the factory to create a PersistenceManager instance in step one. In the second step we ask the PersistenceManager to
create a query returning all Product instances.

In the third step we perform the query and collect the results in a collection.

In the fourth step we iterate through the collection to print out each product matching our query.

public void apply()
{

// 1. get a PersistenceManager instance
PersistenceManager manager = factory.getPersistenceManager();
System.out.println("The list of available products:");

try
{

// clear cache to provoke query against database
PersistenceBrokerFactory.

defaultPersistenceBroker().clearCache();

// 2. start tx and form query
manager.currentTransaction().begin();
Query query = manager.newQuery(Product.class);

// 3. perform query
Collection allProducts = (Collection)query.execute();

// 4. now iterate over the result to print each
// product and finish tx
java.util.Iterator iter = allProducts.iterator();
if (! iter.hasNext())
{

System.out.println("No Product entries found!");
}
while (iter.hasNext())
{

System.out.println(iter.next());
}
manager.currentTransaction().commit();

}
catch (Throwable t)
{

t.printStackTrace();
}
finally
{

manager.close();
}

}

Storing objects

Now we will have a look at the use case UCEnterNewProduct. It works as follows: first create a new object, then ask the
user for the new product's data (productname, price and available stock). These data is stored in the new object's attributes.
This part is no different from the PB tutorial implementation. (Steps 1. and 2.)

Now we will store the newly created object in the persistent store by means of the JDO API. With JDO, all persistence
operations must happen within a transaction. So the third step is to ask the PersistenceManager object for a fresh

OJB Documentation

Page 48
Copyright © All rights reserved.

error:#site:pb-tutorial

javax.jdo.Transaction object to work with. The begin() method starts the transaction.

We then have to ask the PersistenceManager to make the object persistent in step 4.

In the last step we commit the transaction. All changes to objects touched by the transaction are now made persistent. As you
will have noticed there is no need to explicitly store objects as with the PersistenceBroker API. The Transaction object is
responsible for tracking which objects have been modified and to choose the appropriate persistence operation on commit.

public void apply()
{

// 1. this will be our new object
Product newProduct = new Product();
// 2. now read in all relevant information and fill the new object:
System.out.println("please enter a new product");
String in = readLineWithMessage("enter name:");
newProduct.setName(in);
in = readLineWithMessage("enter price:");
newProduct.setPrice(Double.parseDouble(in));
in = readLineWithMessage("enter available stock:");
newProduct.setStock(Integer.parseInt(in));

// 3. create PersistenceManager and start transaction
PersistenceManager manager = factory.getPersistenceManager();

Transaction tx = null;
tx = manager.currentTransaction();
tx.begin();

// 4. mark object as persistent
manager.makePersistent(newProduct);

// 5. commit transaction
tx.commit();

manager.close();
}

Updating Objects

The UseCase UCEditProduct allows the user to select one of the existing products and to edit it.

The user enters the products unique id. The object to be edited is looked up by this id. (Steps 1., 2. and 3.) This lookup is
necessary as our application does not hold a list of all product objects.

The product is then edited (Step 4.).

In step five the transaction is commited. All changes to objects touched by the transaction are now made persistent. Because
we modified an existing object an update operation is performed against the backend database.

public void apply()
{

PersistenceManager manager = null;

// ask user which object should edited
String in = readLineWithMessage("Edit Product with id:");
int id = Integer.parseInt(in);

Product toBeEdited;
try
{

// 1. start transaction
manager = factory.getPersistenceManager();
manager.currentTransaction().begin();

// We don't have a reference to the selected Product.

OJB Documentation

Page 49
Copyright © All rights reserved.

// So we have to look it up first,

// 2. Build a query to look up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

// 3. execute query
Collection result = (Collection) query.execute();
toBeEdited = (Product) result.iterator().next();

if (toBeEdited == null)
{

System.out.println("did not find a matching instance...");
manager.currentTransaction().rollback();
return;

}

// 4. edit the existing entry
System.out.println("please edit the product entry");
in =

readLineWithMessage(
"enter name (was " + toBeEdited.getName() + "):");

toBeEdited.setName(in);
in =

readLineWithMessage(
"enter price (was " + toBeEdited.getPrice() + "):");

toBeEdited.setPrice(Double.parseDouble(in));
in =

readLineWithMessage(
"enter available stock (was "

+ toBeEdited.getStock()
+ "):");

toBeEdited.setStock(Integer.parseInt(in));

// 5. commit changes
manager.currentTransaction().commit();

}
catch (Throwable t)
{

// rollback in case of errors
manager.currentTransaction().rollback();
t.printStackTrace();

}
finally
{

manager.close();
}

}

Deleting Objects

The UseCase UCDeleteProduct allows the user to select one of the existing products and to delete it from the persistent
storage.

The user enters the products unique id. The object to be deleted is looked up by this id. (Steps 1., 2. and 3.) This lookup is
necessary as our application does not hold a list of all product objects.

In the fourth step we check if a Product matching to the id could be found. If no entry is found we print a message and quit the
work.

If a Product entry was found we delete it in step 5 by calling the PersistenceManager to delete the persistent object. On
transaction commit all changes to objects touched by the transaction are made persistent. Because we marked the Product entry
for deletion, a delete operation is performed against the backend database.

public void apply()
{

OJB Documentation

Page 50
Copyright © All rights reserved.

PersistenceManager manager = null;
Transaction tx = null;
String in = readLineWithMessage("Delete Product with id:");
int id = Integer.parseInt(in);

try
{

// 1. start transaction
manager = factory.getPersistenceManager();
tx = manager.currentTransaction();
tx.begin();

// 2. Build a query to look up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

// 3. execute query
Collection result = (Collection) query.execute();

// 4. if no matching product was found, print a message
if (result.size() == 0)
{

System.out.println("did not find a Product with id=" + id);
tx.rollback();
manager.close();
return;

}
// 5. if a matching product was found, delete it
else
{

Product toBeDeleted = (Product) result.iterator().next();
manager.deletePersistent(toBeDeleted);
tx.commit();
manager.close();

}
}
catch (Throwable t)
{

// rollback in case of errors
//broker.abortTransaction();
tx.rollback();
t.printStackTrace();

}
}

4.4.5.3. Conclusion

In this tutorial you learned to use the standard JDO API as implemented by the OJB system within a simple application
scenario. I hope you found this tutorial helpful. Any comments are welcome.

4.4.6. Object Transaction Manager Tutorial

4.4.6.1. The OTM API

Introduction

The Object Transaction Manager (OTM) is written as a tool on which to implement other high-level object persistence APIs. It
is, however, very usable directly. It supports API's similar to the ODMG and PersistenceBroker API's in OJB. Several of its
idioms are designed around the fact that it is meant to have additional, client-oriented, API's built on top of it, however.

The OTMKit is the initial access point to the OTM interfaces. The kit provides basic configuration information to the OTM
components used in your system. This tutorial will use the SimpleKit which will work well under most circumstances for
local transaction implementations.

This tutorial operates on a simple example class:

OJB Documentation

Page 51
Copyright © All rights reserved.

error:#site:odmg-tutorial
error:#site:pb-tutorial

package org.apache.ojb.tutorials;

public class Product
{

/* Instance Properties */

private Double price;
private Integer stock;
private String name;

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...

}

The metadata descriptor for mapping this class is described in the mapping tutorial.

The source code for this tutorial is available with the source distribution of OJB in the
src/test/org/apache/ojb/tutorials/ directory.

Persisting New Objects

The starting point for using the OTM directly is to look at making a transient object persistent. This code will use three things,
an OTMKit, an OTMConnection, and a Transaction. The connection and transaction objects are obtained from the kit.

Initial access to the OTM client API's is through the OTMKit interface. We'll use the SimpleKit, an implementation of the
OTMkit suitable for most circumstances using local transactions.

public static void storeProduct(Product product) throws LockingException
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
conn.makePersistent(product);
tx.commit();

}
catch (LockingException e)
{

if (tx.isInProgress()) tx.rollback();
throw e;

}
finally
{

conn.close();
}

}

A kit is obtained and is used to obtain a connection. Connections are against a specific JCD alias. In this case we use the
default, but a named datasource could also be used, as configured in the metadata repository. A transaction is obtained from
the kit for the specific connection. Because multiple connections can be bound to the same transaction in the OTM, the
transaction needs to be acquired from the kit instead of the connection itself. The SimpleKit uses the commonly seen
transaction-per-thread idiom, but other kits do not need to do this.

Every persistence operation within the OTM needs to be executed within the context of a transaction. The JDBC concept of
implicit transactions doesn't exist in the OTM -- transactions must be explicit.

OJB Documentation

Page 52
Copyright © All rights reserved.

error:#site:mapping-tutorial

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). The conn.makePersistent(..)
call obtains a write lock on product and will commit (insert) the object when the transaction is committed.

The LockingException will be thrown if the object cannot be write-locked in this transaction. As it is a transient object to
begin with, this will probably only ever happen if it has been write-locked in another transaction already -- but this depends on
the transaction semantics configured in the repository metadata.

Finally, connections maintain resources so it is important to make sure they are closed when no longer needed.

Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is almost identical to making it
persistent -- the difference is just in the conn.deletePersistent(product) call instead of the
conn.makePersistent(product) call. The same notes about transactions and resources apply here.

public static void storeProduct(Product product) throws LockingException
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
conn.deletePersistent(product);
tx.commit();

}
catch (LockingException e)
{

if (tx.isInProgress()) tx.rollback();
throw e;

}
finally
{

conn.close();
}

}

Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two styles of query at present -- an
PersistenceBroker like query-by-criteria style querying system, and an ODMG OQL query system.

Information on constructing these types of queries is available in the PersistenceBroker and ODMG tutorials respectively.
Using those queries with the OTM is examined here.

A PB style query can be handled as follows:

public Iterator findByCriteria(Query query)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Iterator results = conn.getIteratorByQuery(query);
tx.commit();
return results;

OJB Documentation

Page 53
Copyright © All rights reserved.

error:#site:pb-tutorial
error:#site:odmg-tutorial

}
finally
{

conn.close();
}

}

Where, by default, a read lock is obtained on the returned objects. If a different lock is required it may be specified
specifically:

public Iterator findByCriteriaWithLock(Query query, int lock)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Iterator results = conn.getIteratorByQuery(query, lock);
tx.commit();
return results;

}
finally
{

conn.close();
}

}

The int lock argument is one of the integer constants on org.apache.ojb.otm.lock.LockType:

LockType.NO_LOCK
LockType.READ_LOCK
LockType.WRITE_LOCK

OQL queries are also supported, as this somewhat more complex example demonstrates:

public Iterator findByOQL(String query, Object[] bindings) throws Exception
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
OQLQuery oql = conn.newOQLQuery();
oql.create(query);
for (int i = 0; i < bindings.length; ++i)
{

oql.bind(bindings[i]);
}
tx.begin();
Iterator results = conn.getIteratorByOQLQuery(oql);
tx.commit();
return results;

}
catch (QueryInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Invalid OQL expression given", e);

}
catch (QueryParameterCountInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Incorrect number of bindings given", e);

}

OJB Documentation

Page 54
Copyright © All rights reserved.

catch (QueryParameterTypeInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Incorrect type of object given as binding", e);

}
finally
{

conn.close();
}

}

This function is, at its core, doing the same thing as the PB style queries, except that it constructs the OQL query, which
supports binding values in a manner similar to JDBC prepared statements.

The OQL style queries also support specifying the lock level the same way:

Iterator results = conn.getIteratorByOQLQuery(query, lock);

More Sophisticated Transaction Handling

These examples are a bit simplistic as they begin and commit their transactions all in one go -- they are only good for
retrieving data. More often data will need to be retrieved, used, and committed back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This means that frequently a query
will be executed within the bounds of an already established transaction, data will be changed on the objects obtained, and the
transaction will then be committed back.

A very convenient way to handle transactions in many applications is to start a transaction and then let any downstream code
be executed within the bounds of the transaction automatically. This is straightforward to do with the OTM using the
SimpleKit! Take a look at a very slightly modified version of the query by criteria function:

public Iterator moreRealisticQueryByCriteria(Query query, int lock)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
boolean auto = ! tx.isInProgress();
if (auto) tx.begin();
Iterator results = conn.getIteratorByQuery(query, lock);
if (auto) tx.commit();
return results;

}
finally
{

conn.close();
}

}

In this case the function looks to see if a transaction is already in progress and sets a boolean flag if it is, auto. It then handles
transactions itself, or allows the already opened transaction to maintain control.

Because connections can be attached to existing transactions the SimpleKit can attach the new connection to the already
established transaction, allowing this function to work as expected whether there is a transaction in progress or not!

Client code using this function could then open a transaction, query for products, change them, and commit the changes back.
For example:

public void renameWidgetExample()
{

OTMKit kit = SimpleKit.getInstance();

OJB Documentation

Page 55
Copyright © All rights reserved.

OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Product sample = new Product();
sample.setName("Wonder Widget");
Query query = QueryFactory.newQueryByExample(sample);
Iterator wonderWidgets

= moreRealisticQueryByCriteria(query, LockType.WRITE_LOCK);
while (wonderWidgets.hasNext())
{

Product widget = (Product) wonderWidgets.next();
widget.setName("Improved Wonder Widget");

}
tx.commit();

}
finally
{

conn.close();
}

}

This sample renames a whole bunch of products from "Wonder Widget" to "Improved Wonder Widget" and stores them back.
It must makes the changes within the context of the transaction it obtained for those changes to be stored back to the database.
If the same iterator were obtained outside of a transaction, and the changes made, the changes would be made on the objects in
memory, but not in the database. You can think of non-transaction objects as free immutable transfer objects.

This example also demonstrates two connections bound to the same transaction, as the renameWidgetExample(...)
function obtains a connection, and the moreRealisticQueryByCriteria(...) function obtains an additional
connection to the same transaction!

4.4.6.2. Notes on the Object Transaction Manager

Transactions

The Object Transaction Manager (OTM) is a transaction management layer for Java objects. It typically maps 1:1 to database
transactions behind the scenes, but this is not actually required for the OTM to work correctly.

The OTM supports a wide range of transactional options, delimited in the LockManager documentation. While the lock
manager is writte to the ODMG API, the same locking rules apply at the OTM layer.

4.5. Reference Guides

4.5.1. Reference Guides

4.5.1.1. Reference Guides

Here can be found a summary with a explanation of all reference guides.

• OJB Queries
This document explains the usage of the query syntax.

• Basic O/R Technique
This tutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and m:n relations, the auto-xxx
settings for references and proxy objects/collections.

• Platforms
What OJB requires from relational databases, and how to let it know which database to use.

• Logging configuration

OJB Documentation

Page 56
Copyright © All rights reserved.

error:#site:lock-manager
error:#site:query
error:#site:basic-technique
error:#site:platform
error:#site:logging

Details how to configure the logging within OJB.
• OJB.properties configuration

The details on how to modify OJB's behaviour. This includes changing pluggable components.
• JDBC Types

This document explains the standard mapping of JDBC types to Java classes.
• Repository Metadata

The specific details of OJB metadata.
• Advanced O/R Technique

This document explains some advanced O/R techniques like Polymorphism and "OJB Extents", Mapping Inheritance
Hierarchies, Nested Objects and so on.

• Metadata Handling
This document explains how the metadata xml file work and how the metadata information can be modified at runtime.

• Deployment
Specifics on what is required to deploy OJB, including deployment to EJB containers.

• Connection Handling
This document explains how OJB handles the Connection instances and how User's can step in.

• The Object Cache
Documentation on the different object caching implementations included with OJB.

• The Sequence Manager
How to use different sequence management strategies with OJB.

• The Lock Manager
The ODMG API supports different lock management systems. This document explains the differences and how to make
use of them.

• OJB XDoclet Module
Documentation for the OJB XDoclet module. The module can build mappings and schema.

• OJB Performance
A look at how OJB performs and how to use OJB's performance tests.

4.5.2. Platforms

4.5.2.1. how to use OJB with a specific relational database

OJB has been designed to smoothly integrate with any relational database that provides JDBC support. OJB can be configured
to use only JDBC 1.0 API calls to avoid problems with restrictions of several JDBC drivers.
It uses a limited SQL subset to avoid problems with restrictions of certain RDBMS. This design allows to keep the OJB code
generic and free from database specifics.

This document explains basic concepts and shows how OJB can be configured to run against a specific RDBMS.

If you not already have done so, then you also might want to have a look at the Getting Started section which presents a sample
skeleton project.

4.5.2.2. Basic Concepts

OJB internal tables

For certain features OJB relies on several internal tables that must be present in the target rdbms to allow a proper functioning.
If those features are not needed OJB can be safely run without any internal tables.

The following table lists all tables and their specific purpose.

Tablename Purpose

OJB_HL_SEQ Table for the high/low sequence manager.
If the built-in OJB sequence manager is not

OJB Documentation

Page 57
Copyright © All rights reserved.

error:#site:ojb-properties
error:#site:jdbc-types
error:#site:repository
error:#site:advanced-technique
error:#site:metadata
error:#site:deployment
error:#site:connection
error:#site:object-cache
error:#site:sequence-manager
error:#site:lock-manager
error:#site:xdoclet-module
error:#site:performance
error:#site:getting-started

used, this table is not needed.

OJB_LOCKENTRY This table is used to store Object locks if the
LockManager is run in distributed mode. Not needed
in singlevm mode.

OJB_NRM The "Named Roots Map". ODMG allows to bind
persistent objects to an user defined name.
The Named roots map is used to store these bindings.
It has NAME (String of arbitrary length) as primary
key and keeps the serialized OID of the persistent
object in the field OID (String of arbitrary length).
If bind() and lookup() are not used in client apps, this
table is not needed

OJB_DLIST The table used for the ODMG persistent DList
collections.
If ODMG DLists are not used, this table is not
needed.

OJB_DLIST_ENTRIES stores the entries of DLists (a wrapper to objects
stored in the DList)
If ODMG DLists are not used, this table is not
needed.

OJB_DSET The table used to store ODMG persistent DSET
collections
If ODMG DSets are not used, this table is not
needed.

OJB_DSET_ENTRIES This table stores the entries of DSets.
If ODMG DSets are not used, this table is not
needed.

OJB_DMAP The table use to store the ODMG persistent DMap
tables
If ODMG DMaps are not used, this table is not
needed.

OJB_DMAP_ENTRIES The table containing the DMap entries. The Keys and
Values of the map can be arbitrary persistent objects.
If ODMG DMaps are not used, this table is not
needed.

OJB uses Torque to create all required tables and data. Thus there is no SQL DDL file, but an XML file describing the tables
in format readable by Torque. The Torque DDL information for the internal tables resides in the file
src/schema/ojbcore-schema.xml.

The o/r mappings for these tables are contained in the file repository_internal.xml.

If you want to have a look at how these files could be used, have a look at the the ojb-blank sample project which is already
prepared to use these files.

Tables for the regression testbed

It is recommended to run the OJB JUnit regression tests against your target database. Thus you will have to provide several

OJB Documentation

Page 58
Copyright © All rights reserved.

error:#ext:torque
error:#site:getting-started

more tables, filled with the proper testdata.

The DDL information for these tables resides in the file src/schema/ojbtest-schema.xml.

The testdata is defined in the file src/schema/ojbtest-data.xml.

The o/r mappings for these tables are contained in the file repository_junit.xml.

Tables for the tutorial applications

If you intend to run the OJB tutorial applications against your target database you will have to provide one extra table.

The DDL information for this table also resides in the file src/schema/ojbtest-schema.xml.

The testdata is also defined in the file src/schema/ojbtest-data.xml.

The o/r mappings for this table is contained in the file repository_user.xml.

4.5.2.3. The setup process

OJB provides a setup routine to generate the target database and to fill it with the required testdata. This routine is based on
Torque scripts and is driven from the build.xml file. This section describes how to use it.

Selecting a platform profile

OJB ships with support for several popular database platforms. The target platform is selected by the switch profile in the
file build.properties. You can choose one out of the predefined profiles:

With the 'profile' property you can choose the RDBMS platform OJB is using
implemented profiles:
#
profile=hsqldb
use the mssqldb-JSQLConnect profile for Microsoft SQL Server and
you will automatically JSQLConnect driver, from http://www.j-netdirect.com/
MBAIRD: This is my driver of preference for MS SQL Server, I find the OEM'd
MS driver to have some problems.
#profile=mssqldb-JSQLConnect
#profile=mssqldb-Opta2000
#profile=mssqldb-ms
#profile=mysql
#profile=db2
#profile=oracle
#profile=oracle9i
#profile=oracle9i-Seropto
#profile=msaccess
#profile=postgresql
#profile=informix
#profile=sybase
#profile=sapdb
#profile=maxdb

The profile switch activated in build.properties is used to select a profile file from the profile directory.
If you set profile=db2, then the file profile/db2.profile is selected.
This file is used by the Torque scripts to set platform specific properties and to perform platform specific SQL operations.

editing the profile to point to your target db

The platform specific file profile/xxx.profile contains lots of information used by Torque. You can ignore most of it.
The only important part in this file is the section where the url to the target db is assembled, here is an snip of the DB2 profile:

--

OJB Documentation

Page 59
Copyright © All rights reserved.

#
D A T A B A S E S E T T I N G S
#
--
JDBC connection settings. This is used by the JDBCToXML task
that will create an XML database schema from JDBC metadata.
These settings are also used by the SQL Ant task to initialize
your Turbine system with the generated SQL.
--

dbmsName = Db2
jdbcLevel = 1.0
urlProtocol = jdbc
urlSubprotocol = db2
urlDbalias = OJB

createDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
buildDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseDriver = COM.ibm.db2.jdbc.app.DB2Driver
databaseUser = admin
databasePassword = db2
databaseHost = 127.0.0.1

These settings result in a database URL jdbc:db2:OJB. If your production database is registered with the name
MY_PRODUCTION_DB you have to edit the entry urlDBalias to:
urlDbalias = MY_PRODUCTION_DB.

In this section you can also set application user name and password. You can also enter a different jdbc driver class, to activate
a different driver.

Before progressing, please check that the jdbc driver class, named in the databaseDriver entry is located on the classpath!
You can either edit the global environment variable CLASSPATH or place the jdbc driver jar file into the
jakarta-ojb-xxx/lib directory.

Executing the build script

Now everything should be prepared to launch the setup routine. This routine can be invoked by calling ant
prepare-testdb .

If you are prompted with a BUILD SUCCESSFUL message after some time, everything is OK.

If you are prompted with a BUILD FAILED message after some time, something went wrong. This may have several reasons:

• You entered some incorrect settings. Please check the log messages to see what went wrong.
• Torque does not work properly against your target database. Torque is very flexible and should be able to work against a

wide range of databases. But the code templates for each database may not be accurate. Please check the ojb-user
mailinglist archive if there are any failure reports for your specific database. Please also check if some contributed a fix
already. If you don't find anything please post your problem to the ojb user-list.

As a last resort you can try the following: Switch back to the default hsqldb profile and execute ant prepare-testdb
This will setup the default hsqldb database. And it will also generate SQL scripts that you may use to generate your database
manually.

The SQL scripts are generated to jakarta-ojb-xxx/target/src/sql. You can touch these scripts to match your
database specifics and execute them manually against your platform.

Verifying the installation

Now everything is setup to run the junit regression tests against your target database.

Execute

OJB Documentation

Page 60
Copyright © All rights reserved.

ant junit

to see if everything works as expected. more information about the OJB Test Suite here. If you did not manage to set up the
target database with the ant prepare-testdb you can use
ant junit-no-compile-no-prepare to run the testsuite without generation of the test database.

4.5.3. OJB.properties Configuration File

4.5.3.1. OJB Configuration

OJB provides two different configuration mechanisms:

1. An XML based repository.xml is used to define the Object/Relational Mapping. This Mapping is translated into a
metadata dictionary at runtime. The metadata layer may also be manipulated at runtime through OJB API calls. Follow this
link to learn more about the XML repository.

2. A properties file OJB.properties that is responsible for the configuration of the OJB runtime environment. It contains
information that does not change at runtime and does not contain O/R mapping related information.

The rest of this document details on this properties file.

4.5.3.2. OJB.properties File

By default this file is named OJB.properties and is loaded from the classpath by a J2EE compliant resource lookup:

Thread.currentThread().getContextClassLoader().getResource(getFilename());

The filename of the properties file can be changed by setting a Java system property. This can be done programmatically:

System.setProperty("OJB.properties","myOwnPropertiesFile.props");

or by setting a -D option to the JVM:

java -DOJB.properties=myOwnPropertiesFile.props my.own.ojb.Application

All things that can be configured by OJB.properties are commented in the file itself. Have a look at the default version of this
file.

4.5.4. JDBC Types

4.5.4.1. Mapping of JDBC Types to Java Types

OJB implements the mapping conventions for JDBC and Java types as specified by the JDBC 3.0 specification.
See the table below for details.

JDBC Type Java Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

BOOLEAN boolean

TINYINT byte

OJB Documentation

Page 61
Copyright © All rights reserved.

error:#site:test-suite
error:#site:repository
error:#site:repository
error:#ext:ojb.properties
error:#ext:ojb.properties
error:#ext:ojb.properties

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CLOB Clob

BLOB Blob

ARRAY Array

DISTINCT mapping of underlying type

STRUCT Struct

REF Ref

DATALINK java.net.URL

JAVA_OBJECT underlying Java class

4.5.4.2. Type and Value Conversions

Introduction

A typical problem with O/R tools is mismatching datatypes: a class from the domain model has an attribute of type boolean but
the corresponding database table stores this attribute in a column of type bit or int.

This example explains how OJB allows you to define FieldConversions that do the proper translation of types and values.

The source code of this example is included in the OJB source distribution and resides in the test package
org.apache.ojb.broker.

The problem

The test class org.apache.ojb.broker.Article contains an attribute isSelloutArticle of type boolean:

public class Article implements InterfaceArticle
{

protected int articleId;
protected String articleName;

// maps to db-column Auslaufartikel of type int
protected boolean isSelloutArticle;

OJB Documentation

Page 62
Copyright © All rights reserved.

...
}

The coresponding table uses an int column (Auslaufartikel) to store this attribute:

CREATE TABLE Artikel (
Artikel_Nr INT PRIMARY KEY,
Artikelname CHAR(60),
Lieferanten_Nr INT,
Kategorie_Nr INT,
Liefereinheit CHAR(30),
Einzelpreis DECIMAL,
Lagerbestand INT,
BestellteEinheiten INT,
MindestBestand INT,
Auslaufartikel INT

)

The Solution

OJB allows to use predefined (or self-written) FieldConversions that do the appropiate mapping. The FieldConversion
interface declares two methods: javaToSql(...) and sqlToJava(...):

/**
* FieldConversion declares a protocol for type and value
* conversions between persistent classes attributes and the columns
* of the RDBMS.
* The default implementation does not modify its input.
* OJB users can use predefined implementation and can also
* build their own conversions that perform arbitrary mappings.
* the mapping has to defined in the xml repository
* in the field-descriptor.
*
* @author Thomas Mahler
*/
public interface FieldConversion extends Serializable
{

/**
* convert a Java object to its SQL
* pendant, used for insert & update
*/
public abstract Object javaToSql(Object source) throws ConversionException;

/**
* convert a SQL value to a Java Object, used for SELECT
*/
public abstract Object sqlToJava(Object source) throws ConversionException;

}

The method FieldConversion.sqlToJava() is a callback that is called within the OJB broker when Object attributes
are read in from JDBC result sets. If OJB detects that a FieldConversion is declared for a persistent classes attributes, it uses
the FieldConversion to do the marshalling of this attribute.

For the above mentioned problem of mapping an int column to a boolean attribute we can use the predefined FieldConversion
Boolean2IntFieldConversion. Have a look at the code to see how it works:

public class Boolean2IntFieldConversion implements FieldConversion
{

private static Integer I_TRUE = new Integer(1);
private static Integer I_FALSE = new Integer(0);

private static Boolean B_TRUE = new Boolean(true);
private static Boolean B_FALSE = new Boolean(false);

/**

OJB Documentation

Page 63
Copyright © All rights reserved.

* @see FieldConversion#javaToSql(Object)
*/
public Object javaToSql(Object source)
{

if (source instanceof Boolean)
{

if (source.equals(B_TRUE))
{

return I_TRUE;
}
else
{

return I_FALSE;
}

}
else
{

return source;
}

}

/**
* @see FieldConversion#sqlToJava(Object)
*/
public Object sqlToJava(Object source)
{

if (source instanceof Integer)
{

if (source.equals(I_TRUE))
{

return B_TRUE;
}
else
{

return B_FALSE;
}

}
else
{

return source;
}

}
}

There are other helpful standard conversions defined in the package
org.apache.ojb.broker.accesslayer.conversions: Of course it is possible to map between
java.sql.date and java.util.date by using a Conversion. A very interesting Conversion is the
Object2ByteArrFieldConversion it allows to store inlined objects in varchar columns!

Coming back to our example, there is only one thing left to do: we must tell OJB to use the proper FieldConversion for the
Article class. This is done in the XML Repository. The field-descriptor allows to define a conversion attribute declaring
the fully qualified FieldConversion class:

<!-- Definitions for test.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />

...

<field-descriptor
name="isSelloutArticle"
column="Auslaufartikel"

OJB Documentation

Page 64
Copyright © All rights reserved.

jdbc-type="INTEGER"
conversion="org.apache.ojb.broker.accesslayer.

conversions.Boolean2IntFieldConversion"
/>

...

</class-descriptor>

4.5.5. Repository File

4.5.5.1. Introduction - repository syntax

The syntax of the OJB repository xml files is defined by the repository.dtd.
The repository.dtd can be found here.

The actual repository metadta declaration is split up into several separate files, here is an excerpt of the most important files:

1. the repository.xml. Main file for metadata declaration. This file is split into several sub files using xml-Entity references.
2. the repository_database.xml. This file contains the mapping information for database/connection handling.
3. the repository_internal.xml. This file contains the mapping information for the OJB internal tables. These tables are used

for implementing SequenceManagers and persistent collections.
4. the repository_user.xml. This file contains mappings for the tutorial applications and may be used to hold further user

defined class mappings.
5. the repository_junit.xml. This file contains mapping information for common OJB JUnit regression test suite. In production

environments these tables are not needed.
6. other repository_junit_XYZ.xml

More specific junit test mapping. In production environments these tables are not needed.
7. There are some more files, for more information see comment in appropriate xml-file.

4.5.5.2. descriptor-repository

The descriptor-repository is the root element of a repository.xml file. It consists of one jdbc-connection-descriptor and at least
one class-descriptor element.

Elements

<!ELEMENT descriptor-repository (documentation?, attribute*,
jdbc-connection-descriptor*, class-descriptor*)>

The documentation element can be used to store arbitrary information.

The attribute element allows to add custom attributes, e.g. for passing arbitrary properties.

The jdbc-connection-descriptor element specifies a jdbc connection for the repository.

The class-descriptor element specify o/r mapping information for persistent class.

<!ELEMENT descriptor-repository (
documentation?,
attribute*,
jdbc-connection-descriptor*,
class-descriptor*)

>

Attributes

<!ATTLIST descriptor-repository
version (1.0) #REQUIRED

OJB Documentation

Page 65
Copyright © All rights reserved.

error:#ext:ojb/repository.dtd
error:#ext:ojb/repository.xml
error:#ext:ojb/repository_database.xml
error:#ext:ojb/repository_internal.xml
error:#ext:ojb/repository_user.xml
error:#ext:ojb/repository_junit.xml

isolation-level (read-uncommitted | read-committed | repeatable-read |
serializable | optimistic) "read-uncommitted"

proxy-prefetching-limit CDATA "50"
>

version

The version attribute is used to bind a repository.xml file to a given version of this dtd. A given OJB release will work properly
only with the repository version shipped with that relase. This strictness maybe inconvenient but it does help to avoid the most
common version conflicts.

isolation

The isolation attribute defines the default isolation level for class-descriptor that do not define a specific isolation level. This
isolation level is used within the ODMG-api and does not touch the isolation-level off the database.

proxy-prefetching-limit

The proxy-prefetching-limit attribute specifies a default value to be applied to all proxy instances. If none is specified a default
value of 50 is used. Proxy prefetching specifies how many instances of a proxied class should be loaded in a single query when
the proxy is first accessed.

<!ATTLIST descriptor-repository
version (1.0) #REQUIRED
isolation-level (read-uncommitted |

read-committed |
repeatable-read |
serializable |
optimistic) "read-uncommitted"

proxy-prefetching-limit CDATA "50"
>

4.5.5.3. jdbc-connection-descriptor

The jdbc-connection-descriptor element specifies a jdbc connection for the repository. It is allowed to define more than one
jdbc-connection-descriptor. All class-descriptor elements are independent from the jdbc-connection-descriptors. More info
about connection handling here.

Elements

<!ELEMENT jdbc-connection-descriptor (documentation?, attribute*,
object-cache?, connection-pool?, sequence-manager?)>

The object-cache element specifies the object-cache implementation class associated with this class.

A connection-pool element may be used to define connection pool properties for the specified JDBC connection.

Further a sequence-manager element may be used to define which sequence manager implementation should be used within
the defined connection.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT jdbc-connection-descriptor (
documentation?,
attribute*,
object-cache?,
connection-pool?,
sequence-manager?)

OJB Documentation

Page 66
Copyright © All rights reserved.

error:#site:connection
error:#site:object-cache

>

Attributes

The jdbc-connection-descriptor element contains a bunch of required and implied attributes:

<!ATTLIST jdbc-connection-descriptor
jcd-alias CDATA #REQUIRED

default-connection (true | false) "false"
platform (Db2 | Hsqldb | Informix | MsAccess | MsSQLServer |

MySQL | Oracle | PostgreSQL | Sybase | SybaseASE |
SybaseASA | Sapdb | Firebird | Axion | NonstopSql |
Oracle9i | MaxDB) "Hsqldb"

jdbc-level (1.0 | 2.0 | 3.0) "1.0"
eager-release (true | false) "false"

batch-mode (true | false) "false"
useAutoCommit (0 | 1 | 2) "1"
ignoreAutoCommitExceptions (true | false) "false"

jndi-datasource-name CDATA #IMPLIED

driver CDATA #IMPLIED
protocol CDATA #IMPLIED
subprotocol CDATA #IMPLIED
dbalias CDATA #IMPLIED

username CDATA #IMPLIED
password CDATA #IMPLIED

>

jdbcAlias

The jcdAlias attribute is a shortcut name for the defined connection descriptor. OJB uses the jcd alias as key for the defined
connections.

default-connection

The default-connection attribute used to define if this connection should used as default connection with OJB. You could
define only one connection as default connection. It is also possible to set the default connection at runtime using
PersistenceBrokerFactory#setDefaultKey(...) method. If set true you can use a PB-api shortcut-method of the
PersistenceBrokerFactory to lookup PersistenceBroker instances.

Note:
If default-connection was not set at runtime, it is mandatory that username and password is set in repository file.

platform

The platform attribute is used to define the specific RDBMS Platform. This attribute corresponds to a
org.apache.ojb.broker.platforms.PlatformXXXImpl class. Supported databases see here. Default was Hsqldb.

jdbc-level

The jdbc-level attribute is used to specify the Jdbc compliance level of the used Jdbc driver. Allowed values are: 1.0, 2.0, 3.0.
Default was 1.0.

eager-release

The eager-release attribute was adopt to solve a problem occured when using OJB within JBoss (3.0 <= version < 3.2.2, seems

OJB Documentation

Page 67
Copyright © All rights reserved.

to be fixed in jboss 3.2.2 and higher). Only use within JBoss. DEPRECATED attribute.

batch-mode

The batch-mode attribute allow to enable JDBC connection batch support (if supported by used database), 'true' value allows to
enable per-session batch mode, whereas 'false' prohibits it. PB.serviceConnectionManager.setBatchMode(...) method can be
used to switch on/off batch modus, if batch-mode was enabled. On PB.close() OJB switch off batch modus, thus you have to
do '...setBatchMode(true)' on each obtained PB instance again.

useAutoCommit

The useAutoCommit attribute allow to set how OJB uses the autoCommit state of the used connections. The default mode is 1.
When using mode 0 or 2 with the PB-api, you must use PB transaction demarcation.

• 0 - OJB ignores the autoCommit setting of the connection and does not try to change it. This mode could be helpful if the
connection won't let you set the autoCommit state (e.g. using datasources within an application server).

• 1 - Set autoCommit explicitly to true when a connection was created and temporary set to false when necessary (default
mode).

• 2 - Set autoCommit explicitly to false when a connection was created.

ignoreAutoCommitExceptions

If the ignoreAutoCommitExceptions attribute is set to true, all exceptions caused by setting autocommit state, will be ignored.
Default mode is false.

jndi-datasource-name

If a jndi-datasource-name for JNDI based lookup of Jdbc connections is specified, the four attributes driver, protocol,
subprotocol, and dbalias used for Jdbc DriverManager based construction of Jdbc Connections must not be declared.

username

The username and password attributes are used as credentials for obtaining a jdbc connections.
If users don't want to keep user/password information in the repository.xml file, they can pass user/password using a PBKey to
obtain a PersistenceBroker. More info see FAQ.

4.5.5.4. connection-pool

The connection-pool element specifies the connection pooling parameter. More info about the connection handling can be
found here.

<!ELEMENT connection-pool (documentation?)
>

Valid attributes for the connection-pool element are:

<!ATTLIST connection-pool
maxActive CDATA #IMPLIED
maxIdle CDATA #IMPLIED
maxWait CDATA #IMPLIED
minEvictableIdleTimeMillis CDATA #IMPLIED
numTestsPerEvictionRun CDATA #IMPLIED
testOnBorrow (true | false) #IMPLIED
testOnReturn (true | false) #IMPLIED
testWhileIdle (true | false) #IMPLIED
timeBetweenEvictionRunsMillis CDATA #IMPLIED
whenExhaustedAction (0 | 1 | 2) #IMPLIED
validationQuery CDATA #IMPLIED

OJB Documentation

Page 68
Copyright © All rights reserved.

error:#site:faq
error:#site:connection
error:#site:connection

logAbandoned (true | false) #IMPLIED
removeAbandoned (true | false) #IMPLIED
removeAbandonedTimeout CDATA #IMPLIED

>

maxActive is the maximum number of connections that can be borrowed from the pool at one time. When non-positive, there is
no limit.

maxIdle controls the maximum number of connections that can sit idle in the pool at any time. When non-positive, there is no
limit

maxWait - the maximum time block to get connection instance from pool, after that exception is thrown. When non-positive,
block till last judgement

whenExhaustedAction

• 0 - fail when pool is exhausted
• 1 - block when pool is exhausted
• 2 - grow when pool is exhausted

testOnBorrow when true the pool will attempt to validate each object before it is returned from the pool.

testOnReturn set to true will force the pool to attempt to validate each object before it is returned to the pool.

testWhileIdle indicates whether or not idle objects should be validated. Objects that fail to validate will be dropped from the
pool.

timeBetweenEvictionRunsMillis indicates how long the eviction thread should sleep before "runs" of examining idle objects.
When non-positive, no eviction thread will be launched.

minEvictableIdleTimeMillis specifies the minimum amount of time that a connection may sit idle in the pool before it is
eligable for eviction due to idle time. When non-positive, no connection will be dropped from the pool due to idle time alone
(depends on timeBetweenEvictionRunsMillis > 0)

numTestsPerEvictionRun - the number of connections to examine during each run of the idle object evictor thread (if any)

validationQuery allows to specify a validation query used by the ConnectionFactory implementations using connection
pooling, to test a requested connection (e.g. "select 1 from dual") before leave the pool (used by ConnectionFactoryDBCPImpl
and ConnectionFactoryPooledImpl).
If not set, only connection.isClosed() will have been called before the connection was delivered.

logAbandoned is only supported when using org.apache.ojb.broker.accesslayer.ConnectionFactoryDBCPImpl
ConnectionFactory implementation. Then it is a flag to log stack traces for application code which abandoned a Statement or
Connection. Defaults to false. Logging of abandoned Statements and Connections adds overhead for every Connection open or
new Statement because a stack trace has to be generated.
DEPRECATED attribute!

removeAbandoned and removeAbandonedTimeout When using
org.apache.ojb.broker.accesslayer.ConnectionFactoryDBCPImpl ConnectionFactory implementation, the removeAbandoned
flag controls the removal of abandoned connections if they exceed the removeAbandonedTimeout. Set to true or false, default
false. If set to true a connection is considered abandoned and eligible for removal if it has been idle longer than the
removeAbandonedTimeout. Setting this to true can recover db connections from poorly written applications which fail to close
a connection.
DEPRECATED attributes!

4.5.5.5. sequence-manager

The sequence-manager element specifies the sequence manager implementation used for key generation. All sequence
manager implementations shipped with OJB can be found in the org.apache.ojb.broker.util.sequence package. If no sequence

OJB Documentation

Page 69
Copyright © All rights reserved.

manager is defined, OJB uses the default one. More info about sequence key generation here.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT sequence-manager (
documentation?,
attribute*)

>

The className attribute represents the full qualified class name of the desired sequence manager implementation - it is
mandatory when using the sequence-manager element. All sequence manager implementations you find will under
org.apache.ojb.broker.util.sequence package named as SequenceManagerXXXImpl

More info about the usage of the Sequence Manager implementations can be found here.

<!ATTLIST sequence-manager
className CDATA #REQUIRED

>

4.5.5.6. object-cache

The object-cache element can be used to specify the ObjectCache implementation used by OJB. There are three levels of
declaration:

• in OJB.properties file, to declare the standard (default) ObjectCache implementation
• on jdbc-connection-descriptor level, to declare ObjectCache implementation on a per connection/user level
• on class-descriptor level, to declare ObjectCache implementation on a per class level

Note:
The priority of the declared object-cache elements are:
per class > per jdbc descriptor > standard

E.g. if you declare ObjectCache implementation 'my.cacheDef' as standard, set ObjectCache implementation 'my.cacheA' in
class-descriptor for class A and class B does not declare an object-cache element. Then OJB use 'my.cacheA' as ObjectCache
for class A and 'my.cacheDef' for class B.

<!ELEMENT object-cache (documentation?, attribute*)>

Use the custom-attribute element to pass implementation specific properties.

<!ATTLIST object-cache
class CDATA #REQUIRED

>

Attribute 'class' specifies the full qualified class name of the used ObjectCache implementation.

4.5.5.7. custom attribute

An attribute element allows arbitrary name/value pairs to be represented in the repository. See the repository.dtd for details on
which elements support it.

<!ELEMENT attribute EMPTY>

The attribute-name identifies the name of the attribute.

The attribute-value identifies the value of the attribute.

<!ATTLIST attribute
attribute-name CDATA #REQUIRED
attribute-value CDATA #REQUIRED

OJB Documentation

Page 70
Copyright © All rights reserved.

error:#site:sequence-manager
error:#site:sequence-manager
error:#ext:ojb/ojb.properties
error:#ext:ojb/repository.dtd

>

4.5.5.8. class-descriptor

For interfaces or abstract classes a class-descriptor holds a sequence of extent-class elements which specify the types
extending this class.
Concrete base classes may specify a sequence of extent-class elements, naming the derived classes.

For concrete classes it must have field-descriptors that describe primitive typed instance variables. References to other
persistent entity classes are specified by reference-descriptor elements. Collections or arrays attributes that contain other
persistent entity classes are specified by collection-descriptor elements
A class-descriptor may contain user defined custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT class-descriptor (
(

documentation?,
extent-class+,
attribute*) |

(
documentation?,
object-cache?,
extent-class*,
field-descriptor+,
reference-descriptor*,
collection-descriptor*,
index-descriptor*,
attribute*,
insert-procedure?,
update-procedure?,
delete-procedure?)

)
>

The class attribute contains the full qualified name of the specified class. As this attribute is of the XML type ID there can only
be one class-descriptor per class.

The isolation-level attribute specifies the transactional isolation to be used for this class on ODMG-level.

Note:
The isolation-level does not touch the jdbc-connection isolation level. It's completely independend from the database connection setting.

If the proxy attribute is set, proxies are used for all loading operations of instances of this class. If set to dynamic, dynamic
proxies are used. If set to another value this value is interpreted as the full-qualified name of the proxy class to use. More info
about using of proxies here.

The proxy-prefetching-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The schema attribute may contain the database schema owning the table mapped to this class.

The table attribute speciefies the table name this class is mapped to.

The row-reader attribute may contain a full qualified class name. This class will be used as the RowReader implementation
used to materialize instances of the persistent class.

The extends attribute ************TODO: description*************

The accept-locks attribute specifies whether implicit locking should propagate to this class. Currently relevant for the ODMG
layer only.

OJB Documentation

Page 71
Copyright © All rights reserved.

error:#site:advanced-technique/extents
error:#site:advanced-technique/extents
error:#site:basic-technique/using-proxy
error:#site:advanced-technique/using-rowreader

The optional initialization-method specifies a no-argument instance method that is invoked after reading an instance from a
database row. It can be used to do initialization and validations.

The optional factory-class specifies a factory class that that is to be used instead of a no argument constructor when new
objects are created. If the factory class is specified, then the factory-method also must be defined. It refers to a static
no-argument method of the factory class that returns a new instance.

The refresh attribute can be set to true to force OJB to refresh instances when loaded from cache. Means all field values
(except references) will be replaced by values retrieved from the database. It's set to false by default.

<!ATTLIST class-descriptor
class ID #REQUIRED
isolation-level (read-uncommitted | read-committed |

repeatable-read | serializable | optimistic) "read-uncommitted"
proxy CDATA #IMPLIED
proxy-prefetching-limit CDATA #IMPLIED
schema CDATA #IMPLIED
table CDATA #IMPLIED
row-reader CDATA #IMPLIED
extends IDREF #IMPLIED
accept-locks (true | false) "true"
initialization-method CDATA #IMPLIED
factory-class CDATA #IMPLIED
factory-method CDATA #IMPLIED
refresh (true | false) "false"

>

4.5.5.9. extent-class

An extent-class element is used to specify an implementing class or a derived class that belongs to the extent of all instances of
the interface or base class.

<!ELEMENT extent-class EMPTY>

The class-ref attribute must contain a fully qualified classname and the repository file must contain a class-descriptor for this
class.

<!ATTLIST extent-class
class-ref IDREF #REQUIRED

>

4.5.5.10. field-descriptor

A field descriptor contains mapping info for a primitive typed attribute of a persistent class.
A field descriptor may contain custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT field-descriptor (documentation?, attribute*)>

The id attribute is optional. If not specified, OJB internally sorts field-descriptors according to their order of appearance in
the repository file.
If a different sort order is intended the id attribute may be used to hold a unique number identifying the decriptors position in
the sequence of field-descriptors.

Note:
The order of the numbers for the field-descriptors must correspond to the order of columns in the mapped table.

The name attribute holds the name of the persistent classes attribute. More info about persistent field handling.

OJB Documentation

Page 72
Copyright © All rights reserved.

error:#site:advanced-technique/persistent-field

The table attribute may specify a table different from the mapped table for the persistent class. (currently not implemented).

The column attribute specifies the column the persistent classes field is mapped to.

The jdbc-type attribute specifies the JDBC type of the column. If not specified OJB tries to identify the JDBC type by
inspecting the Java attribute by reflection - OJB use the java/jdbc mapping desribed here.

The primarykey specifies if the column is a primary key column, default value is false.

The nullable attribute specifies if the column may contain null values.

The indexed attribute specifies if there is an index on this column

The autoincrement attribute specifies if the values for the persistent attribute should be automatically generated by OJB. More
info about sequence key generation here.

The sequence-name attribute can be used to state explicitly a sequence name used by the sequence manager implementations.
Check the javadocs of the used sequence manager implementation to get information if this is a mandatory attribute. OJB
standard sequence manager implementations build a sequence name by its own, if the attribute was not set. More info about
sequence key generation here.

The locking attribute is set to true if the persistent attribute is used for optimistic locking. More about optimistic locking. The
default value is false.

The updatelock attribute is set to false if the persistent attribute is used for optimistic locking AND the dbms should update the
lock column itself. The default is true which means that when locking is true then OJB will update the locking fields. Can only
be set for TIMESTAMP and INTEGER columns.

The default-fetch attribute specifies whether the persistent attribute belongs to the JDO default fetch group.

The conversion attribute contains a fully qualified class name. This class must implement the interface
org.apache.ojb.accesslayer.conversions.FieldConversion. A FieldConversion can be used to
implement conversions between Java- attributes and database columns. More about field conversion.

The length attribute can be used to specify a length setting if required by the jdbc-type of the underlying database column.

The precision attribute can be used to specify a precision setting, if required by the jdbc-type of the underlying database
column.

The scale attribute can be used to specify a sclae setting, if required by the jdbc-type of the underlying database column.

The access attribute specifies the accessibility of the field. Fields marked as readonly are not to modified. readwrite marks
fields that may be read and written to. anonymous marks anonymous fields.
An anonymous field has a database representation (column) but no corresponding Java attribute. Hence the name of such a
field does not refer to a Java attribute of the class, but is used as a unique identifier only. More info about anonymous keys
here.

<!ATTLIST field-descriptor
id CDATA #IMPLIED
name CDATA #REQUIRED
table CDATA #IMPLIED
column CDATA #REQUIRED
jdbc-type (BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE |

FLOAT | REAL | NUMERIC | DECIMAL | CHAR | VARCHAR |
LONGVARCHAR | DATE | TIME | TIMESTAMP | BINARY |
VARBINARY | LONGVARBINARY | CLOB | BLOB) #REQUIRED

primarykey (true | false) "false"
nullable (true | false) "true"
indexed (true | false) "false"
autoincrement (true | false) "false"

OJB Documentation

Page 73
Copyright © All rights reserved.

error:#site:jdbc-types
error:#site:sequence-manager
error:#ext:javadoc
error:#site:sequence-manager
error:#site:faq/optimistic-locking
error:#site:jdbc-types/field-conversion
error:#site:anonymous-keys
error:#site:anonymous-keys

sequence-name CDATA #IMPLIED
locking (true | false) "false"
update-lock (true | false) "true"
default-fetch (true | false) "false"
conversion CDATA #IMPLIED
length CDATA #IMPLIED
precision CDATA #IMPLIED
scale CDATA #IMPLIED
access (readonly | readwrite | anonymous) "readwrite"

>

4.5.5.11. reference-descriptor

A reference-descriptor contains mapping info for an attribute of a persistent class that is not primitive but references another
persistent entity Object. More about 1:1 references here.

A foreignkey element contains information on foreign key columns that implement the association on the database level.

<!ELEMENT reference-descriptor (foreignkey+)>

The name attribute holds the name of the persistent classes attribute. Depending on the used PersistendField implementation,
there must be e.g. an attribute in the persistent class with this name or a JavaBeans compliant property of this name.

The class-ref attribute contains a fully qualified class name. This class is the Object type of the persistent reference attribute.
As this is an IDREF there must be a class-descriptor for this class in the repository too.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for this attribute.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh object references on instance loading.

Note:
This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects itself may provided by the cache. To
refresh the objects set the refresh attribute of class-descriptor.

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on loading the persistent
object. If set to false the reference attribute is set to null. In this case the user is responsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on storing the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

The auto-delete attribute specifies whether OJB automatically deletes this reference attribute on deleting the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

The otm-dependent attribute specifies whether the OTM layer automatically creates the referred object or deletes it if the
reference field is set to null. Also otm-dependent references behave as if auto-update and auto-delete were set to true, but the
auto-update and auto-delete attributes themself must be always set to false for use with OTM layer.

OJB Documentation

Page 74
Copyright © All rights reserved.

error:#site:basic-technique/one-to-one
error:#site:advanced-technique/persistent-field
error:#site:basic-technique/auto-retrieve
error:#site:basic-technique/cascading
error:#site:basic-technique/cascading

<!ATTLIST reference-descriptor
name CDATA #REQUIRED
class-ref IDREF #REQUIRED

proxy (true | false) "false"
proxy-prefetching-limit CDATA #IMPLIED
refresh (true | false) "false"

auto-retrieve (true | false) "true"
auto-update (true | false) "false"
auto-delete (true | false) "false"
otm-dependent (true | false) "false"

>

4.5.5.12. foreignkey

A foreignkey element contains information on a foreign-key persistent attribute that implement the association on the database
level.

<!ELEMENT foreignkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor used as a foreign key.

Note:
Exactly one of these attributes must be specified.

<!ATTLIST foreignkey
field-id-ref CDATA #IMPLIED
field-ref CDATA #IMPLIED

>

4.5.5.13. collection-descriptor

A collection-descriptor contains mapping info for a liCollection- or Array-attribute of a persistent class that contains persistent
entity Objects. See more about 1:n and m:n references.

The inverse-foreignkey elements contains information on foreign-key attributes that implement the association on the database
level.

The fk-pointing-to-this-class and fk-pointing-to-element-class elements are only needed if the Collection or array implements a
m:n association. In this case they contain information on the foreign-key columns of the intermediary table.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT collection-descriptor (
documentation?,
orderby*,
inverse-foreignkey*,
fk-pointing-to-this-class*,
fk-pointing-to-element-class*,
attribute*)>

The name attribute holds the name of the persistent classes attribute. More info about persistent field handling.

The collection-class may hold a fully qualified class name. This class must be the Java type of the Collection attribute. This
attribute must only specified if the attribute type is not a java.util.Collection (or subclass) or Array type. It is also
possible to use non Collection or Array type user defined "collection" classes. More info see section manageable collection.

The element-class-ref attribute contains a fully qualified class name. This class is the Object type of the elements of persistent
collection or Array attribute. As this is an IDREF there must be a class-descriptor for this class in the repository too.

The orderby attribute may specify a field of the element class. The Collection or Array will be sorted according to the specified

OJB Documentation

Page 75
Copyright © All rights reserved.

error:#site:basic-technique/one-to-n
error:#site:basic-technique/m-to-n
error:#site:advanced-technique/persistent-field
error:#site:advanced-technique/manageable-collection

attribute. The sort attribute may be used to specify ascending or descending order for this operation.

The indirection-table must specify the name of an intermediary table, if the persistent collection attribute implements a m:n
association.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for this attribute. More about
using proxy here.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh object references on instance loading.

Note:
This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects itself may provided by the cache. To
refresh the objects use the refresh attribute in class-descriptor.

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on loading the persistent
object. If set to false the reference attribute is set to null. In this case the user is responsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on storing the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

The auto-delete attribute specifies whether OJB automatically deletes this reference attribute on deleting the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

The otm-dependent attribute specifies whether the OTM layer automatically creates collection elements that were included into
the collection, and deletes collection elements that were removed from the collection. Also otm-dependent references behave
as if auto-update and auto-delete were set to true, but the auto-update and auto-delete attributes themself must be always set to
false for use with OTM layer.

<!ATTLIST collection-descriptor
name CDATA #IMPLIED
collection-class CDATA #IMPLIED
element-class-ref IDREF #REQUIRED
orderby CDATA #IMPLIED
sort (ASC | DESC) "ASC"

indirection-table CDATA #IMPLIED

proxy (true | false) "false"
proxy-prefetching-limit CDATA #IMPLIED
refresh (true | false) "false"

auto-retrieve (true | false) "true"
auto-update (true | false) "false"
auto-delete (true | false) "false"
otm-dependent (true | false) "false"

>

4.5.5.14. inverse-foreignkey

OJB Documentation

Page 76
Copyright © All rights reserved.

error:#site:basic-technique/using-proxy
error:#site:basic-technique/auto-retrieve
error:#site:basic-technique/cascading
error:#site:basic-technique/cascading

A inverse-foreignkey element contains information on a foreign-key persistent attribute that implement the association on the
database level.

<!ELEMENT inverse-foreignkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor used as a foreign key.
Exactly one of these attributes must be specified.

<!ATTLIST inverse-foreignkey
field-id-ref CDATA #IMPLIED
field-ref CDATA #IMPLIED

>

4.5.5.15. fk-pointing-to-this-class

A fk-pointing-to-this-class element contains information on a foreign-key column of an intermediary table in a m:n scenario.

<!ELEMENT fk-pointing-to-this-class EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that points to the class holding the collection.

<!ATTLIST fk-pointing-to-this-class
column CDATA #REQUIRED

>

4.5.5.16. fk-pointing-to-element-class

A fk-pointing-to-element-class element contains information on a foreign-key column of an intermediary table in a m:n
scenario.

<!ELEMENT fk-pointing-to-element-class EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that points to the class of the collection
elements.

<!ATTLIST fk-pointing-to-element-class
column CDATA #REQUIRED

>

4.5.5.17. query-customizer

A query enhancer element to enhance the 1:n query, e.g. to modify the result objects of a query. More info about customizing
collection queries.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT query-customizer (
documentation?,
attribute*)>

<!ATTLIST query-customizer
class CDATA #REQUIRED

>

4.5.5.18. index-descriptor

An index-descriptor describes an index by listing its columns. It may be unique or not.

<!ELEMENT index-descriptor (documentation?, index-column+)>

<!ATTLIST index-descriptor

OJB Documentation

Page 77
Copyright © All rights reserved.

error:#site:advanced-technique/query-customizer
error:#site:advanced-technique/query-customizer

name CDATA #REQUIRED
unique (true | false) "false">

4.5.5.19. index-column

An index-column is just the name of a column in an index.

<!ELEMENT index-column (documentation?)>

<!ATTLIST index-column
name CDATA #REQUIRED>

4.5.5.20. Stored Procedure Support

OJB supports stored procedures for insert, update and delete operations. How to use stored procedures within OJB can be
found here.

insert-procedure

Identifies the procedure/function that should be used to handle insertions for a specific class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT insert-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include a return value, then do not specify a value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor are to be passed to the
procedure/ function. If include-all-fields is 'true', any nested 'argument' elements will be ignored. In this case, values for all
field-descriptors will be passed to the procedure/function. The order of values that are passed to the procedure/function will
match the order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then values will be
passed to the procedure/function based on the information in the nested 'argument' elements.

<!ATTLIST insert-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-all-fields (true | false) "false"

>

update-procedure

Identifies the procedure/function that should be used to handle updates for a specific class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT update-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include a return value, then do not specify a value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor are to be passed to the

OJB Documentation

Page 78
Copyright © All rights reserved.

error:#site:stored-procedures
error:#site:stored-procedures

procedure/ function. If include-all-fields is 'true', any nested 'argument' elements will be ignored. In this case, values for all
field-descriptors will be passed to the procedure/function. The order of values that are passed to the procedure/function will
match the order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then values will be
passed to the procedure/function based on the information in the nested 'argument' elements.

<!ATTLIST update-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-all-fields (true | false) "false"

>

delete-procedure

Identifies the procedure/function that should be used to handle deletions for a specific class-descriptor.

The nested runtime-argument and constant-argument elements define the argument list for the procedure/function as well as
the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT delete-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include a return value, then do not specify a value for this attribute.

The include-pk-only attribute indicates if all field-descriptors in the corresponding class-descriptor that are identified as being
part of the primary key are to be passed to the procedure/function. If include-pk-only is 'true', any nested 'argument' elements
will be ignored. In this case, values for all field-descriptors that are identified as being part of the primary key will be passed to
the procedure/function. The order of values that are passed to the procedure/function will match the order of field-descriptors
on the corresponding class-descriptor. If include-pk-only is false, then values will be passed to the procedure/ function based
on the information in the nested 'argument' elements.

<!ATTLIST delete-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-pk-only (true | false) "false"

>

runtime-argument

Defines an argument that is passed to a procedure/function. Each argument will be set to a value from a field-descriptor or null.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT runtime-argument
(documentation?, attribute*)>

The field-ref attribute identifies the field-descriptor in the corresponding class-descriptor that provides the value for this
argument. If this attribute is unspecified, then this argument will be set to null.

<!ATTLIST runtime-argument
field-ref CDATA #IMPLIED
return (true | false) "false"

>

constant-argument

Defines a constant value that is passed to a procedure/function.

OJB Documentation

Page 79
Copyright © All rights reserved.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT constant-argument
(documentation?, attribute*)>

The value attribute identifies the value that is passed to the procedure/ function.

<!ATTLIST constant-argument
value CDATA #REQUIRED

>

4.5.6. Basic Technique

4.5.6.1. Mapping 1:1 associations

As a sample for a simple association we take the reference from an article to its productgroup.
This association is navigable only from the article to its productgroup. Both classes are modelled in the following class
diagram. This diagram does not show methods, as only attributes are relevant for the O/R mapping process.

1:1 association

The association is implemented by the attribute productGroup. To automatically maintain this reference OJB relies on
foreignkey attributes. The foreign key containing the groupId of the referenced productgroup is stored in the attribute
productGroupId. To avoid FK attribute in persistent object class see section about anonymous keys.

This is the DDL of the underlying tables:

CREATE TABLE Artikel
(

Artikel_Nr INT NOT NULL PRIMARY KEY,
Artikelname VARCHAR(60),
Lieferanten_Nr INT,
Kategorie_Nr INT,
Liefereinheit VARCHAR(30),
Einzelpreis FLOAT,
Lagerbestand INT,
BestellteEinheiten INT,
MindestBestand INT,
Auslaufartikel INT

)

CREATE TABLE Kategorien
(

Kategorie_Nr INT NOT NULL PRIMARY KEY,
KategorieName VARCHAR(20),
Beschreibung VARCHAR(60)

)

To declare the foreign key mechanics of this reference attribute we have to add a reference-descriptor to the class-descriptor of

OJB Documentation

Page 80
Copyright © All rights reserved.

error:#site:advanced-technique/anonymous-keys

the Article class. This descriptor contains the following information:

• The attribute implementing the association (name="productGroup") is productGroup.
• The referenced object is of type (class-ref="org.apache.ojb.broker.ProductGroup")

org.apache.ojb.broker.ProductGroup.
• A reference-descriptor contains one or more foreignkey elements. These elements define foreign key attributes. The

element

<foreignkey field-ref="productGroupId"/>
contains the name of the field-descriptor describing the foreignkey fields. The FieldDescriptor with the name
"productGroupId" describes the foreignkey attribute productGroupId:

<field-descriptor
name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>

See the following extract from the repository.xml file containing the Article ClassDescriptor:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
...

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>
</class-descriptor>

This example provides unidirectional navigation only. Bidirectional navigation may be added by including a reference from a
ProductGroup to a single Article (for example, a sample article for the productgroup). To accomplish this we need to perform
the following steps:

1. Add a private Article attribute named sampleArticle to the class ProductGroup.
2. Add a private int attribute named sampleArticleId to the ProductGroup class representing the foreign key. To avoid

OJB Documentation

Page 81
Copyright © All rights reserved.

FK attribute in persistent object class see section about anonymous keys.
3. Add a column SAMPLE_ARTICLE_ID INT to the table Kategorien.
4. Add a FieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class ProductGroup:

<field-descriptor
name="sampleArticleId"
column="SAMPLE_ARTICLE_ID"
jdbc-type="INTEGER"

/>
1. Add a ReferenceDescriptor to the ClassDescriptor of the Class ProductGroup:

<reference-descriptor
name="sampleArticle"
class-ref="org.apache.ojb.broker.Article"

>
<foreignkey field-ref="sampleArticleId""/>

</reference-descriptor>

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

1:1 auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with PersistenceBroker.store(...), the referenced object will
NOT be updated by default.The reference will not be inserted or updated, the link to the reference (foreign key value to the
reference) on the main object will not be assigned automatically. The user has to link the main object and to store the
reference before the main object to avoid violation of referential integrity.

• link On updating or inserting of the main object with PersistenceBroker.store(...), the FK assignment on the
main object was done automatic. OJB reads the PK from the referenced object and sets these values as FK in main object.
But the referenced object remains untouched. If no referenced object is found, the FK will be nullified. (On insert it is
allowed to set the FK without populating the referenced object)

• object On updating or inserting of the main object with PersistenceBroker.store(...), the referenced object
will be stored first, then OJB does the same as in link.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced object will NOT be touched.
• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the referenced object will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

4.5.6.2. Mapping 1:n associations

We will take a different perspective from the previous exmaple for a 1:n association. We will associate multiple Articles with a
single ProductGroup. This association is navigable only from the ProductGroup to its Article instances. Both classes are
modelled in the following class diagram. This diagram does not show methods, as only attributes are relevant for the O/R
mapping process.

OJB Documentation

Page 82
Copyright © All rights reserved.

error:#site:advanced-technique/anonymous-keys
error:#site:faq/primitive-null

1:n association

The association is implemented by the Vector attribute allArticlesInGroup on the ProductGroup class. As in the
previous example, the Article class contains a foreignkey attribute named productGroupId that identifies an Article's
ProductGroup. The Database table are the same as above.

To declare the foreign key mechanics of this collection attribute we must add a CollectionDescriptor to the ClassDescriptor of
the ProductGoup class. This descriptor contains the following information:

1. The attribute implementing the association (name="allArticlesInGroup")
2. The class of the elements in the collection (element-class-ref="org.apache.ojb.broker.Article")
3. The name of field-descriptor of the element class used as foreign key attributes are defined in inverse-foreignkey elements:

<inverse-foreignkey field-ref="productGroupId"/>
This is again pointing to the field-descriptor for the attribute productGoupId in class Article.

4. optional attributes to define the sort order of the retrieved collection: orderby="articleId" sort="DESC".

See the following extract from the repository.xml file containing the ProductGoup ClassDescriptor:

<!-- Definitions for org.apache.ojb.broker.ProductGroup -->
<class-descriptor

class="org.apache.ojb.broker.ProductGroup"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="groupName"
column="KategorieName"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="Beschreibung"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
orderby="articleId"
sort="DESC"

>
<inverse-foreignkey field-ref="productGroupId"/>

</collection-descriptor>
</class-descriptor>

OJB Documentation

Page 83
Copyright © All rights reserved.

With the mapping shown above OJB has two possibilities to load the Articles belonging to a ProductGroup:

1. loading all Articles of the ProductGroup immediately after loading the ProductGroup. This is done with two SQL-calls:
one for the ProductGroup and one for all Articles.

2. if Article is a proxy (using proxy classes), OJB will only load the keys of the Articles after the ProductGroup. When
accessing an Article-proxy OJB will have to materialize it with another SQL-Call. Loading the ProductGroup and all it's
Articles will thus produce n+2 SQL-calls: one for the ProductGroup, one for keys of the Articles and one for each Article.

Both approaches have their benefits and drawbacks:

• A. is suitable for a small number of related objects that are easily instantiated. It's efficient regarding DB-calls. The major
drawback is the amount of data loaded. For example to show a list of ProductGroups the Articles may not be needed.

• B. is best used for a large number of related heavy objects. This solution loads the objects when they are needed ("lazy
loading"). The price to pay is a DB-call for each object.

Further down a third solution using a single proxy for a whole collection will be presented to circumvent the described
drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the used type automatically, so
there is no need to declare it in the repository file. But in some cases the default behaviour of OJB is undesired. Please read
here for more information.

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

1:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with PersistenceBroker.store(...), the referenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, the referenced objects will not be linked
(foreign key assignment on referenced objects) to the main object automatically. The user has to link and to store the
referenced objects after storing the main object to avoid violation of referential integrity.

• link On updating or inserting of the main object with PersistenceBroker.store(...), the referenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, but the referenced objects will be linked
automatically (FK assignment) the main object.

• object On updating or inserting of the main object with PersistenceBroker.store(...), the referenced objects
will be linked and stored automatically.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced objects are NOT touched. This
may lead to violation of referential integrity if the referenced objects are childs of the main object. In this case the
referenced objects have to be deleted manually first.

• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the referenced objects will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

4.5.6.3. Mapping m:n associations

OJB Documentation

Page 84
Copyright © All rights reserved.

error:#site:advanced-technique/which-collection-type
error:#site:advanced-technique/which-collection-type
error:#site:faq/primitive-null

OJB provides support for manually decomposed m:n associations as well as an automated support for non decomposed m:n
associations.

Manual decomposition into two 1:n associations

Have a look at the following class diagram:

m:n association
We see a two classes with a m:n association. A Person can work for an arbitrary number of Projects. A Project may have any
number of Persons associated to it.
Relational databases don't support m:n associations. They require to perform a manual decomposition by means of an
intermediary table. The DDL looks like follows:

CREATE TABLE PERSON (
ID INT NOT NULL PRIMARY KEY,
FIRSTNAME VARCHAR(50),
LASTNAME VARCHAR(50)

);

CREATE TABLE PROJECT (
ID INT NOT NULL PRIMARY KEY,
TITLE VARCHAR(50),
DESCRIPTION VARCHAR(250)

);

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

This intermediary table allows to decompose the m:n association into two 1:n associations. The intermediary table may also
hold additional information. For example, the role a certain person plays for a project:

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
ROLENAME VARCHAR(20),
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

The decomposition is mandatory on the ER model level. On the object model level it is not mandatory, but may be a valid
solution. It is mandatory on the object level if the association is qualified (as in our example with a rolename). This will result
in the introduction of a association class. A class-diagram reflecting this decomposition looks like:

m:n association

OJB Documentation

Page 85
Copyright © All rights reserved.

A Person object has a Collection attribute roles containing Role entries. A Project has a Collection attribute roles
containing Role entries. A Role has reference attributes to its Person and to its Project.
Handling of 1:n mapping has been explained above. Thus we will finish this section with a short look at the repository entries
for the classes org.apache.ojb.broker.Person, org.apache.ojb.broker.Project and
org.apache.ojb.broker.Role:

<!-- Definitions for org.apache.ojb.broker.Person -->
<class-descriptor

class="org.apache.ojb.broker.Person"
table="PERSON"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="person_id"/>

</collection-descriptor>
...

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->
<class-descriptor

class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"
column="TITLE"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="project_id"/>

</collection-descriptor>
...

OJB Documentation

Page 86
Copyright © All rights reserved.

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Role -->
<class-descriptor

class="org.apache.ojb.broker.Role"
table="PERSON_PROJECT"

>
<field-descriptor

name="person_id"
column="PERSON_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="project_id"
column="PROJECT_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="roleName"
column="ROLENAME"
jdbc-type="VARCHAR"

/>
<reference-descriptor

name="person"
class-ref="org.apache.ojb.broker.Person"

>
<foreignkey field-ref="person_id"/>

</reference-descriptor>
<reference-descriptor

name="project"
class-ref="org.apache.ojb.broker.Project"

>
<foreignkey field-ref="project_id"/>

</reference-descriptor>
</class-descriptor>

Support for Non-Decomposed m:n Mappings

If there is no need for an association class at the object level (we are not interested in role information), OJB can be configured
to do the m:n mapping transparently. For example, a Person does not have a collection of Role objects but only a Collection
of Project objects (held in the attribute projects). Projects also are expected to contain a collection of Person objects
(hold in attribute persons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection attributes projects and roles
need additional information on the intermediary table and the foreign key columns pointing to the PERSON table and the
foreign key columns pointing to the PROJECT table:

Note:
OJB supports a multiplicity of collection implementations, inter alia org.apache.ojb.broker.util.collections.RemovalAwareCollection and
org.apache.ojb.broker.util.collections.RemovalAwareList. By default the removal aware collections were used. This cause problems in m:n relations
when auto-update="true" or "object" and auto-delete="false" or "none" is set, because objects deleted in the collection will be deleted on update of
main object. Thus it is recommended to use a NOT removal aware collection class in m:n relations using the collection-class attribute.

Example for setting a collection class in the collection-descriptor:

collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

An full example for a non-decomposed m:n relation looks like:

<class-descriptor
class="org.apache.ojb.broker.Person"
table="PERSON"

OJB Documentation

Page 87
Copyright © All rights reserved.

error:#site:advanced-technique/manageable-collection
error:#site:repository/collection-descriptor

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
...
<collection-descriptor

name="projects"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"
element-class-ref="org.apache.ojb.broker.Project"
auto-retrieve="true"
auto-update="true"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PERSON_ID"/>
<fk-pointing-to-element-class column="PROJECT_ID"/>

</collection-descriptor>
</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->
<class-descriptor
class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"
column="TITLE"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

/>
...
<collection-descriptor

name="persons"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"
element-class-ref="org.apache.ojb.broker.Person"
auto-retrieve="true"
auto-update="false"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PROJECT_ID"/>
<fk-pointing-to-element-class column="PERSON_ID"/>

</collection-descriptor>
</class-descriptor>

That is all that needs to be configured! See the code in class org.apache.ojb.broker.MtoNMapping for JUnit

OJB Documentation

Page 88
Copyright © All rights reserved.

testmethods using the classes Person, Project and Role.

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

m:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with PersistenceBroker.store(...), the referenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, the referenced objects will not be linked
(creation of FK entries in the indirection table) automatically. The user has to store the main object, the referenced objects
and to link the m:n relation after storing of all objects. establishing the m:n relationship before storing main and referenced
objects may violate referential integrity.

• link On updating or inserting of the main object with PersistenceBroker.store(...), the referenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, but the m:n relation will be linked
automatically (creation of FK entries in the indirection table).

Note:
Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid violation of referential integrity.

• object On updating or inserting of the main object with PersistenceBroker.store(...), the referenced objects
will be linked and stored automatically.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced objects are NOT touched. The
corresponding entries of the main object in the indirection table will not be removed. This may lead to violation of
referential integrity depending on the definition of the indirection table.

• link On deleting an object with PersistenceBroker.delete(...) the m:n relation will be unlinked (all entries of
the main object in the indirection table will be removed).

• object On deleting an object with PersistenceBroker.delete(...) all referenced objects will be deleted too.
• false Is equivalent to link.
• true Is equivalent to object.

4.5.6.4. Setting Load, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object references in Java terminology)
by declaring special Reference and Collection Descriptors. These Descriptor may contain some additional information that
modifies OJB's behaviour on object materialization, updating and deletion.
The behaviour depends on specific attributes

• auto-retrieve - possible settings are false, true. If not specified in the descriptor the default value is true
• auto-update - possible settings are none, link, object and deprecated [false, true]. If not specified in the descriptor the

default value is false
• auto-delete - possible settings are none, link, object and deprecated [false, true]. If not specified in the descriptor the

default value is false

Note:

OJB Documentation

Page 89
Copyright © All rights reserved.

error:#site:faq/primitive-null

When using a top-level api (ODMG, OTM, JDO) it is mandatory to use the default auto-XXX settings (or don't specify the attributes) for proper work.
This may change in future.

The attribute auto-update and auto-delete are described in detail in the corresponding sections for 1:1, 1:n and m:n references.
The auto-retrieve setting is described below:

auto-retrieve setting

The auto-retrieve attribute used in reference-descriptor or collection-descriptor elements handles
the loading behaviour of references (1:1, 1:n and m:n):

• false If set false the referenced objects will not be materialized on object materialization. The user has to materialize the
n-side objects (or single object for 1:1) by hand using one of the following service methods of the
PersistenceBroker class:

PersistenceBroker.retrieveReference(Object obj, String attributeName);
// or
PersistenceBroker.retrieveAllReferences(Object obj);
The first method load only the specified reference, the second one loads all references declared for the given object.

Note:
Be careful when using "opposite" settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT auto-update="object" (or "true" or "link").
Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with an nullified reference enty in main object, because
OJB doesn't find the referenced object on update and assume the reference was removed.

• true If set true the referenced objects (single reference or all n-side objects) will be automatic loaded by OJB when the
main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized immmediately, but lazy loading proxy objects
are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are configured to use cascading retrieval (
auto-retrieve="true"), cascading insert/update (auto-update="object" or auto-update="true") and
cascading delete (auto-delete="object" or auto-delete="true") operations:

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"
auto-retrieve="true"
auto-update="object"
auto-delete="object"
>
<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
auto-retrieve="true"
auto-update="object"
auto-delete="object"
orderby="articleId"
sort="DESC"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

Link references

If in reference-descriptor or collection-descriptor the auto-update or auto-delete attributes are set to none,
OJB does not touch the referenced objects on insert, update or delete operations of the main object. The user has to take care of

OJB Documentation

Page 90
Copyright © All rights reserved.

the correct handling of referenced objects. When using referential integrity (who does not ?) it's essential that insert and delete
operations are done in the correct sequence.

One important thing is assignment of the FK values. The assign of the FK values is transcribed with link references in OJB. In
1:1 references the main object has a FK to the referenced object, in 1:n references the referenced objects have FK pointing to
the main object and in non-decomposed m:n relations a indirection table containing FK values from both sides of the
relationship is used.

OJB provides some helper methods for linking references manually (assignment of the FK) in
org.apache.ojb.broker.util.BrokerHelper class.

public void link(Object obj, boolean insert)
public void unlink(Object obj)
public boolean link(Object obj, String attributeName, boolean insert)
public boolean unlink(Object obj, String attributeName)

These methods are accessible via org.apache.ojb.broker.PersistenceBroker:

BrokerHelper bh = broker.serviceBrokerHelper();

Note:
The link/unlink methods are only useful if you set auto-update/-delete to none. In all other cases OJB handles the link/unlink of references internally. It is also possible to set all
FK values by hand without using the link/unlink service methods.

Examples
Now we prepared for some example. Say class Movie has an m:n reference with class Actor and we want to store an Movie
object with a list of Actor objects. The auto-update setting of collection-descriptor for Movie is none:

broker.beginTransaction();
// store main object first
broker.store(movie);
//now we store the right-side objects
Iterator it = movie.getActors().iterator();
while(it.hasNext())
{

Object actor = it.next();
broker.store(actor);

}
// now both side exist and we can link the references
broker.serviceBrokerHelper().link(movie, "actors", true);
/*
alternative call
broker.serviceBrokerHelper().link(movie, true);
*/
broker.commitTransaction();

First store the main object and the references, then use broker.serviceBrokerHelper().link(movie,
"actors", true) to link the main object with the references. In case of a m:n relation linking create all FK entries in the
indirection table.

In the next examples we want to manually delete a Project object with a 1:n relation to class SubProject. In the
example, the Project object has load all SubProject objects and we want to delete the Project but don't want to delete the
referenced SubProjects too (don't ask if this make sense ;-)). SubProject has an FK to Project, so we first have to unlink the
reference from the main object to the references to avoid integrity constraint violation. Then we can delete the main object:

broker.beginTransaction();
// first unlink the n-side references
broker.serviceBrokerHelper().unlink(project, "subProjects");

// update the n-side references, store SubProjects with nullified FK
Iterator it = project.getSubProjects().iterator();

OJB Documentation

Page 91
Copyright © All rights reserved.

while(it.hasNext())
{

SubProject subProject = (SubProject) it.next();
broker.store(subProject);

}

// now delete the main object
broker.delete(project);
broker.commitTransaction();

4.5.6.5. Using Proxy Classes

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes can help you in reducing
unneccessary database lookups.
There are two kind of proxy mechanisms available:

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain switches in repository.xml. This is the
solution recommemded for most cases.

2. User defined proxies. User defined proxies allow the user to write proxy implementations.

As it is important to understand the mechanics of the proxy mechanism I highly recommend to read this section before turning
to the next sections "using dynamic proxies", "using a single proxy for a whole collection" and "using a proxy for a reference",
covering dynamic proxies.

As a simple example we take a ProductGroup object pg which contains a collection of fifteen Article objects. Now we
examine what happens when the ProductGroup is loaded from the database:

Without using proxies all fifteen associated Article objects are immediately loaded from the db, even if you are not interested
in them and just want to lookup the description-attribute of the ProductGroup object.

If proxies are used, the collection is filled with fifteen proxy objects, that implement the same interface as the "real objects" but
contain only an OID and a void reference. The fifteen article objects are not instantiated when the ProductGroup is initially
materialized. Only when a method is invoked on such a proxy object will it load its "real subject" and delegate the method call
to it. Using this dynamic delegation mechanism instantiation of persistent objects and database lookups can be minimized.

To use proxies, the persistent class in question (in our case the Article class) must implement an interface (for example
InterfaceArticle). This interface is needed to allow replacement of the proper Article object with a proxy implementing the
same interface. Have a look at the code:

public class Article implements InterfaceArticle
{

/** maps to db-column "Artikel-Nr"; PrimaryKey*/
protected int articleId;
/** maps to db-column "Artikelname"*/
protected String articleName;
...

public int getArticleId()
{

return articleId;
}

public java.lang.String getArticleName()
{

return articleName;
}
...

}

public interface InterfaceArticle
{

public int getArticleId();

OJB Documentation

Page 92
Copyright © All rights reserved.

public java.lang.String getArticleName();
...

}

public class ArticleProxy extends VirtualProxy implements InterfaceArticle
{

public ArticleProxy(ojb.broker.Identity uniqueId, PersistenceBroker broker)
{

super(uniqueId, broker);
}

public int getArticleId()
{

return realSubject().getArticleId();
}

public java.lang.String getArticleName()
{

return realSubject().getArticleName();
}

private InterfaceArticle realSubject()
{

try
{

return (InterfaceArticle) getRealSubject();
}
catch (Exception e)
{

return null;
}

}
}

The proxy is constructed from the identity of the real subject. All method calls are delegated to the object returned by
realSubject().
This method uses getRealSubject() from the base class VirtualProxy:

public Object getRealSubject() throws PersistenceBrokerException
{

return indirectionHandler.getRealSubject();
}

The proxy delegates the the materialization work to its IndirectionHandler. If the real subject has not yet been
materialized, a PersistenceBroker is used to retrieve it by its OID:

public synchronized Object getRealSubject()
throws PersistenceBrokerException

{
if (realSubject == null)
{

materializeSubject();
}
return realSubject;

}

private void materializeSubject()
throws PersistenceBrokerException

{
realSubject = broker.getObjectByIdentity(id);

}

To tell OJB to use proxy objects instead of materializing full Article objects we have to add the following section to the XML
repository file:

<class-descriptor

OJB Documentation

Page 93
Copyright © All rights reserved.

class="org.apache.ojb.broker.Article"
proxy="org.apache.ojb.broker.ArticleProxy"
table="Artikel"

>
...

The following class diagram shows the relationships between all above mentioned classes:

proxy image

Using Dynamic Proxies

The implementation of a proxy class is a boring task that repeats the same delegation scheme for each new class. To liberate
the developer from this unproductive job OJB provides a dynamic proxy solution based on the JDK 1.3 dynamic proxy
concept. (For JDK1.2 we ship a replacement for the required java.lang.reflect classes. Credits for this solution to
ObjectMentor.) The basic idea of the dynamic proxy concept is to catch all method invocations on the not-yet materialized
(loaded from database) object. When a method is called on the object, Java directs this call to the invocation handler registered
for it (in OJB's case a class implementing the org.apache.ojb.broker.core.proxy.IndirectionHandler

OJB Documentation

Page 94
Copyright © All rights reserved.

interface). This handler then materializes the object from the database and replaces the proxy with the real object. By default
OJB uses the class org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl. If you are
interested in the mechanics have a look at this class.

To use a dynamic proxy for lazy materialization of Article objects we have to declare it in the repository.xml file.

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
...

Just as with normal proxies, the persistent class in question (in our case the Article class) must implement an interface (for
example InterfaceArticle) to be able to benefit from dynamic proxies.

Using a Single Proxy for a Whole Collection

A collection proxy represents a whole collection of objects, where as a proxy class represents a single object.
The advantage of this concept is a reduced number of db-calls compared to using proxy classes. A collection proxy only needs
a single db-call to materialize all it's objects. This happens the first time its content is accessed (ie: by calling iterator();). An
additional db-call is used to calculate the size of the collection if size() is called before loading the data. So collection proxy is
mainly used as a deferred execution of a query.

OJB uses three specific proxy classes for collections:

1. List proxies are specific java.util.List implementations that are used by OJB to replace lists. The default set proxy
class is org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl

2. Set proxies are specific java.util.Set implementations that are used by OJB to replace sets. The default set proxy
class is org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl

3. Collection proxies are collection classes implementing the more generic java.util.Collection interface and are
used if the collection is neither a list nor a set. The default collection proxy class is
org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl

Which of these proxy class is actually used, is determined by the collection-class setting of this collection. If none is
specified in the repository descriptor, or if the specified class does not implement java.util.List nor
java.util.Set, then the generic collection proxy is used.

The following mapping shows how to use a collection proxy for a relationship:

<!-- Definitions for
org.apache.ojb.broker.ProductGroupWithCollectionProxy -->
<class-descriptor
class="org.apache.ojb.broker.ProductGroupWithCollectionProxy"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"

/>
...
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
proxy="true"

>
<inverse-foreignkey field-ref="productGroupId"/>

</collection-descriptor>
</class-descriptor>

OJB Documentation

Page 95
Copyright © All rights reserved.

The classes participating in this relationship do not need to implement a special interface to be used in a collection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is not recommended because it
increases the number of database calls.

Using a Proxy for a Reference

A proxy reference is based on the original proxy class concept. The main difference is that the ReferenceDescriptor defines
when to use a proxy class and not the ClassDescriptor.
In the following mapping the class ProductGroup is not defined to be a proxy class in its ClassDescriptor. Only for shown
relationship a proxy of ProductGroup should be used:

<!-- Definitions for org.apache.ojb.broker.ArticleWithReferenceProxy -->
<class-descriptor

class="org.apache.ojb.broker.ArticleWithReferenceProxy"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

proxy="true"
>

<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

</class-descriptor>

Because a proxy reference is only about the location of the definition, the referenced class must implement a special interface
(see using proxy classes).

Customizing the proxy mechanism

Both the dynamic and the collection proxy mechanism can be customized by supplying a user-defined implementation.

For dynamic proxies you can provide your own invocation handler which implements the
org.apache.ojb.broker.core.proxy.IndirectionHandler interface. See OJB's default implementation
org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl for details on how to implement
such an invocation handler.

Each of the three collection proxy classes can be replaced by a user-defined class. The only requirement is that such a class
implements both the corresponding interface (java.util.Collection, java.util.List, or java.util.Set) as
well as the org.apache.ojb.broker.ManageableCollection interface.

Proxy implementations are configured in the ojb properties file. These are the relevant settings:

...
#--
IndirectionHandler
#--
The IndirectionHandlerClass entry defines the class to be used by OJB's proxies to
handle method invocations
#
IndirectionHandlerClass=org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl
#
#--

OJB Documentation

Page 96
Copyright © All rights reserved.

ListProxy
#--
The ListProxyClass entry defines the proxy class to be used for collections that
implement the java.util.List interface.
#
ListProxyClass=org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl
#
#--
SetProxy
#--
The SetProxyClass entry defines the proxy class to be used for collections that
implement the java.util.Set interface.
#
SetProxyClass=org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl
#
#--
CollectionProxy
#--
The CollectionProxyClass entry defines the proxy class to be used for collections that
do not implement java.util.List or java.util.Set.
#
CollectionProxyClass=org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl

...

4.5.6.6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes in your Domain objects. You need
a type and value mapping described by a FieldConversion!

4.5.7. Advanced Technique

4.5.7.1. Introduction

4.5.7.2. Extents and Polymorphism

Working with inheritance hierarchies is a common task in object oriented design and programming. Of course, any serious
Java O/R tool must support inheritance and interfaces for persistent classes. To demonstrate we will look at some of the JUnit
TestSuite classes.

There is a primary interface "InterfaceArticle". This interface is implemented by "Article" and "CdArticle". There is also a
class "BookArticle" derived from "Article". (See the following class diagram for details)

OJB Documentation

Page 97
Copyright © All rights reserved.

error:#site:jdbc-types

polymorphism.gif

Polymorphism

OJB allows us to use interfaces, abstract, or concrete base classes in queries, or in type definitions of reference attributes. A
Query against the interface InterfaceArticle must not only return objects of type Article but also of CdArticle
and BookArticle! The following test method searches for all objects implementing InterfaceArticle with an
articleName equal to "Hamlet". The Collection is filled with one matching BookArticle object.

public void testCollectionByQuery() throws Exception
{

Criteria crit = new Criteria();
crit.addEqualTo("articleName", "Hamlet");
Query q = QueryFactory.newQuery(InterfaceArticle.class, crit);

Collection result = broker.getCollectionByQuery(q);

System.out.println(result);

OJB Documentation

Page 98
Copyright © All rights reserved.

assertNotNull("should return at least one item", result);
assertTrue("should return at least one item", result.size() > 0);

}

Of course it is also possible to define reference attributes of an interface or baseclass type. In all above examples Article has a
reference attribute of type InterfaceProductGroup.

Extents

The query in the last example returned just one object. Now, imagine a query against the InterfaceArticle interface with no
selecting criteria. OJB returns all the objects implementing InterfaceArticle. I.e. All Articles, BookArticles and CdArticles.
The following method prints out the collection of all InterfaceArticle objects:

public void testExtentByQuery() throws Exception
{

// no criteria signals to omit a WHERE clause
Query q = QueryFactory.newQuery(InterfaceArticle.class, null);
Collection result = broker.getCollectionByQuery(q);

System.out.println(
"OJB proudly presents: The InterfaceArticle Extent\n" +result);

assertNotNull("should return at least one item", result);
assertTrue("should return at least one item", result.size() > 0);

}

The set of all instances of a class (whether living in memory or stored in a persistent medium) is called an Extent in ODMG
and JDO terminology. OJB extends this notion slightly, as all objects implementing a given interface are regarded as members
of the interface's extent.

In our class diagram we find:

1. two simple "one-class-only" extents, BookArticle and CdArticle.
2. A compound extent Article containing all Article and BookArticle instances.
3. An interface extent containing all Article, BookArticle and CdArticle instances.

There is no extra coding necessary to define extents, but they have to be declared in the repository file. The classes from the
above example require the following declarations:

1. "one-class-only" extents require no declaration
2. A declaration for the baseclass Article, defining which classes are subclasses of Article:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />

...
</class-descriptor>

1. A declaration for InterfaceArticle, defining which classes implement this interface:

<!-- Definitions for org.apache.ojb.broker.InterfaceArticle -->
<class-descriptor class="org.apache.ojb.broker.InterfaceArticle">

<extent-class class-ref="org.apache.ojb.broker.Article" />
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />

</class-descriptor>

Why is it necessary to explicitely declare which classes implement an interface and which classes are derived from a
baseclass? Of course it is quite simple in Java to check whether a class implements a given interface or extends some other
class. But sometimes it may not be appropiate to treat special implementors (e.g. proxies) as proper implementors.

OJB Documentation

Page 99
Copyright © All rights reserved.

Other problems might arise because a class may implement multiple interfaces, but is only allowed to be regarded as member
of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or as derived from a base even if
they are not.

As an example, you will find that the ClassDescriptor for class org.apache.ojb.broker.Article in the repository.xml contains an
entry declaring class CdArticle as a derived class:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
...

</class-descriptor>

4.5.7.3. Mapping Inheritance Hierarchies

In the literature on object/relational mapping the problem of mapping inheritance hierarchies to RDBMS has been widely
covered. Have a look at the following inheritance hierarchy:

inheritance-1.gif

If we have to define database tables that have to contain these classes we have to choose one of the following solutions:

1. Map all classes onto one table. A DDL for the table would look like:

CREATE TABLE A_EXTENT
(

ID INT NOT NULL PRIMARY KEY,
SOME_VALUE_FROM_A INT,
SOME_VALUE_FROM_B INT

)

2. Map each class to a distinct table and have all attributes from the base class in the derived class. DDL for the table could
look like:

CREATE TABLE A
(

ID INT NOT NULL PRIMARY KEY,

OJB Documentation

Page 100
Copyright © All rights reserved.

SOME_VALUE_FROM_A INT
)
CREATE TABLE B
(

ID INT NOT NULL PRIMARY KEY,
SOME_VALUE_FROM_A INT,
SOME_VALUE_FROM_B INT

)

3. Map each class to a distinct table, but do not map base class fields to derived classes. Use joins to materialize over all tables
to materialize objects. DDL for the table would look like:

CREATE TABLE A
(

ID INT NOT NULL PRIMARY KEY,
SOME_VALUE_FROM_A INT

)
CREATE TABLE B
(

A_ID INT NOT NULL,
SOME_VALUE_FROM_B INT

)

OJB provides direct support for all three approaches.

Note:
But it's currently not recommended to mix mapping strategies within the same hierarchy !

In the following we demonstrate how these mapping approaches can be implemented by using OJB.

Mapping All Classes on the Same Table

Mapping several classes on one table works well under OJB. There is only one special situation that needs some attention:

Say there is a baseclass AB with derived classes A and B. A and B are mapped on a table AB_TABLE. Storing A and B
objects to this table works fine. But now consider a Query against the baseclass AB. How can the correct type of the stored
objects be determined?

OJB needs a column of type CHAR or VARCHAR that contains the classname to be used for instantiation. This column must
be mapped on a special attribute ojbConcreteClass. On loading objects from the table OJB checks this attribute and
instantiates objects of this type.

Note:
The criterion for ojbConcreteClass is statically added to the query in class QueryFactory and it therefore appears in the select-statement for each extent. This means
that mixing mapping strategies should be avoided.

There is sample code for this feature in the method
org.apache.ojb.broker.PersistenceBrokerTest.testMappingToOneTable(). See the mapping details
in the following Class declaration and the respective mapping:

public abstract class AB
{

/** the special attribute telling OJB the object's concrete type.
* NOTE: this attribute MUST be called ojbConcreteClass
*/
protected String ojbConcreteClass;

}

public class A extends AB
{

OJB Documentation

Page 101
Copyright © All rights reserved.

int id;
int someValue;

public A()
{

// OJB must know the type of this object
ojbConcreteClass = A.class.getName();

}
}

<!-- Definitions for extent org.apache.ojb.broker.AB -->
<class-descriptor class="org.apache.ojb.broker.AB">

<extent-class class-ref="org.apache.ojb.broker.A" />
<extent-class class-ref="org.apache.ojb.broker.B" />

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.A -->
<class-descriptor

class="org.apache.ojb.broker.A"
table="AB_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="someValue"
column="VALUE_"
jdbc-type="INTEGER"

/>
</class-descriptor>

The column CLASS_NAME is used to store the concrete type of each object.

If you cannot provide such an additional column, but need to use some other means of indicating the type of each object you
will require some additional programming:

You have to derive a Class from org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl and
overridee the method RowReaderDefaultImpl.selectClassDescriptor() to implement your specific type
selection mechanism. The code of the default implementation looks like follows:

protected ClassDescriptor selectClassDescriptor(Map row)
throws PersistenceBrokerException

{
// check if there is an attribute which tells us
// which concrete class is to be instantiated
FieldDescriptor concreteClassFD =

m_cld.getFieldDescriptorByName(
ClassDescriptor.OJB_CONCRETE_CLASS);

if (concreteClassFD == null)
return m_cld;

else
{

try
{

String concreteClass = (String) row.get(
concreteClassFD.getColumnName());

if (concreteClass == null ||

OJB Documentation

Page 102
Copyright © All rights reserved.

concreteClass.trim().length() == 0)
{

throw new PersistenceBrokerException(
"ojbConcreteClass field returned null or 0-length string");

}
else
{

concreteClass = concreteClass.trim();
}
ClassDescriptor result = m_cld.getRepository().

getDescriptorFor(concreteClass);
if (result == null)
{

result = m_cld;
}
return result;

}
catch (PBFactoryException e)
{

throw new PersistenceBrokerException(e);
}

}
}

After implementing this class you must edit the ClassDescriptor for the respective class in the XML repository to specify the
usage of your RowReader Implementation:

<class-descriptor
class="my.Object"
table="MY_OBJECT"
...
row-reader="my.own.RowReaderImpl"
...

>
...

You will learn more about RowReaders in the next section.

Mapping Each Class to a Distinct Table

This is the most simple solution. Just write a complete ClassDescriptor for each class that contains FieldDescriptors for all of
the attributes, including inherited attributes.

Mapping Classes on Multiple Joined Tables

Here are the definitions for the classes A and B:

public class A
{

// primary key
int id;
// mapped to a column in A_TABLE
int someValueFromA;

}

public class B extends A
{

// id is primary key and serves also as foreign key referencing A.id
int id;
// mapped to a column in B_TABLE
int someValueFromB;

}

The next code block contains the class-descriptors for the the classes A and B.

<!-- Definitions for org.apache.ojb.broker.A -->

OJB Documentation

Page 103
Copyright © All rights reserved.

<class-descriptor
class="org.apache.ojb.broker.A"
table="A_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="someValueFromA"
column="VALUE_"
jdbc-type="INTEGER"

/>
</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>

<field-descriptor
name="someValueFromB"
column="VALUE_"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="org.apache.ojb.broker.A"
auto-retrieve="true"
auto-update="true"
auto-delete="true"

>
<foreignkey field-ref="id"/>

</reference-descriptor>
</class-descriptor>

As you can see from this mapping we need a special reference-descriptor that advises OJB to load the values for the inherited
attributes from class A by a JOIN using the (B.id == A.id) foreign key reference.

The name="super" is not used to address an actual attribute of the class B but as a marker keyword defining the JOIN to the
baseclass.

Auto-update must be true to force insertion of A when inserting B. So have to define a auto-update true setting for this
reference-descriptor! In most cases it's also useful to enable auto-delete.

Note:
Be aware that this sample does not declare org.apache.ojb.broker.B to be an extent of org.apache.ojb.broker.A. Using extents here will lead to problems
(instatiating the wrong class) because the primary key is not unique within the hiearchy defined in the repository.

Attributes from the super-class A can be used the same way as attributes of B when querying for B. No path-expression is
needed in this case:

Criteria c = new Criteria();
c.addEqualTo("someValueFromA", new Integer(1));
c.addEqualTo("someValueFromB", new Integer(2));

OJB Documentation

Page 104
Copyright © All rights reserved.

Query q = QueryFactory.newQuery(B.class, c);
broker.getCollectionByQuery(q);

The above example is based on the assumption that the primary key attribute B.id and its underlying column B_TABLE.ID
is also used as the foreign key attribute.

Now let us consider a case where B_TABLE contains an additional foreign key column B_TABLE.A_ID referencing
A_TABLE.ID. In this case the layout for class B could look like follows:

public class B extends A
{

// id is the primary key
int id;

// aID is the foreign key referencing A.id
int aID;

// mapped to a column in B_TABLE
int someValueFromB;

}

The mapping for B will then look like follows:

<class-descriptor
class="org.apache.ojb.broker.B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>

<field-descriptor
name="aID"
column="A_ID"
jdbc-type="INTEGER"

/>

<field-descriptor
name="someValueFromB"
column="VALUE_"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="org.apache.ojb.broker.A">

<foreignkey field-ref="aID" />
</reference-descriptor>

</class-descriptor>

The mapping now contains an additional field-descriptor for the aID attribute.

In the "super" reference-descriptor the foreignkey field-ref attribute had to be changed to "aID".

It is also possible to have the extra foreign key column B_TABLE.A_ID but without having a foreign key attribute in class B:

public class B extends A
{

// id is the primary key
int id;

// mapped to a column in B_TABLE
int someValueFromB;

}

OJB Documentation

Page 105
Copyright © All rights reserved.

We can use OJB's anonymous field feature to get everything working without the "aID" attribute. We keep the
field-descriptor for aID, but declare it as an anonymous field. We just have to add an attribute access="anonymous" to
the field-descriptor:

<class-descriptor
class="org.apache.ojb.broker.B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>

<field-descriptor
name="aID"
column="A_ID"
jdbc-type="INTEGER"
access="anonymous"

/>

<field-descriptor
name="someValueFromB"
column="VALUE_"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="org.apache.ojb.broker.A">

<foreignkey field-ref="aID" />
</reference-descriptor>

</class-descriptor>

You can learn more about the anonymous fields feature in this howto and how it work here.

4.5.7.4. Using interfaces with OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete classes. With OJB this is no
problem, but there are a couple of things to be aware of, which are detailed in this section.

Consider this example hierarchy :

public interface A
{

String getDesc();
}

public class B implements A
{

/** primary key */
private Integer id;
/** sample attribute */
private String desc;

public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;
}

OJB Documentation

Page 106
Copyright © All rights reserved.

error:#site:howto/anonymous-keys

}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

Here, class C references the interface A rather than B. In order to make this work with OJB, four things must be done:

• All features common to all implementations of A are declared in the class descriptor of A. This includes references (with
their foreignkeys) and collections.

• Since interfaces cannot have instance fields, it is necessary to use bean properties instead. This means that for every field
(including collection fields), there must be accessors (a get method and, if the field is not marked as
access="readonly", a set method) declared in the interface.

• Since we're using bean properties, the appropriate
org.apache.ojb.broker.metadata.fieldaccess.PersistentField implementation must be used (see
below). This class is used by OJB to access the fields when storing/loading objects. Per default, OJB uses a direct access
implementation
(org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectAccessImpl) which
requires actual fields to be present.
In our case, we need an implementation that rather uses the accessor methods. Since the PersistentField setting is
(currently) global, you have to check whether there are accessors defined for every field in the metadata. If yes, then you
can use the org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl,
otherwise you'll have to resort to the
org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl, which
determines for every field what type of field it is and then uses the appropriate strategy.

• If at some place OJB has to create an object of the interface, say as the result type of a query, then you have to specify
factory-class and factory-method for the interface. OJB then uses the specified class and (static) method to
create an uninitialized instance of the interface.

In our example, this would result in:

public interface A
{

void setId(Integer id);
Integer getId();
void setDesc(String desc);
String getDesc();

}

public class B implements A
{

/** primary key */
private Integer id;
/** sample attribute */
private String desc;

public String getId()
{

return id;
}
public void setId(Integer id)
{

OJB Documentation

Page 107
Copyright © All rights reserved.

this.id = id;
}
public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;
}

}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

public class AFactory
{

public static A createA()
{

return new B();
}

}

The class descriptors would look like:

<class-descriptor
class="A"
table="A_TABLE"
factory-class="AFactory"
factory-method="createA"

>
<extent-class class-ref="B"/>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

<class-descriptor
class="B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

OJB Documentation

Page 108
Copyright © All rights reserved.

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="aId"
column="A_ID"
jdbc-type="INTEGER"

/>
<reference-descriptor name="obj"

class-ref="A">
<foreignkey field-ref="aId" />

</reference-descriptor>
</class-descriptor>

One scenario where you might run into problems is the use of interfaces for nested objects. In the above example, we could
construct such a scenario if we remove the descriptors for A and B, as well as the foreign key field aId from class C and
change its class descriptor to:

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="obj::desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

The access to desc will work because of the usage of bean properties, but you will get into trouble when using dynamic
proxies for C. Upon materializing an object of type C, OJB will try to create the instance for the field obj which is of type A.
Of course, this is an interface but OJB won't check whether there is class descriptor for the type of obj (in fact there does not
have to be one, and usually there isn't) because obj is not defined as a reference. As a result, OJB tries to instantiate an
interface, which of course fails.
Currently, the only way to handle this is to write a custom invocation handler that knows how to create an object of type A.

4.5.7.5. Change PersistentField Class

OJB supports a pluggable strategy to read and set the persistent attributes in the persistence capable classes. All strategy
implementation classes have to implement the interface

OJB Documentation

Page 109
Copyright © All rights reserved.

error:#site:basic-technique/dynamic-proxy
error:#site:basic-technique/dynamic-proxy
error:#site:basic-technique/proxy-customization

org.apache.ojb.broker.metadata.fieldaccess.PersistentField. OJB provide a few implementation
classes which can be set in OJB.properties file:

The PersistentFieldClass property defines the implementation class
for PersistentField attributes used in the OJB MetaData layer.
By default the best performing attribute/refection based implementation
is selected (PersistentFieldDirectAccessImpl).
#
- PersistentFieldDirectAccessImpl
is a high-speed version of the access strategies.
It does not cooperate with an AccessController,
but accesses the fields directly. Persistent
attributes don't need getters and setters
and don't have to be declared public or protected
- PersistentFieldPrivilegedImpl
Same as above, but does cooperate with AccessController and do not
suppress the java language access check.
- PersistentFieldIntrospectorImpl
uses JavaBeans compliant calls only to access persistent attributes.
No Reflection is needed. But for each attribute xxx there must be
public getXxx() and setXxx() methods.
- PersistentFieldDynaBeanAccessImpl
implementation used to access a property from a
org.apache.commons.beanutils.DynaBean.
- PersistentFieldAutoProxyImpl
for each field determines upon first access how to access this particular field
(directly, as a bean, as a dyna bean) and then uses that strategy
#
PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectAccessImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldPrivilegedImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDynaBeanAccessImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl
#

E.g. if the PersistentFieldDirectAccessImpl is used there must be an attribute in the persistent class with this name, if the
PersistentFieldIntrospectorImpl is used there must be a JavaBeans compliant property of this name. More info about the
individual implementation can be found in javadoc.

4.5.7.6. How do anonymous keys work?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO section is detailed described how
to use anoymous keys.

All involved classes can be found in org.apache.ojb.broker.metadata.fieldaccess package. The classes used
for anonymous keys start with a AnonymousXYZ.java prefix.
Main class used for provide anonymous keys is
org.apache.ojb.broker.metadata.fieldaccess.AnonymousPersistentField. Current implementation
use an object identity based weak HashMap. The persistent object identity is used as key for the anonymous key value. The
(Anonymous)PersistentField instance is associated with the FieldDescriptor declared in the repository.

This means that all anonymous key information will be lost when the object identity change, e.g. the persistent object will be
de-/serialized or copied. In conjuction with 1:1 references this will be no problem, because OJB can use the referenced object
to re-create the anonymous key information (FK to referenced object).

Warning:
The use of anonymous keys in 1:n references (FK to main object) or for PK fields is only valid when object identity does not change, e.g. use in single JVM without persistent
object serialization and without persistent object copying.

4.5.7.7. Using Rowreader

OJB Documentation

Page 110
Copyright © All rights reserved.

error:#ext:ojb/ojb.properties
error:#ext:javadoc
error:#site:howto/anonymous-keys
error:#site:howto/anonymous-keys

RowReaders provide a callback mechanism that allows to interact with the OJB load mechanism. All implementation classes
have to implement interface RowReader.

You can specify the RowReader implementation in

• the OJB.properties file to set the standard used RowReader implementation

#---
RowReader
#---
Set the standard RowReader implementation. It is also possible to specify the
RowReader on class-descriptor level.
RowReaderDefaultClass=org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl
• within the class-descriptor to set the RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in OJB.properties file. If neither a
RowReader was set in OJB.properties file nor in class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To materialize objects from a rdbms
OJB uses RsIterators, that are essentially wrappers to JDBC ResultSets. RsIterators are constructed from queries against the
Database.

The method RsIterator.next() is used to materialize the next object from the underlying ResultSet. This method first
checks if the underlying ResultSet is not yet exhausted and then delegates the construction of an Object from the current
ResultSet row to the method getObjectFromResultSet():

protected Object getObjectFromResultSet() throws PersistenceBrokerException
{

if (getItemProxyClass() != null)
{

// provide m_row with primary key data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readPkValuesFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled with primary key values from db
return getProxyFromResultSet();

}
else
{

// 0. provide m_row with data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readObjectArrayFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled from db

// 1.read Identity
Identity oid = getIdentityFromResultSet();
Object result = null;

// 2. check if Object is in cache. if so return cached version.
result = getCache().lookup(oid);
if (result == null)
{

// 3. If Object is not in cache
// materialize Object with primitive attributes filled from
// current row
result = getQueryObject().getClassDescriptor()

.getRowReader().readObjectFrom(getRow());
// result may still be null!
if (result != null)
{

synchronized (result)
{

getCache().enableMaterializationCache();
getCache().cache(oid, result);
// fill reference and collection attributes
ClassDescriptor cld = getQueryObject().getClassDescriptor()

OJB Documentation

Page 111
Copyright © All rights reserved.

error:#ext:api/row-reader
error:#ext:ojb.properties
error:#site:repository/class-descriptor

.getRepository().getDescriptorFor(result.getClass());
// don't force loading of reference
final boolean unforced = false;
// Maps ReferenceDescriptors to HashSets of owners
getBroker().getReferenceBroker().retrieveReferences(result, cld, unforced);
getBroker().getReferenceBroker().retrieveCollections(result, cld, unforced);
getCache().disableMaterializationCache();

}
}

}
else // Object is in cache
{

ClassDescriptor cld = getQueryObject().getClassDescriptor()
.getRepository().getDescriptorFor(result.getClass());

// if refresh is required, update the cache instance from the db
if (cld.isAlwaysRefresh())
{

getQueryObject().getClassDescriptor()
.getRowReader().refreshObject(result, getRow());

}
getBroker().refreshRelationships(result, cld);

}
return result;

}
}

This method first uses a RowReader to instantiate a new object array and to fill it with primitive attributes from the current
ResultSet row.
The RowReader to be used for a Class can be configured in the XML repository with the attribute row-reader. If no
RowReader is specified, the standard RowReader is used. The method readObjectArrayFrom(...) of this class looks
like follows:

public void readObjectArrayFrom(ResultSet rs, ClassDescriptor cld, Map row)
{

try
{

Collection fields = cld.getRepository().
getFieldDescriptorsForMultiMappedTable(cld);

Iterator it = fields.iterator();
while (it.hasNext())
{

FieldDescriptor fmd = (FieldDescriptor) it.next();
FieldConversion conversion = fmd.getFieldConversion();
Object val = JdbcAccess.getObjectFromColumn(rs, fmd);
row.put(fmd.getColumnName() , conversion.sqlToJava(val));

}
}
catch (SQLException t)
{

throw new PersistenceBrokerException("Error reading from result set",t);
}

}

In the second step OJB checks if there is already a cached version of the object to materialize. If so the cached instance is
returned. If not, the object is fully materialized by first reading in primary attributes with the RowReader method
readObjectFrom(Map row, ClassDescriptor descriptor) and in a second step by retrieving reference- and
collection-attributes. The fully materilized Object is then returned.

public Object readObjectFrom(Map row, ClassDescriptor descriptor)
throws PersistenceBrokerException

{
// allow to select a specific classdescriptor
ClassDescriptor cld = selectClassDescriptor(row, descriptor);
return buildWithReflection(cld, row);

}

OJB Documentation

Page 112
Copyright © All rights reserved.

error:#site:repository/class-descriptor

By implementing your own RowReader you can hook into the OJB materialization process and provide additional features.

Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with a foreign key relationship to a different database
table but read the associated object 'inline' from some columns of the master object's table. This approach is also called 'nested
objects'. The section nested objects contains a different and much simpler approach to implement nested fields.

The class org.apache.ojb.broker.ArticleWithStockDetail has a stockDetail attribute, holding a
reference to a StockDetail object. The class StockDetail is not declared in the XML repository. Thus OJB is not able to fill
this attribute by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
org.apache.ojb.broker.RowReaderTestImpl extends the RowReaderDefaultImpl and overrides the
readObjectFrom(...) method as follows:

public Object readObjectFrom(Map row, ClassDescriptor cld)
{

Object result = super.readObjectFrom(row, cld);
if (result instanceof ArticleWithStockDetail)
{

ArticleWithStockDetail art = (ArticleWithStockDetail) result;
boolean sellout = art.isSelloutArticle;
int minimum = art.minimumStock;
int ordered = art.orderedUnits;
int stock = art.stock;
String unit = art.unit;
StockDetail detail = new StockDetail(sellout, minimum,

ordered, stock, unit, art);
art.stockDetail = detail;
return art;

}
else
{

return result;
}

}

To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail contains the following entry:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithStockDetail"
table="Artikel"
row-reader="org.apache.ojb.broker.RowReaderTestImpl"

>

4.5.7.8. Nested Objects

In the last section we discussed the usage of a user written RowReader to implement nested objects. This approach has several
disadvantages.

1. It is necessary to write code and to have some understanding of OJB internals.
2. The user must take care that all nested fields are written back to the database on store.

This section shows that nested objects can be implemented without writing code, and without any further trouble just by a few
settings in the repository.xml file.

The class org.apache.ojb.broker.ArticleWithNestedStockDetail has a stockDetail attribute, holding a
reference to a StockDetail object. The class StockDetail is not declared in the XML repository as a first class entity class.

public class ArticleWithNestedStockDetail implements java.io.Serializable
{

OJB Documentation

Page 113
Copyright © All rights reserved.

/**
* this attribute is not filled through a reference lookup
* but with the nested fields feature
*/
protected StockDetail stockDetail;

...
}

The StockDetail class has the following layout:

public class StockDetail implements java.io.Serializable
{

protected boolean isSelloutArticle;

protected int minimumStock;

protected int orderedUnits;

protected int stock;

protected String unit;

...
}

Only precondition to make things work is that StockDetail needs a default constructor.
The nested fields semantics can simply declared by the following class- descriptor:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithNestedStockDetail"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::unit"
column="Liefereinheit"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="price"
column="Einzelpreis"
jdbc-type="FLOAT"

/>
<field-descriptor

name="stockDetail::stock"
column="Lagerbestand"

OJB Documentation

Page 114
Copyright © All rights reserved.

jdbc-type="INTEGER"
/>
<field-descriptor

name="stockDetail::orderedUnits"
column="BestellteEinheiten"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::minimumStock"
column="MindestBestand"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::isSelloutArticle"
column="Auslaufartikel"
jdbc-type="INTEGER"
conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"

/>
</class-descriptor>

That's all! Just add nested fields by using :: to specify attributes of the nested object. All aspects of storing and retrieving the
nested object are managed by OJB.

4.5.7.9. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to implement an interface or extent a
persistent baseclass.

For certain situations it may be neccesary to allow persistent instances to interact with OJB. This is supported by a simple
instance callback mechanism.

The interface org.apache.ojb.PersistenceBrokerAware provides a set of methods that are invoked from the
PersistenceBroker during operations on persistent instances:

public interface PersistenceBrokerAware
{

/**
* this method is called as the first operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs insert.
*/
public void beforeInsert(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs insert.
*/
public void afterInsert(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the first operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs update.
*/
public void beforeUpdate(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.store(Object pbAwareObject), if
* the persistent object needs update.
*/
public void afterUpdate(PersistenceBroker broker)

OJB Documentation

Page 115
Copyright © All rights reserved.

throws PersistenceBrokerException;

/**
* this method is called as the first operation within a call to
* PersistenceBroker.delete(Object pbAwareObject).
*/
public void beforeDelete(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.delete(Object pbAwareObject).
*/
public void afterDelete(PersistenceBroker broker)

throws PersistenceBrokerException;

/**
* this method is called as the last operation within a call to
* PersistenceBroker.getObjectByXXX() or
* PersistenceBroker.getCollectionByXXX().
*/
public void afterLookup(PersistenceBroker broker)

throws PersistenceBrokerException;
}

If you want your persistent entity to perform certain operations after it has been stored by the PersistenceBroker you have to
perform the following steps:

1. let your persistent entity class implement the interface PersistenceBrokerAware.
2. provide empty implementations for all required mthods.
3. implement the method afterUpdate(PersistenceBroker broker) and

afterInsert(PersistenceBroker broker) to perform your intended logic.

In the following "for demonstration only code" you see a class DBAutoIncremented that does not use the OJB sequence
numbering (more info here), but relies on a database specific implementation of autoincremented primary key values.
When the broker is storing such an instance the DB assigns an autoincrement value to the primary key column mapped to the
attribute m_id. The afterStore(PersistenceBroker broker) instance callback is used to update the the attribute
m_id with this value.

public abstract class DBAutoIncremented
implements PersistenceBrokerAware

{
private static final String ID_ATTRIBUTE_NAME = "m_id";

public void afterDelete(PersistenceBroker broker)
{
}

public void afterLookup(PersistenceBroker broker)
{
}

public void afterUpdate(PersistenceBroker broker)
{
}

/**
* after storing a new instance reflect the
* autoincremented PK value
* back into the PK attribute.
*/
public void afterInsert(PersistenceBroker broker)
{

try
{

// remove object from cache to ensure we are retrieving a

OJB Documentation

Page 116
Copyright © All rights reserved.

error:#site:sequence-manager

// copy that is in sync with the database.
broker.removeFromCache(this);

Class clazz = getClass();
ClassDescriptor cld = broker.getClassDescriptor(clazz);
PersistentField idField = cld

.getFieldDescriptorByName(ID_ATTRIBUTE_NAME)

.getPersistentField();
// retrieve the object again with a query
// on all non-id attributes.
Object object =

broker.getObjectByQuery(
buildQueryOnAllNonIdAttributes(clazz, cld));

if (object == null)
{

throw new PersistenceBrokerException(
"cannot assign ID to "

+ this
+ " ("
+ clazz
+ ")"
+ " because lookup by attributes failed");

}

// set id attribute with the value
// assigned by the database.
idField.set(this, idField.get(object));

}
}

public void beforeDelete(PersistenceBroker broker)
{
}

public void beforeStore(PersistenceBroker broker)
{
}

/**
* returns a query that identifies an object by all its non-
* primary key attributes.
* NOTE: This method is only safe, if these values are unique!
*/
private Query buildQueryOnAllNonIdAttributes(

Class clazz,
ClassDescriptor cld)

{

// note: these are guaranteed to be in the same order
FieldDescriptor[] fields = cld.getFieldDescriptions();
Object[] values = cld.getAllValues(this);
Criteria crit = new Criteria();

for (int i = 0; i < fields.length; i++)
{

if (!fields[i].getAttributeName().
equals(ID_ATTRIBUTE_NAME))

{
if (values[i] == null)
{

crit.addIsNull(fields[i].getAttributeName());
}
else
{

crit.addEqualTo(fields[i].getAttributeName(),
values[i]);

}
}

OJB Documentation

Page 117
Copyright © All rights reserved.

}
return QueryFactory.newQuery(clazz, crit);

}
}

4.5.7.10. Manageable Collection

In 1:n or m:n relations, OJB can handle java.util.Collection as well as user defined collection classes as collection
attributes in persistent classes. See collection-descriptor.collection-class attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum protocol as defined by this
interface org.apache.ojb.broker.ManageableCollection.

public interface ManageableCollection extends java.io.Serializable
{

/**
* add a single Object to the Collection. This method is used during reading Collection elements
* from the database. Thus it is is save to cast anObject to the underlying element type of the
* collection.
*/
void ojbAdd(Object anObject);

/**
* adds a Collection to this collection. Used in reading Extents from the Database.
* Thus it is save to cast otherCollection to this.getClass().
*/
void ojbAddAll(ManageableCollection otherCollection);

/**
* returns an Iterator over all elements in the collection. Used during store and delete

Operations.
* If the implementor does not return an iterator over ALL elements, OJB cannot store and delete

all
* elements properly.
*/
Iterator ojbIterator();

/**
* A callback method to implement 'removal-aware' (track removed objects and delete
* them by its own) collection implementations.
*/
public void afterStore(PersistenceBroker broker) throws PersistenceBrokerException;

}

The methods have a prefix "ojb" that indicates that these methods are "technical" methods, required by OJB and not to be used
in business code.

In package org.apache.ojb.broker.util.collections can be found a bunch of pre-defined implementations of
org.apache.ojb.broker.ManageableCollection.

More info about which collection class to used here.

Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the used type automatically, so
there is no need to declare it in the repository file. There is also no additional programming required. The following types are
supported:

1. java.util.Collection, java.util.List, java.util.Vector as in the example above. Internally OJB
uses java.util.Vector to implement collections.

2. Arrays (see the file ProductGroupWithArray).
3. User-defined collections (see the file ProductGroupWithTypedCollection). A typical application for this

approach are typed Collections.

OJB Documentation

Page 118
Copyright © All rights reserved.

error:#site:basic-technique/one-to-n
error:#site:basic-technique/m-to-n
error:#site:repository/collection-descriptor

Here is some sample code from the Collection class ArticleCollection. This Collection is typed, i.e. it accepts only
InterfaceArticle objects for adding and will return InterfaceArticle objects with get(int index). To let OJB handle
such a user-defined Collection it must implement the callback interface ManageableCollection and the typed
collection class must be declared in the collection-descriptor using the collection-class attribute.
ManageableCollection provides hooks that are called by OJB during object materialization, updating and deletion.

public class ArticleCollection implements ManageableCollection,
java.io.Serializable

{
private Vector elements;

public ArticleCollection()
{

super();
elements = new Vector();

}

public void add(InterfaceArticle article)
{

elements.add(article);
}

public InterfaceArticle get(int index)
{

return (InterfaceArticle) elements.get(index);
}

/**
* add a single Object to the Collection. This method is
* used during reading Collection elements from the
* database. Thus it is is save to cast anObject
* to the underlying element type of the collection.
*/
public void ojbAdd(java.lang.Object anObject)
{

elements.add((InterfaceArticle) anObject);
}

/**
* adds a Collection to this collection. Used in reading
* Extents from the Database.
* Thus it is save to cast otherCollection to this.getClass().
*/
public void ojbAddAll(

ojb.broker.ManageableCollection otherCollection)
{

elements.addAll(
((ArticleCollection) otherCollection).elements);

}

/**
* returns an Iterator over all elements in the collection.
* Used during store and delete Operations.
*/
public java.util.Iterator ojbIterator()
{

return elements.iterator();
}

}

And the collection-descriptor have to declare this class:

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
collection-class="org.apache.ojb.broker.ArticleCollection"
auto-retrieve="true"

OJB Documentation

Page 119
Copyright © All rights reserved.

auto-update="false"
auto-delete="true"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

Which collection-class type should be used?

Earlier in this section the org.apache.ojb.broker.ManageableCollection was introduced. Now we talk about
which type to use.

By default OJB use a removal-aware collection implementation. These implementations (classes prefixed with Removal...)
track removal and addition of elements.
This tracking allow the PersistenceBroker to delete elements from the database that have been removed from the collection
before a PB.store() operation occurs.

This default behaviour is undesired in some cases:

• In m:n relations, e.g. between Movie and Actor class. If an Actor was removed from the Actor collection of a Movie object
expected behaviour was that the Actor be removed from the indirection table, but not the Actor itself. Using a removal
aware collection will remove the Actor too. In that case a simple manageable collection is recommended by set e.g.
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList" in
collection-descriptor.

• In 1:n relations when the n-side objects be removed from the collection of the main object, but we don't want to remove
them itself (be careful with this, because the FK entry of the main object still exists - more info about linking here).

4.5.7.11. Customizing collection queries

Customizing the query used for collection retrieval allows a developer to take full control of collection mechanism. For
example only children having a certain attribute should be loaded. This is achieved by a QueryCustomizer defined in the
collection-descriptor of a relationship:

<collection-descriptor
name="allArticlesInGroup"
...

>
<inverse-foreignkey field-ref="productGroupId"/>

<query-customizer
class="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl">

<attribute
attribute-name="attr1"
attribute-value="value1"

/>
</query-customizer>

</collection-descriptor>

The query customizer must implement the interface org.apache.ojb.broker.accesslayer.QueryCustomizer.
This interface defines the single method below which is used to customize (or completely rebuild) the query passed as
argument. The interpretation of attribute-name and attribute-value read from the collection-descriptor is up to your
implementation.

/**
* Return a new Query based on the original Query, the
* originator object and the additional Attributes
*
* @param anObject the originator object
* @param aBroker the PersistenceBroker
* @param aCod the CollectionDescriptor
* @param aQuery the original 1:n-Query
* @return Query the customized 1:n-Query

OJB Documentation

Page 120
Copyright © All rights reserved.

error:#site:basic-technique/m-to-n
error:#site:basic-technique/m-to-n
error:#site:basic-technique/one-to-n
error:#site:basic-technique/linking

*/
public Query customizeQuery(Object anObject,

PersistenceBroker aBroker,
CollectionDescriptor aCod, Query aQuery);

The class org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl provides a default
implentation without any functionality, it simply returns the query.

4.5.7.12. Metadata runtime changes

This was described in metadata section.

4.5.8. OJB Queries

4.5.8.1. Introduction

This tutorial describes the use of the different queries mechanisms. The sample code shown here is taken mainly from JUnit
test classes. The junit test source can be found under [db-ojb]/src/test in the source distribution.

4.5.8.2. Query by Criteria

In this section you will learn how to use the query by criteria. The classes are located in the package
org.apache.ojb.broker.query. Using query by criteria you can either query for whole objects (ie. person) or you can
use report queries returning row data.

A query consists mainly of the following parts:

1. the class of the objects to be retrieved
2. a list of criteria
3. a DISTINCT flag
4. additional ORDER BY and GROUP BY

OJB offers a QueryFactory to create a new Query. Although the constructors of the query classes are public using the
QueryFactory is the preferred way to create a new query.

Query q = QueryFactory.newQuery(Person.class, crit);

To create a DISTINCT-Query, simply add true as third parameter.

Query q = QueryFactory.newQuery(Person.class, crit, true);

Each criterion stands for a column in the SQL-WHERE-clause.

Criteria crit = new Criteria();
crit.addEqualTo("upper(firstname)", "TOM");
crit.addEqualTo("lastname", "hanks");
Query q = QueryFactory.newQuery(Person.class, crit);

This query will generate an SQL statement like this:

SELECT ... FROM PERSON WHERE upper(FIRSTNAME) = "TOM" AND LASTNAME = "hanks";

OJB supports functions in field criteria ie. upper(firstname). When converting a field name to a database column name, the
function is added to the generated sql. OJB does not and can not verify the correctness of the specified function, an illegal
function will produce an SqlException.

Query Criteria

OJB provides selection criteria for almost any SQL-comparator. In most cases you do not have to deal directly with the
implementing classes like EqualToCriteria. The Criteria class provides factory methods for the appropriate classes. There are

OJB Documentation

Page 121
Copyright © All rights reserved.

error:#site:metadata

four kinds of factory methods:

• create criteria to compare a field to a value: ie. addEqualTo("firstname", "tom");
• create criteria to compare a field to another field: ie. addEqualToField("firstname", "other_field");
• create criteria to check null value: ie. addIsNull("firstname");
• create a raw sql criteria: ie: addSql("REVERSE(name) like 're%'");

The following list shows some of the factory methods to compare a field to a value:

• addEqualTo
• addLike
• addGreaterOrEqualThan
• addGreaterThan
• addLike
• addBetween , this methods has two value parameters
• addIn , this method uses a Collection as value parameter
• and of course there negative forms

This list shows some factory methods to compare a field to another field, all those methods end on ...field:

• addEqualToField
• addGreaterThanField
• and of course there negative forms

in / not in

Some databases limit the number of parameters in an IN-statement.
If the limit is reached OJB will split up the IN-Statement into multiple Statements, the limit is set to 3 for the following
sample:

SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr IN (? , ? , ?)
OR A0.Kategorie_Nr IN (? , ?) ORDER BY 7 DESC

The IN-limit for prefetch can be defined in OJB.properties:

...
The SqlInLimit entry limits the number of values in IN-sql
statement, -1 for no limits. This hint is used in Criteria.
SqlInLimit=200
...

and / or

All selection criteria added to a criteria set using the above factory methods will be ANDed in the WHERE-clause. To get an
OR combination two criteria sets are needed. These sets are combined using addOrCriteria:

Criteria crit1 = new Criteria();
crit1.addLike("firstname", "%o%");
crit1.addLike("lastname", "%m%");
Criteria crit2 = new Criteria();
crit2.addEqualTo("firstname", "hank");

crit1.addOrCriteria(crit2);
Query q = QueryFactory.newQuery(Person.class, crit1);

Collection results = broker.getCollectionByQuery(q);

This query will generate an SQL statement like this:

SELECT ... WHERE (FIRSTNAME LIKE "%o%") AND LASTNAME
LIKE "%m%" OR FIRSTNAME = "hank"

negating the criteria

OJB Documentation

Page 122
Copyright © All rights reserved.

A criteria can be negated to obtain NOT in the WHERE-clause:

Criteria crit1 = new Criteria();
crit1.addLike("firstname", "%o%");
crit1.addLike("lastname", "%m%");
crit1.setNegative(true);

Collection results = broker.getCollectionByQuery(q);

This query will generate an SQL statement like this:

SELECT ... WHERE NOT (FIRSTNAME LIKE "%o%" AND LASTNAME LIKE "%m%")

ordering and grouping

The following methods of QueryByCriteria are used for ordering and grouping:

• addOrderByAscending(String anAttributeName);
• addOrderByDescending(String anAttributeName);
• addGroupBy(String anAttributeName); this method is used for report queries

You can of course have multiple order by and group by clauses, simply repeat the addOrderBy.

crit = new Criteria();
query = new QueryByCriteria(Person.class, crit);
query.addOrderByDescending("id");
query.addOrderByAscending("lastname");
broker.getCollectionByQuery(query);

The code snippet will query all Persons and order them by attribute "id" descending and "lastname" ascending. The query will
produce the following SQL-statement using column numbers in the ORDER BY clause:

SELECT A0.ID,A0.FIRSTNAME,A0.LASTNAME FROM
PERSON A0 ORDER BY 1 DESC, 3

When you use the column name "LASTNAME" instead of the attribute name "lastname"
(query.addOrderBy("LASTNAME");), an additional column named "LASTNAME" without alias will be added.

SELECT A0.ID,A0.FIRSTNAME,A0.LASTNAME,LASTNAME FROM
PERSON A0 ORDER BY 1 DESC,4

If there are multiple tables with a column "LASTNAME" the SQL-Statement will produce an error, so it's better to always use
attribute names.

subqueries

Subqueries can be used instead of values in selection criteria. The subquery should thus be a ReportQuery.
The following example queries all articles having a price greator or equal than the average price of articles named 'A%':

ReportQueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit.addLike("articleName", "A%");
subQuery = QueryFactory.newReportQuery(Article.class, subCrit);
subQuery.setAttributes(new String[] { "avg(price)" });

crit.addGreaterOrEqualThan("price", subQuery);
Query q = QueryFactory.newQuery(Article.class, crit);

Collection results = broker.getCollectionByQuery(q);

It's also possible to build a subquery with attributes referencing the enclosing query. These attributes have to use a special
prefix Criteria.PARENT_QUERY_PREFIX.

OJB Documentation

Page 123
Copyright © All rights reserved.

The following example queries all product groups having more than 10 articles:

ReportQueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit.addEqualToField("productGroupId", Criteria.PARENT_QUERY_PREFIX + "groupId");
subQuery = QueryFactory.newReportQuery(Article.class, subCrit);
subQuery.setAttributes(new String[] { "count(productGroupId)" });

crit.addGreaterThan(subQuery, "10"); // MORE than 10 articles
crit.addLessThan("groupId", new Integer(987654));
Query q = QueryFactory.newQuery(ProductGroup.class, crit);

Collection results = broker.getCollectionByQuery(q);

Note:
Subqueries are not extent aware. Thus it's not possible to use an abstract class or an interface as search class of a subquery.

joins

Joins resulting from path expressions ("relationship.attribute") in criteria are automatically handled by OJB. Path expressions
are supported for all relationships 1:1, 1:n and m:n (decomposed and non-decomposed) and can be nested.

The following sample looks for all articles belonging to the product group "Liquors". Article and product group are linked by
the relationship "productGroup" in class Article:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>
</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.ProductGroup"
proxy="org.apache.ojb.broker.ProductGroupProxy"
table="Kategorien"

>
...
<field-descriptor

name="groupName"
column="KategorieName"
jdbc-type="VARCHAR"

/>
...

</class-descriptor>

The path expression includes the 1:1 relationship "productGroup" and the attribute "groupName":

Criteria crit = new Criteria();
crit.addEqualTo("productGroup.groupName", "Liquors");
Query q = QueryFactory.newQuery(Article.class, crit);

Collection results = broker.getCollectionByQuery(q);

If path expressions refer to a class having extents, the tables of the extent classes participate in the JOIN and the criteria is

OJB Documentation

Page 124
Copyright © All rights reserved.

ORed. The shown sample queries all ProductGroups having an Article named 'F%'. The path expression 'allArticlesInGroup'
refers to the class Articles which has two extents: Books and CDs.

Criteria crit = new Criteria();
crit.addLike("allArticlesInGroup.articleName", "F%");
QueryByCriteria q = QueryFactory.newQuery(ProductGroup.class, crit, true);

Collection results = broker.getCollectionByQuery(q);

This sample produces the following SQL:

SELECT DISTINCT A0.KategorieName,A0.Kategorie_Nr,A0.Beschreibung
FROM Kategorien A0
INNER JOIN Artikel A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
LEFT OUTER JOIN BOOKS A1E0 ON A0.Kategorie_Nr=A1E0.Kategorie_Nr
LEFT OUTER JOIN CDS A1E1 ON A0.Kategorie_Nr=A1E1.Kategorie_Nr
WHERE A1.Artikelname LIKE 'F%' OR
A1E0.Artikelname LIKE 'F%' OR
A1E1.Artikelname LIKE 'F%'

OJB tries to do it's best to automatically use outer joins where needed. This is currently the case for classes having extents and
ORed criteria. But you can force the SQLGenerator to use outer joins where you find it useful.
This is done by the method QueryByCriteria#setPathOuterJoin(String).

ReportQueryByCriteria query;
Criteria crit;
Iterator result1, result2;

crit = new Criteria();

query = new ReportQueryByCriteria(Person.class, crit);
query.setAttributes(new String[] { "id", "name", "vorname", "sum(konti.saldo)" });
query.addGroupBy(new String[]{ "id", "name", "vorname" });

result1 = broker.getReportQueryIteratorByQuery(query);

query.setPathOuterJoin("konti");
result2 = broker.getReportQueryIteratorByQuery(query);

The first query will use an inner join for relationship "konti", the second an outer join.

user defined alias

This feature allows to have multiple aliases for the same table. The standard behaviour of OJB is to build one alias for one
relationship.

Suppose you have two classes Issue and Keyword and there is a 1:N relationship between them. Now you want to retrieve
Issues by querying on Keywords. Suppose you want to retrieve all Issues with keywords 'JOIN' and 'ALIAS'. If these values
are stored in the attribute 'value' of Keyword, OJB generates a query that contains " A1.value = 'JOIN' AND A1.value =
'ALIAS' " in the where-clause. Obviously, this will not work, no hits will occur because A1.value can not have more then 1
value at the time !

For the examples below, suppose you have the following classes (pseudo-code):

class Container
int id
Collection allAbstractAttributes

class AbstractAttribute
int id
inf ref_id
String name
String value
Collection allAbstractAttributes

OJB Documentation

Page 125
Copyright © All rights reserved.

OJB maps these classes to separate tables where it maps allAbstractAttributes using a collectiondescriptor to AbstractAttribute
using ref_id as inverse foreignkey on Container for the collection descriptor.
For demo purposes : AbstractAttribute also has a collection of abstract attributes.

Criteria crit1 = new Criteria();
crit1.setAlias("company"); // set an alias
crit1.addEqualTo("allAbstractAttributes.name", "companyName");
crit1.addEqualTo("allAbstractAttributes.value", "iBanx");

Criteria crit2 = new Criteria();
crit2.setAlias("contact"); // set an alias
crit2.addEqualTo("allAbstractAttributes.name", "contactPerson");
crit2.addLike("allAbstractAttributes.value", "janssen");

Criteria crit3 = new Criteria();
crit3.addEqualTo("allAbstractAttributes.name", "size");
crit3.addGreaterThan("allAbstractAttributes.value", new Integer(500));

crit1.addAndCriteria(crit2);
crit1.addAndCriteria(crit3);

q = QueryFactory.newQuery(Container.class, crit1);
q.addOrderBy("company.value"); // user alias

The generated query will be as follows. Note that the alias name 'company' does not show up in the SQL.

SELECT DISTINCT A0.ID, A1.VALUE
FROM CONTAINER A0 INNER JOIN ABSTRACT_ATTRIBUTE A1

ON A0.ID=A1.REF_ID
INNER JOIN ABSTRACT_ATTRIBUTE A2
ON A0.ID=A2.REF_ID
INNER JOIN ABSTRACT_ATTRIBUTE A3
ON A0.ID=A3.REF_ID

WHERE ((A0.NAME = 'companyName') AND (A0.VALUE = 'iBanx')) AND
((A1.NAME = 'contactPerson') AND (A1.VALUE LIKE '%janssen%')) AND
((A2.NAME = 'size') AND (A2.VALUE = '500'))

ORDER BY 2

The next example uses a report query.

Criteria crit1 = new Criteria();
crit1.setAlias("ALIAS1");
crit1.addEqualTo("allAbstractAttributes.allAbstractAttributes.name", "xxxx");
crit1.addEqualTo("allAbstractAttributes.allAbstractAttributes.value", "hello");

Criteria crit2 = new Criteria();
crit2.setAlias("ALIAS2");
crit2.addEqualTo("allAbstractAttributes.name", "yyyy");
crit2.addLike("allAbstractAttributes.value", "");

crit1.addAndCriteria(crit2);

q = QueryFactory.newReportQuery(Container.class, crit1);

String[] cols = { id, "ALIAS2.name", "ALIAS2.name", "ALIAS1.name", "ALIAS1.name" };
q.setAttributes(cls);

The generated query will be:

SELECT DISTINCT A0.ID, A1.NAME, A1.VALUE, A2.NAME, A2.VALUE
FROM CONTAINER A0 INNER JOIN ABSTRACT_ATTRIBUTE A1

ON A0.ID=A1.REF_ID
INNER JOIN ABSTRACT_ATTRIBUTE A2
ON A1.ID=A2.REF_ID

WHERE ((A2.NAME = 'xxxx') AND (A2.VALUE = 'hello')) AND
((A1.NAME = 'yyyy') AND (A2.VALUE LIKE '%%')) AND

OJB Documentation

Page 126
Copyright © All rights reserved.

ORDER BY 2

Note:
When you define an alias for a criteria, you have to make sure that all attributes used in this criteria belong to the same class. If you break this rule OJB will probably use a
wrong ClassDescriptor to resolve your attributes !

class hints

This feature allows the user to specify which class of an extent to use for a path-segment. The standard behaviour of OJB is to
use the base class of an extent when it resolves a path-segment.

In the following sample the path allArticlesInGroup points to class Article, this is defined in the repository.xml. Assume we
are only interested in ProductGroups containing CdArticles performed by Eric Clapton or Books authored by Eric Clapton, a
class hint can be defined for the path. This hint is defined by:
Criteria#addPathClass("allArticlesInGroup", CdArticle.class);

//
// find a ProductGroup with a CD or a book by a particular artist
//
String artistName = new String("Eric Clapton");
crit1 = new Criteria();
crit1.addEqualTo("allArticlesInGroup.musicians", artistName);
crit1.addPathClass("allArticlesInGroup", CdArticle.class);

crit2 = new Criteria();
crit2.addEqualTo("allArticlesInGroup.author", artistName);
crit2.addPathClass("allArticlesInGroup", BookArticle.class);

crit1.addOrCriteria(crit2);

query = new QueryByCriteria(ProductGroup.class, crit1);
broker.getObjectByQuery(query);

Note:
This feature is also available in class QueryByCriteria but using it on Criteria-level provides additional flexibility. QueryByCriteria#addPathClass is only useful for
ReportQueries to limit the class of the selected columns.

prefetched relationships

This feature can help to minimize the number of queries when reading objects with relationships. In our Testcases we have
ProductGroups with a one to many relationship to Articles. When reading the ProductGroups one query is executed to get the
ProductGroups and for each ProductGroup another query is executed to retrieve the Articles.

With prefetched relationships OJB tries to read all Articles belonging to the ProductGroups in one query. See further down
why one query is not always possible.

Criteria crit = new Criteria();
crit.addLessOrEqualThan("groupId", new Integer(5));

QueryByCriteria q = QueryFactory.newQuery(ProductGroup.class, crit);
q.addOrderByDescending("groupId");
q.addPrefetchedRelationship("allArticlesInGroup");

Collection results = broker.getCollectionByQuery(q);

The first query reads all matching ProductGroups:

SELECT ... FROM Kategorien A0 WHERE
A0.Kategorie_Nr <= ? ORDER BY 3 DESC

The second query retrieves Articles belonging to the ProductGroups read by the first query:

OJB Documentation

Page 127
Copyright © All rights reserved.

SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr
IN (? , ? , ? , ? , ?) ORDER BY 7 DESC

After reading all Articles they are associated with their ProductGroup.

Note:
This function is not yet supported for relationships using Arrays.

Some databases limit the number of parameters in an IN-statement. If the limit is reached OJB will split up the second query
into multiple queries, the limit is set to 3 for the following sample:

SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr
IN (? , ? , ?) ORDER BY 7 DESC
SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr
IN (? , ?) ORDER BY 7 DESC

The IN-limit for prefetch can be defined in OJB.properties SqlInLimit.

querying for objects

OJB queries return complete objects, that means all instance variables are filled and all 'auto-retrieve' relationships are loaded.
Currently there's no way to retrieve partially loaded objects (ie. only first- and lastname of a person).

More info about manipulation of metadata setting here.

Report Queries

Report queries are used to retrieve row data, not 'real' business objects. A row is an array of Object. With these queries you can
define what attributes of an object you want to have in the row. The attribute names may also contain path expressions like
'owner.address.street'. To define the attributes use ReportQuery #setAttributes(String[] attributes).

The following ReportQuery retrieves the name of the ProductGroup, the name of the Article etc. for all Articles named like
"C%":

Criteria crit = new Criteria();
Collection results = new Vector();
crit.addLike("articleName", "C%");
ReportQueryByCriteria q = QueryFactory.newReportQuery(Article.class, crit);
q.setAttributes(new String[] { "productGroup.groupName","articleId", "articleName", "price" });

Iterator iter = broker.getReportQueryIteratorByQuery(q);

The ReportQuery returns an Iterator over a Collection of Object[4] ([String, Integer, String, Double]).

Limitations of Report Queries

ReportQueries should not be used with columns referencing classes with extents. Assume we want to select all ProductGroups
and summarize the amount and prize of items in stock per group. The class Article referenced by allArticlesInGroup has the
extents Books and CDs.

Criteria crit = new Criteria();
Collection results = new Vector();
ReportQueryByCriteria q = QueryFactory.newReportQuery(ProductGroup.class, crit);
q.setAttributes(new String[] { "groupName", "sum(allArticlesInGroup.stock)",
"sum(allArticlesInGroup.price)" });
q.addGroupBy("groupName");

Iterator iter = broker.getReportQueryIteratorByQuery(q);

The ReportQuery looks quite reasonable, but it will produce an SQL not suitable for the task:

OJB Documentation

Page 128
Copyright © All rights reserved.

error:#site:metadata

SELECT A0.KategorieName,sum(A1.Lagerbestand),sum(A1.Einzelpreis)
FROM Kategorien A0
LEFT OUTER JOIN artikel A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
LEFT OUTER JOIN books A1E2 ON A0.Kategorie_Nr=A1E2.Kategorie_Nr
LEFT OUTER JOIN cds A1E1 ON A0.Kategorie_Nr=A1E1.Kategorie_Nr
GROUP BY A0.KategorieName

This SQL will select the columns "Lagerbestand" and "Einzelpreis" from one extent only, and for ProductGroups having
Articles, Books and CDs the result is wrong!

As a workaround the query can be "reversed". Instead of selection the ProductGroup we go for the Articles:

Criteria crit = new Criteria();
Collection results = new Vector();
ReportQueryByCriteria q = QueryFactory.newReportQuery(Article.class, crit);
q.setAttributes(new String[] { "productGroup.groupName", "sum(stock)", "sum(price)" });
q.addGroupBy("productGroup.groupName");

This ReportQuery executes the following three selects (one for each concrete extent) and produces better results.

SELECT A1.KategorieName,sum(A0.Lagerbestand),sum(A0.Einzelpreis)
FROM artikel A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
GROUP BY A1.KategorieName

SELECT A1.KategorieName,sum(A0.Lagerbestand),sum(A0.Einzelpreis)
FROM cds A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
GROUP BY A1.KategorieName

SELECT A1.KategorieName,sum(A0.Lagerbestand),sum(A0.Einzelpreis)
FROM books A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
GROUP BY A1.KategorieName

Of course there's also a drawback here: the same ProductGroup may be selected several times, so to get the correct sum, the
results of the ProductGroup has to be added. In our sample the ProductGroup "Books" will be listed three times.

After listing so many drawbacks and problems, here's the SQL the produces the desired result. This is a manually created SQL,
not generated by OJB. Unfortunately it's not fully supported by some DBMS because of "union" and sub-selects.

select KategorieName, sum(lagerbestand), sum(einzelpreis)
from
(

SELECT A1.KategorieName,A0.Lagerbestand,A0.Einzelpreis
FROM artikel A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr

union

SELECT A1.KategorieName,A0.Lagerbestand,A0.Einzelpreis
FROM books A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr

union

SELECT A1.KategorieName,A0.Lagerbestand,A0.Einzelpreis
FROM cds A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr

)
group by kategorieName

4.5.8.3. ODMG OQL

4.5.8.4. JDO queries

OJB Documentation

Page 129
Copyright © All rights reserved.

4.5.9. Metadata handling

4.5.9.1. Introduction

To make OJB proper work information about the used databases (more info see connection handling) and sequence managers
is needed. Henceforth these metadata information is called connection metadata.

Further on OJB needs information about the persistent objects and object relations, henceforth this information is called
(persistent) object metadata.

All metadata information need to be stored in the OJB repository file.

The connection metadata are completely decoupled from the persistent object metadata. Thus it is possible to use the same
object metadata on different databases.
But it is also possible to use different object metadata profiles .

In OJB there are several ways to make metadata information available:

• using xml configuration files parsed at start up by OJB
• set metadata instances at runtime by building metadata class instances at runtime
• parse additional xml configuration files (additional repository files) and merge at runtime

All classes used for managing metadata stuff can be find under org.apache.ojb.broker.metadata.*-package.
The main class for metadata handling and entry point for metadata manipulation at runtime is
org.apache.ojb.broker.metadata.MetadataManager .

4.5.9.2. When does OJB read metadata

By default all metadata is read at startup of OJB, when the first call to PersistenceBrokerFactory (directly or by a
top-level api) or MetadataManager class was done.

OJB expects a repository file at startup, but it is also possible to start OJB without an repository file or only load connection
metadata and object metadata at runtime or what ever combination fit your requirements.

4.5.9.3. Connection metadata

The connection metadata encapsulate all information referring to used database and must be declared in OJB repository file.
For each database a jdbc-connection-descriptor must be declared. This element encapusaltes the connection specific metadata
information.

The JdbcConnectionDescriptor instances are managed by
org.apache.ojb.broker.metadata.ConnectionRepository

Load and merge connection metadata

It is possible to load additional connection metadata at runtime and merge it with the existing one. The used repository files
have to be valid against the repository.dtd:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE descriptor-repository SYSTEM "repository.dtd">

<descriptor-repository version="1.0" isolation-level="read-uncommitted">
<jdbc-connection-descriptor

jcd-alias="runtime"
platform="Hsqldb"
jdbc-level="2.0"
driver="org.hsqldb.jdbcDriver"
protocol="jdbc"

OJB Documentation

Page 130
Copyright © All rights reserved.

error:#site:connection
error:#site:sequence-manager
error:#site:repository
error:#ext:api/metadata-manager
error:#site:repository
error:#site:repository
error:#site:repository/jdbc-connection-descriptor
error:#ext:api/connection-repository
error:#ext:repository.dtd

subprotocol="hsqldb"
dbalias="../OJB_FarAway"
username="sa"
password=""
batch-mode="false"

>

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>

<connection-pool
maxActive="5"
whenExhaustedAction="0"
validationQuery="select count(*) from OJB_HL_SEQ"

/>

<sequence-manager className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">
<attribute attribute-name="grabSize" attribute-value="5"/>

</sequence-manager>
</jdbc-connection-descriptor>

<!-- user/passwd at runtime required -->
<jdbc-connection-descriptor

jcd-alias="minimal"
platform="Hsqldb"
jdbc-level="2.0"
driver="org.hsqldb.jdbcDriver"
protocol="jdbc"
subprotocol="hsqldb"
dbalias="../OJB_FarAway"

>
</jdbc-connection-descriptor>

</descriptor-repository>

In the above additional repository file two new jdbc-connection-descriptor (new databases) runtime and minimal are declared,
to load and merge the additional connection metadata the MetadataManager was used:

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

// read connection metadata from repository file
ConnectionRepository cr = mm.readConnectionRepository("valid path/url to repository file");

// merge new connection metadata with existing one
mm.mergeConnectionRepository(cr);

After the merge the access to the new databases is ready for use.

4.5.9.4. Persistent object metadata

The object metadata encapsulate all information referring to the persistent capable java objects and the associated tables in
database. Object metadata must be declared in OJB repository file.
Each persistence capable java object must be declared in a corresponding class-descriptor.

The ClassDescriptor instances are managed by org.apache.ojb.broker.metadata.DescriptorRepository .
Per default OJB use only one global instance of this class - it's the repository file read at startup of OJB. But it is possible to
change the global use repository:

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

mm.setDescriptor(myGlobalRepository, true);

OJB Documentation

Page 131
Copyright © All rights reserved.

error:#site:repository
error:#site:repository/class-descriptor
error:#ext:api/descriptor-repository

Load and merge object metadata

It is possible to load additional object metadata at runtime and merge it with the existing one. The used repository files have to
be valid against the repository.dtd:

An additional repository file may look like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE descriptor-repository SYSTEM "repository.dtd">

<descriptor-repository version="1.0" isolation-level="read-uncommitted">

<class-descriptor
class="org.my.MyObject"
table="MY_OBJ"

>
<field-descriptor
name="id"
column="OBJ_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="name"
column="NAME"
jdbc-type="VARCHAR"
/>

</class-descriptor>
</descriptor-repository>

To load and merge the object metadata of the additional repository files first read the metadata using the MetadataManager .

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

// read the additional repository file
DescriptorRepository dr = mm.readDescriptorRepository("valid path/url to repository file");

// merge the new class-descriptor with existing object metadata
mm.mergeDescriptorRepository(dr);

It is also possible to keep the different object metadata for the same classes parallel by using metadata profiles .

Global object metadata changes

The MetadataManager provide several methods to read/set and manipulate object metadata.

Per default OJB use a global instance of class DescriptorRepository to manage all object metadata. This means that all
PersistenceBroker instances (kernel component used by all top-level api) use the same object metadata.

So changes of the object metadata (e.g. remove of a CollectionDescriptor instance from a ClassDescriptor) will be seen
immediately by all PersistenceBroker instances. This is in most cases not the favoured behaviour and OJB supports per thread
changes of object metadata.

Per thread metadata changes

Per default the manager handle one global DescriptorRepository for all calling threads (keep in mind PB-api is not threadsafe,
thus each thread use it's own PersistenceBroker instance), but it is ditto possible to use different metadata profiles in a per
thread manner - profiles means different instances of DescriptorRepository objects. Each thread/PersistenceBroker instance
can be associated with a specific DescriptorRepository instance. All made object metadata changes only will be seen by the

OJB Documentation

Page 132
Copyright © All rights reserved.

error:#ext:repository.dtd
error:#ext:api/metadata-manager
error:#ext:api/metadata-manager
error:#ext:api/descriptor-repository
error:#ext:api/descriptor-repository

PersistenceBroker instances using the same DescriptorRepository instance. In theory each PersistenceBroker instance could be
associated with a separate instance of object metadata, but the recommended way is to use metadata profiles.

To enable the use of different DescriptorRepository instances for each thread do:

MetadataManager mm = MetadataManager.getInstance();
// tell the manager to use per thread mode
mm.setEnablePerThreadChanges(true);
...

This can be done e.g. at start up or at runtime when it's needed. If method setEnablePerThreadChanges is set false
only the global DescriptorRepository was used. Now it's possible to use dedicated DescriptorRepository instances per thread:

// e.g get a coppy of the global repository
DescriptorRepository dr = mm.copyOfGlobalRepository();
// now we can manipulate the persistent object metadata of the copy
......

// set the changed repository for current thread
mm.setDescriptor(dr);

// now let this thread lookup a PersistenceBroker instance
// with the modified metadata
// all other threads use still the global object metadata
PersistenceBroker broker = PersistenceBrokerFactory.createPersistenceBroker(myKey)

Note:
Set object metadata (setting of the DescriptorRepository) before lookup the PersistenceBroker instance for current thread, because the metadata was bound to the
PersistenceBroker instance at lookup.

Object metadata profiles

MetadataManager was shipped with a simple mechanism to add, remove and load different persistent objects metadata profiles
(different DescriptorRepository instances) in a per thread manner. Use method addProfile to add different persistent object
metadata profiles, method removeProfile to remove profiles and loadProfile load a profile for the calling thread.

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

// enable per thread mode if not done before
mm.setEnablePerThreadChanges(true);

// Load additional object metadata by parsing an repository file
DescriptorRepository dr_1 = mm.readDescriptorRepository("pathOrURLtoFile_1");
DescriptorRepository dr_2 = mm.readDescriptorRepository("pathOrURLtoFile_2");

// add profiles
mm.addProfile("global", mm.copyOfGlobalRepository());
mm.addProfile("guest", dr_1);
mm.addProfile("admin", dr_2);

// now load a specific profile
mm.loadProfile("admin");
broker = PersistenceBrokerFactory.defaultPersistenceBroker();

After the loadProfile call all PersistenceBroker instances will be associated with the admin profile.

Note:
Method loadProfile only proper work if the per thread mode is enabled.

Reference runtime changes on per query basis

OJB Documentation

Page 133
Copyright © All rights reserved.

FIXME (arminw):
Changes of reference settings on a per query basis will be supported with next upcoming release 1.1

Pitfalls

OJB's flexibility of metadata handling demanded specific attention on object caching. If a global cache (shared permanent
cache) was used, be aware of side-effects caused by runtime metadata changes.

For example, using two metadata profiles A and B. In profile A all fields of a class are showed, in profile B only the 'name
filed' is showed. Thread 1 use profile A, thread 2 use profile B. It is obvious that a global shared cache will cause trouble.

4.5.9.5. Questions

Start OJB without a repository file?

It is possible to start OJB without any repository file. In this case you have to declare the
jdbc-connection-descriptor and class-descriptor at runtime. See Connect to database at runtime? and Add
new persistent objects (class-descriptors) at runtime? for more information.

Connect to database at runtime?

There are two possibilities to connect your database at runtime:

• load connection metadata by parsing additional repository files
• create the JdbcConnectionDescriptor at runtime

The first one is described in section load and merge connection metadata. For the second one a new instance of class
org.apache.ojb.broker.metadata.JdbcConnectionDescriptor is needed. The prepared instance will be
passed to class ConnectionRepository:

ConnectionRepository cr = MetadataManager.getInstance().connectionRepository();

JdbcConnectionDescriptor jcd = new JdbcConnectionDescriptor();
jcd.setJcdAlias("testConnection");
jcd.setUserName("sa");
jcd.setPassWord("sa");
jcd.setDbAlias("aAlias");
jcd.setDbms("aDatabase");
// the other required setter

// add new descriptor
cr.addDescriptor(jcd);

// Now it's possible to obtain a PB-instance
PBKey key = new PBKey("testConnection", "sa", "sa");
PersistenceBroker broker = PersistenceBrokerFactory.
createPersistenceBroker(key);

Please read this section from beginning for further information.

Add new persistent objects metadata (class-descriptor) at runtime?

There are two possibilities to add new object metadata at runtime:

• load object metadata by parsing additional repository files
• create new metadata objects at runtime

The first one is described in section load object metadata.

To create and add new metadata objects at runtime we create new

OJB Documentation

Page 134
Copyright © All rights reserved.

error:#site:object-cache
error:#ext:api/jdbc-connection-descriptor
error:#site:metadata

org.apache.ojb.broker.metadata.ClassDescriptor instances at runtime and using the MetadataManager
to add them to OJB:

DescriptorRepository dr = MetadataManager.getInstance().getRepository();

ClassDescriptor cld = new ClassDescriptor(dr);
cld.setClassOfObject(A.class);
//.... other setter

// add the fields of the class
FieldDescriptor fd = new FieldDescriptor(cld, 1);
fd.setPersistentField(A.class, "someAField");
cld.addFieldDescriptor(fd);

// now we add the the class descriptor
dr.setClassDescriptor(cld);

Please read this section from beginning for further information.

4.5.10. Deployment

4.5.10.1. Introduction

This section enumerates all things needed to deploy OJB in standalone or servlet based applications and j2ee-container.

4.5.10.2. Things needed for deploying OJB

1. The OJB binary jar archive

You need a db-ojb-<version>.jar file containing the compiled OJB library.
This jar files contains all OJB code neccessary in production level environments. It does not contain any test code. It also does
not contain any configuration data. You'll find this file in the lib directory of the binary distribution. If you are working with
the source distribution you can assemble the binary jar archive By calling

ant jar

This ant task generates the binary jar to the dist directory.

2. Configuration data

OJB needs two kinds of configuration data:

1. Configuration of the OJB runtime environment. This data is stored in a file named OJB.properties . Learn more about
this file here.

2. Configuration of the MetaData layer. This data is stored in file named repository.xml (and several included files).
Learn more about this file here.

Note:
These configuration files are read in through ClassLoader resource lookup and must therefore be placed on the classpath.

3. External dependencies that do not come with OJB

Some components of OJB depend on external libraries and components that cannot be shipped with OJB. You'll also need
these if you want to compile OJB from source. Here is a list of these dependencies:

j2ee.jar
This is the main archive of the J2EE SDK. We recommend that you use the 1.3 version as the 1.4 is rather new
and not thoroughly tested yet with OJB.

OJB Documentation

Page 135
Copyright © All rights reserved.

error:#ext:api/class-descriptor
error:#site:metadata
error:#ext:ojb.properties
error:#site:ojb-properties
error:#site:ojb-properties
error:#ext:repository.xml
error:#site:repository
error:#ext:sun/j2ee-sdk

jdo.jar, jdori*.jar
The JDO Reference implementation is required if you plan to use the JDO Api.

4. Optional jar archives that come with OJB

Some of jar files in the lib folder are only used during build-time or are only required by certain components of OJB, and so
they might need not to be needed in runtime environments.
Apart from wasting disk space they do no harm. If you don't care about disk space you just take all jars from the lib folder.
If you do care, here is the list of jars you might omit during runtime:

ant-*.jar
These are the Apache Ant 1.6 jars.
antlr-[version].jar
ANTLR is a parser generator which is used in the ODMG component of OJB. If you only use the PB Api, then
you don't need this.
junit.jar
Junit for running the unit tests. You'll need this only if you're also writing unit tests for you app.
xerces.jar, xml-apis.jar
The Xerces XML parser. Since most newer JDK's ship with an XML parser, it is likely that you do not need
these files.
xalan.jar
Xalan is used to generate the unit test report, so you'll probably don't need this.
jakarta-regexp-[version].jar
The Jakarta Regular Expression library is only used when building OJB from source.
torque-xxx.jar, velocity-xxx.jar
Torque is used to generate concrete databases from database-independent schema files. OJB uses it internally
to setup databases for the unit tests.
xdoclet-[version].jar, xjavadoc-[version].jar, xdoclet-ojb-module-[version].jar,
commons-collections-[version].jar
The XDoclet OJB module can be used to generate the repository metadata and Torque schema files from
Javadoc comments in the Java source files. It is however not required at runtime, so you can safely ignore
these files then.

5. Don't forget the JDBC driver

The repository.xml defines JDBC Connections to your runtime databases. To use the declared JDBC drivers the respective jar
archives must also be present in the classpath. Refer to the documentation of your databases.

In the following sections I will describe how to deploy these items for specific runtime environments.

4.5.10.3. Deployment in standalone applications

Deploying OJB for standalone applications is most simple. If you follow these four steps your application will be up in a few
minutes.

1. Add db-ojb-<version>.jar to the classpath
2. place OJB.properties and repository.xml files on the classpath
3. Add the additional runtime jar archives to the classpath.
4. Add your JDBC drivers jar archive to the classpath.

4.5.10.4. Deployment in servlet based applications

Generally speaking the four steps described in the previous section have to be followed also in Servlet / JSP based
environments.
The exact details may differ for your specific Servlet container, but the general concepts should be quite similar.

OJB Documentation

Page 136
Copyright © All rights reserved.

error:#ext:sun/jdo
error:#ext:ant
error:#ext:antlr
error:#ext:junit
error:#ext:xml-apache/xerces
error:#ext:xml-apache/xalan
error:#ext:jakarta/regexp
error:#ext:torque
error:#site:xdoclet-module

1. Deploy db-ojb-<version>.jar with your servlet applications WAR file.
The WAR format specifies that application specific jars are to be placed in a directory WEB-INF/lib. Place
db-ojb-<version>.jar to this directory.

2. Deploy OJB.properties and repository.xml with your servlet applications WAR file.
The WAR format specifies that Servlet classes are to be placed in a directory WEB-INF/classes. The OJB
configuration files have to be in this directory.

3. Add the additional runtime jar archives to WEB-INF/lib too.
4. Add your JDBC drivers jar archive to WEB-INF/lib.

By executing ant war you can generate a sample servlet application assembled to a valid WAR file. The resulting
ojb-servlet.war file is written to the dist directory. You can deploy this WAR file to your servlet engine or unzip it to
have a look at its directory structure.
you can also use the target war as a starting point for your own deployment scripts.

4.5.10.5. Deployment in EJB based applications

The above mentioned guidelines concerning jar files and placing of the OJB.properties and the repository.xml are valid for
EJB environments as well. But apart from these basic steps you'll have to perform some additional configurations to integrate
OJB into a managed environment.

The instructions to make OJB running within your application server should be similar for all server. So the following
instructions for JBoss should be useful for all user. E.g. most OJB.properties file settings are the same for all application
server.

There are some topics you should examine very carefully:

• Connection handling: Lookup DataSource from your AppServer, only these connections will be enlisted in running
transactions

• Caching: Do you need distributed caching?
• Locking: Do you need distributed locking (when using odmg-api)?

Configure OJB for managed environments considering as JBoss example

The following steps describe how to configure OJB for managed environments and deploy on a ejb conform Application
Server (JBoss) on the basis of the shipped ejb-examples. In managed environments OJB needs some specific properties.

1. Adapt OJB.properties file

If the PB-api is the only persistence API being used (no ODMG nor JDO) and it is only being used in a managed environment,
it is strongly recommended to use a special PersistenceBrokerFactory class, which enables PersistenceBroker instances to
participate in the running JTA transaction (e.g. this makes PBStateListener proper work in managed environments and enables
use of 'autoSync' property in ObjectCacheDefaultImpl):

PersistenceBrokerFactoryClass=org.apache.ojb.broker.core.PersistenceBrokerFactorySyncImpl

Note:
Don't use this setting in conjunction with any other top-level api (e.g. ODMG-api).

Your OJB.properties file need the following additional settings to work within managed environments (apply to all used
api):

...
ConnectionFactoryClass=
org.apache.ojb.broker.accesslayer.ConnectionFactoryManagedImpl

...

OJB Documentation

Page 137
Copyright © All rights reserved.

error:#ext:ojb.properties
error:#ext:repository.xml
error:#ext:ojb.properties
error:#ext:ojb.properties

set used application server TM access class
JTATransactionManagerClass=
org.apache.ojb.otm.transaction.factory.JBossTransactionManagerFactory

A specific ConnectionFactory implementation was used to by-pass all forbidden method calls in managed environments.

The JTATransactionManagerClass set the used implementation class for transaction manager lookup, necessary for for
javax.transaction.TransactionManager lookup to participate in running JTA transaction via
javax.transaction.Synchronization interface.

The ODMG-api needs some additional settings for use in managed environments (only needed when odmg-api was used):

...
only needed for odmg-api
ImplementationClass=org.apache.ojb.odmg.ImplementationJTAImpl

...
only needed for odmg-api
OJBTxManagerClass=org.apache.ojb.odmg.JTATxManager

The ImplementationClass specify the ODMG base class implementation. In managed environments a specific implementation
is used, able to participate in JTA transactions.

The OJBTxManagerClass specify the used OJBTxManager implementation to manage the transaction synchronization in
managed enviroments.

Note:
Currently OJB integrate in managed environments via javax.transaction.Synchronization interface. When the JCA adapter is finished (work in progress)
integration will be more smooth.

2. Declare datasource in the repository (repository_database) file and do additional configuration

Do only use DataSource from the application server to connect to your database (Local used connections do not participate
in JTA transaction).

Note:
We strongly recommend to use JBoss 3.2.2 or higher of the 3.x series of JBoss. With earlier versions of 3.x we got Statement/Connection resource problems when running some
ejb stress tests. As workaround we introduce a jboss specific attribute eager-release for version before 3.2.2, but it seems that this attribute can cause side-effects. Again, this
problem seems to be fixed in 3.2.2.

Define OJB to use a DataSource:

<!-- Datasource example -->
<jdbc-connection-descriptor

jcd-alias="default"
default-connection="true"
platform="Sapdb"
jdbc-level="2.0"
jndi-datasource-name="java:DefaultDS"
username="sa"
password=""
eager-release="false"
batch-mode="false"
useAutoCommit="0"
ignoreAutoCommitExceptions="false"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>

<sequence-manager className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

OJB Documentation

Page 138
Copyright © All rights reserved.

error:#site:connection

</sequence-manager>

</jdbc-connection-descriptor>

The attribute useAutoCommit="0" is mandatory in managed environments, because it's in most cases not allowed to
change autoCommit state.

Note:
In managed environments you can't use the default sequence manager (SequenceManagerHighLowImpl) of OJB. For alternative sequence manager implemetation see here.

[2b. How to deploy ojb test hsqldb database to jboss]

If you use hsql database for testing you can easy setup the DB on jboss. After creating the database in OJB test directory with
ant prepare-testdb, take the generated .../target/test/OJB.script file and rename it to
default.script. Then replace the jboss default.script file in
.../jboss-3.x.y/server/default/db/hypersonic with this file.

3. Include all OJB configuration files in classpath

Include the all needed OJB configuration files in your classpath:

- OJB.properties
- repository.dtd
- repository.xml
- repository_internal.xml
- repository_database.xml,
- repository_ejb.xml (if you want to run the ejb examples)

To deploy the ejb-examples beans we include all configuration files in a ejb jar file - more info about this see below.

The repository.xml for the ejb-example beans look like:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a sample metadata repository for the ObJectBridge
System. Use this file as a template for building your own
mappings-->

<!-- defining entities for include-files -->
<!DOCTYPE descriptor-repository SYSTEM "repository.dtd" [
<!ENTITY database SYSTEM "repository_database.xml">
<!ENTITY internal SYSTEM "repository_internal.xml">
<!ENTITY ejb SYSTEM "repository_ejb.xml">
]>

<descriptor-repository version="1.0"
isolation-level="read-uncommitted">

<!-- include all used database connections -->
&database;

<!-- include ojb internal mappings here -->
&internal;

<!-- include mappings for the EJB-examples -->
&ejb;

</descriptor-repository>

4. Enclose all libraries OJB depend on

OJB Documentation

Page 139
Copyright © All rights reserved.

error:#site:sequence-manager

In most cases it is recommended to include all libraries OJB depend on in the application .ear/.sar or ejb .jar file to make OJB
run and (re-)deployable. Here are the libraries needed to make the ojb sample session beans run on JBoss:

• The jakarta commons libraries files (all commons-xxx.jar) from OJB /lib directory
• The antlr jar file (antlr-xxx.jar) from OJB /lib directory
• jakarta-regexp-xxx.jar from OJB /lib directory
• [jakarta turbine jcs.jar from OJB /lib directory, only if ObjectCacheJCSImpl was used]

(This was tested with jboss 3.2.2)

5. Take care of caching

Very important thing is cache synchronization with the database. When using the ODMG-api or PB-api (with special PBF (see
1.) setting) it's possible to use all ObjectCache implementations as long as OJB doesn't run in a clustered mode. When the
ObjectCacheDefaultImpl cache implementation was used it's recommended to enable the autoSync mode.
In clustered environments (OJB run on different AppServer nodes) you need a distributed ObjectCache or you should use a
local/empty cache like

ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl

or

ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCacheEmptyImpl

The cache is pluggable, so you can write your own ObjectCache implementation to accomplish your expectations.

More info you can find in clustering and ObjectCache topic.

6. Take care of locking

If the used api supports Object Locking (e.g. ODMG-api, PB-api does not), in clustered environments (OJB run on different
AppServer nodes) a distributed lock management is mandatory.

7. Put all together

Now put all files together. We keep the examples as simple as possible, thus we deploy only a ejb .jar file. Below you can find
a short instruction how to pack an ejb application .ear file including OJB.

Generate the ejb-examples described below or build your own ejb .jar file including all beans, ejb-jar.xml and appServer
dependend files. Then add all OJB configuration files, the db-ojb jar file and all libraries OJB depends on into this ejb .jar file.
The structure of the ejb .jar file should now look like this:

/OJB.properties
/repository.dtd
/repository.xml
/all used repository-XYZ.xml
/META-INF
.../Manifest.mf
.../ejb-jar.xml
.../jboss.xml

/all ejb classes

/db-ojb-1.X.jar
/all used libraries

7b. Example: Deployable jar

For example the jar-file used to test the ejb-examples shipped with OJB, base on the db-ojb-XY-beans.jar file. This jar was
created when the ejb-examples target was called.

OJB Documentation

Page 140
Copyright © All rights reserved.

error:#site:object-cache
error:#site:howto/clustering
error:#site:howto/clustering
error:#site:object-cache
error:#site:lock-manager

The generated jar contains only the ejb-classes and the deployment-descriptor. We have to add additional jars (all libraries
used by OJB) and files (all configuration files) to make it deployable. The deployable db-ojb-XY-beans.jar should look like
this:

/OJB.properties
/repository.dtd
/repository.xml
/repository_database.xml
/repository_ejb.xml
/repository_internal.xml
/META-INF
.../Manifest.mf
.../ejb-jar.xml
.../jboss.xml

/org
.../apache (all ejb classes)

/db-ojb-1.X.jar

/antlr-XXX.jar
/commons-beanutils-XXX.jar
/commons-collections-XXX.jar
/commons-dbcp-XXX.jar
/commons-lanf-XXX.jar
/commons-logging-XXX.jar
/commons-pool-XXX.jar
/jakarta-regexp-XXX.jar

Please pay attention on the configuration settings to make OJB work in managed environments (especially the OJB.properties
settings).

Note:
This example isn't a real world production example. Normally you will setup one or more enterprise archive files (.ear files) to bundle one or more complete J2EE (web)
applications. More about how to build an J2EE application using OJB see here.

The described example should be re-deployable/hot-deployable in JBoss.
If you will get any problems, please let me know. All suggestions are welcome!

8. How to access OJB API?

In managed environments it is possible to access OJB in same way used in non-managed environments:

// PB-api
PersistenceBroker broker = PersistenceBrokerFactory.create...;

//ODMG-api
Implementation odmg = OJB.getInstance();

But it is recommended to bind OJB api access classes to JNDI and lookup the the api entry classes via JNDI.

9. OJB logging within JBoss

Jboss use log4j as standard logging api.
In summary, to use log4j logging with OJB within jBoss:
1) in OJB.properties set

LoggerClass=org.apache.ojb.broker.util.logging.Log4jLoggerImpl

There is no need for a separate log4j.properties file of OJB-specific log4j settings (in fact the OJB.properties setting
LoggerConfigFile is ignored). Instead, the jBoss log4j configuration file must be used:

OJB Documentation

Page 141
Copyright © All rights reserved.

error:#ext:log4j

2) in JBOSS_HOME/server/default/conf/log4j.xml,
define appenders and add categories to add or filter logging of desired OJB packages, following the numerous examples in that
file. For example,

<category name="org.apache.ojb">
<priority value="DEBUG" />
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</category>

<category name="org.apache.ojb.broker.metadata.RepositoryXmlHandler">
<priority value="ERROR" />
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</category>

Example Session Beans

Introduction

The OJB source distribution was shipped with a bunch of sample session beans and client classes for testing. Please recognize
that we don't say that these examples show "best practices" of using OJB within enterprise java beans - it's only one way to
make it work.

To keep the examples as simple as possible we directly use the OJB main classes via static lookup or helper classes on each
ejbCreate() call. But we recommend to bind the OJB main classes in JNDI instead of direct use in the session beans.

Generate the sample session beans

The source code of the sample beans is stored in directory
[db-ojb]/src/ejb/org/apache/ojb/ejb
To generate the sample beans call

ant ejb-examples

This ant target copies the bean sources to [db-ojb]/target/srcejb generates all needed bean classes and deployment
descriptor (by using xdoclet) to the same directory, compiles the sources and build an ejb .jar file called
[db-ojb]/dist/db-ojb-XXX-beans.jar. Test clients for the generated beans included in the
[db-ojb]/dist/db-ojb-XXX-client.jar.

To run xdoclet properly the following xdoclet jar files needed in [db-ojb]/lib directory (xdoclet version 1.2xx or higher):

xdoclet-xxx.jar
xdoclet-ejb-module-xxx.jar
xdoclet-jboss-module-xxx.jar
xdoclet-jmx-module-xxx.jar
xdoclet-web-module-xxx.jar
xdoclet-xjavadoc-module-xxx.jar

If you using a different application server than JBoss, you have to modifiy the xdoclet ant target in
[db-ojb]/build-ejb-examples.xml to force xdoclet to generate the appServer specific files. See xdoclet
documentation for further information.

How to run test clients for PB / ODMG - api

If the "extended ejb .jar" file was successfully deployed we need a test client to invoke the ejb-examples. As said above, the
ejb-examples target generates a test client jar too. It's called [db-ojb]/dist/db-ojb-XXX-client.jar and contains
junit based test clients for the PB-/ODMG-api.
The main test classes are:

OJB Documentation

Page 142
Copyright © All rights reserved.

error:#ext:xdoclet

• org.apache.ojb.ejb.AllODMGTests
• org.apache.ojb.ejb.AllPBTests

OJB provide an ant target to run the client side bean tests. Include all needed appServer libraries in [db-ojb]/lib (e.g. for
JBoss jbossall-client.jar do the job, beside the "j2ee jars"). To run the PB-api test clients (access running JBoss server with
default settings) call

ant ejb-examples-run -Dclient.class=org.apache.ojb.ejb.AllPBTests

To run the test clients on an arbitrary appServer pass the JNDI properties for naming context initalisation too, e.g.

• -Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
• -Djava.naming.provider.url="jnp://localhost:1099"
• -Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

Then the target call may looks like

ant ejb-examples-run -Dclient.class=org.apache.ojb.ejb.AllPBTests
-Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
-Djava.naming.provider.url="jnp://localhost:1099"
-Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

Packing an .ear file

Here is an example of the .ear package structure. It is redeployable without having to restart JBoss.

The Package Structure

The package structure of the .ear file should look like:

/ejb.jar/
...EJBs
...META-INF/
......ejb-jar.xml
......jboss.xml
......MANIFEST.MF

/web-app.war/
...JSP
...WEB-INF/
......web.xml

/META-INF/
...application.xml
/ojb.jar
/[ojb required runtime jar]

/OJB.properties
/repository.dtd
/respository_internal.xml
/repository.xml
/repository_database1.xml
/repository_app1.xml
/repository_database2.xml
/repository_app2.xml

Make OJB API Resources available

There are two approaches to use OJB api in the ejb.jar file:

1. To create a Manifest.mf file with classpath attribute that include all the runtime jar required by OJB (Very important to
include all required jar). The sample below works fine:

Class-Path: db-ojb-1.0.rc6.jar antlr-2.7.3.jar commons-beanutils.jar

OJB Documentation

Page 143
Copyright © All rights reserved.

commons-collections.jar commons-dbcp-1.1.jar commons-lang-2.0.jar
commons-logging.jar commons-pool-1.1.jar
jakarta-regexp-1.3.jar

Note:
If you to include the jar file under a directory of the ear file, says /lib/db-ojb-1.0.rc6.jar and etc. At the classpath attribute it will be something like: Class-Path:
./lib/db-ojb-1.0.rc6.jar and etc (The "." in front is important)

2. To add the required jar file as a "java" element in the application.xml file:

<module>
<java>antlr-2.7.3.jar</java>

</module>
<module>

<java>commons-beanutils.jar</java>
</module>
<module>

<java>commons-collections.jar</java>
</module>
<module>

<java>commons-dbcp-1.1.jar</java>
</module>
<module>

<java>commons-lang-2.0.jar</java>
</module>
<module>

<java>commons-logging.jar</java>
</module>
<module>

<java>commons-pool-1.1.jar</java>
</module>
<module>

<java>db-ojb-1.0.rc6.jar</java>
</module>

Note:
To use this approach, all the library had to be in the root of the ear.

(This was tested on Jboss 3.2.3)

Make OJB accessible via JNDI

Current bean examples do directly use OJB main classes, but it's also possible to make OJB accessible via JNDI and use a
JNDI-lookup to access OJB api's in your beans.
To make the OJB api's accessible via JNDI, you have bind them to JNDI. How to do this depends on the used environment.
The main classes/methods to bind are:

• PB-api:
Method org.apache.ojb.broker.core.PersistenceBrokerFactoryFactory#instance() returns the
used org.apache.ojb.broker.core.PersistenceBrokerFactoryIF. Make this instance accessible via
JNDI.

• ODMG-api:
Method org.apache.ojb.odmg.OJB#getInstance() returns a new instance of the
org.odmg.Implementation instance. Open a new Databaseand make this instance and the Database instance
accessible via JNDI.

JBoss

In JBoss you can write mbean classes to bind OJB main/access classes to JNDI, similar to the Weblogic example below.
Let JBoss know about the new mbeans, so declare them in a jboss-service.xml file:

OJB Documentation

Page 144
Copyright © All rights reserved.

Other Application Server

In other application server you can do similar steps to bind OJB main api classes to JNDI. For example in Weblogic you can
use startup class implementation (see below).

Instructions for Weblogic

1. Add the OJB jar files and depedencies into the Weblogic classpath

2. As usual create the connection pool and the datasource.

3. Prepare the OJB.properties file. Should be similar to jboss. Expect the following entry:

...
Weblogic Transaction Manager Factory
JTATransactionManagerClass=
org.apache.ojb.broker.transaction.tm.WeblogicTransactionManagerFactory

4. Modify the connection information in the repository.xml (specify the datasource name). SequenceManager implementation
depends on the used DB, more info see here:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="Sapdb"
jdbc-level="2.0"
jndi-datasource-name="datasource_demodb"
eager-release="false"
batch-mode="false"
useAutoCommit="0"
ignoreAutoCommitExceptions="false"
>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">
<attribute attribute-name="grabSize" attribute-value="20"/>
</sequence-manager>
</jdbc-connection-descriptor>

Note:
The following step is only neccessary if you want to bind OJB main api classes to JNDI.

[5.] Compile the following classes (see at the end of this section) and add them to the weblogic classpath. This allows to access
the PB-api via JNDI lookup. Register via the weblogic console the startup class (see OjbPbStartup class below). The JNDI
name and the OJB.properties file path can be specified as parameters in this startup class.

To use the ODMG-api you have to write a similar startup class. This shouldn't be too complicated. Take a look in
org.apache.ojb.jboss package (dir src/connector/main). Here you could find the jboss mbeans. All you have to
do is bound a similar class to JNDI in weblogic.
Implement ODMGJ2EEFactory Interface in your class bound this class to JNDI (in the ejb-examples the beans try to lookup
the Implementation instance via "java:/ojb/defaultODMG"). Your ODMGFactory class should implement this
method

public Implementation getInstance()
{

return OJBJ2EE_2.getInstance();
}

Write a session bean similar to those provided for the JBOSS samples. It is also possible to use the ejb-example beans (doing
minor modifications when the JNDI lookup should be used).

OJB Documentation

Page 145
Copyright © All rights reserved.

error:#site:sequence-manager

Webolgic startup class
Write an OJB startup class to make OJB accessible via JNDI can look like (I couldn't test this sample class, so don't know if it
will work ;-)):

package org.apache.ojb.weblogic;

import javax.naming.*;

import org.apache.ojb.broker.core.PersistenceBrokerFactoryFactory;
import org.apache.ojb.broker.core.PersistenceBrokerFactoryIF;

import weblogic.common.T3ServicesDef;
import weblogic.common.T3StartupDef;
import java.util.Hashtable;

/**
* This startup class created and binds an instance of a
* PersistenceBrokerFactoryIF into JNDI.
*/
public class OjbPbStartup

implements T3StartupDef, OjbPbFactory, Serializable
{

private String defaultPropsFile = "org/apache/ojb/weblogic/OJB.properties";

public void setServices(T3ServicesDef services)
{
}

public PersistenceBrokerFactoryIF getInstance()
{

return PersistenceBrokerFactoryFactory.instance();
}

public String startup(String name, Hashtable args)
throws Exception

{

try
{

String jndiName = (String) args.get("jndiname");
if(jndiName == null || jndiName.length() == 0)

jndiName = OjbPbFactory.DEFAULT_JNDI_NAME;

String propsFile = (String) args.get("propsfile");
if(propsFile == null || propsFile.length() == 0)
{

System.setProperty("OJB.properties", defaultPropsFile);
}
else
{

System.setProperty("OJB.properties", propsFile);
}

InitialContext ctx = new InitialContext();
bind(ctx, jndiName, this);

// return a message for logging
return "Bound OJB PersistenceBrokerFactoryIF to " + jndiName;

}
catch(Exception e)
{

e.printStackTrace();
// return a message for logging
return "Startup Class error: impossible to bind OJB PB factory";

}
}

OJB Documentation

Page 146
Copyright © All rights reserved.

private void bind(Context ctx, String name, Object val)
throws NamingException

{
Name n;
for(n = ctx.getNameParser("").parse(name); n.size() > 1; n = n.getSuffix(1))
{

String ctxName = n.get(0);
try
{

ctx = (Context) ctx.lookup(ctxName);
}
catch(NameNotFoundException namenotfoundexception)
{

ctx = ctx.createSubcontext(ctxName);
}

}
ctx.bind(n.get(0), val);

}
}

The used OjbPbFactory interface:

package org.apache.ojb.weblogic;

import org.apache.ojb.broker.core.PersistenceBrokerFactoryIF;

public interface OjbPbFactory
{

public static String DEFAULT_JNDI_NAME = "PBFactory";
public PersistenceBrokerFactoryIF getInstance();

}

4.5.11. OJB - Connection Handling

4.5.11.1. Introduction

In this section the connection handling within OJB will be described. OJB use two classes which share the connection
management:

• org.apache.ojb.broker.accesslayer.ConnectionFactory
• org.apache.ojb.broker.accesslayer.ConnectionManagerIF

4.5.11.2. ConnectionFactory

The org.apache.ojb.broker.accesslayer.ConnectionFactory interface implementation is a pluggable
component (via the OJB.properties file - more about the OJB.properties file here) responsible for creation/lookup and release
of connections.

public interface ConnectionFactory
{

Connection lookupConnection(JdbcConnectionDescriptor jcd) throws LookupException;

void releaseConnection(JdbcConnectionDescriptor jcd, Connection con);

void releaseAllResources();
}

To enable a specific ConnectionFactory implementation class in OJB.properties file, set property ConnectionFactoryClass:

ConnectionFactoryClass=org.apache.ojb.broker.accesslayer.ConnectionFactoryPooledImpl

OJB was shipped with a bunch of different implementation classes which can be used in different situations, e.g. creation of
connection instances is costly, so pooling of connection will increase performance.

To make it more easier to implement own ConnectionFactory classes an abstract base class called

OJB Documentation

Page 147
Copyright © All rights reserved.

error:#ext:ojb.properties
error:#site:ojb-properties

org.apache.ojb.broker.accesslayer.ConnectionFactoryAbstractImpl exists, most shipped
implementation classes inherited from this class.

Note:
All shipped implementation with support for connection pooling only pool direct obtained connections, DataSources will never be pooled.

ConnectionFactoryPooledImpl

An ConnectionFactory implementation using commons-pool to pool the requested connections. On lookup call a connection
was borrowed from pool and returned on the release call. This implementation was used as default setting in OJB.properties
file.

This implementation allows a wide range off different settings, more info about the configuration properties can be found in
metadata repository connection-pool section.

ConnectionFactoryNotPooledImpl

The name is programm, this implementation creates a new connection on each request and close it on release call. All
connection-pool settings are ignored by this implementation.

ConnectionFactoryManagedImpl

This is a specific implementation for use in managed environments like J2EE conform application server. In managed
environments it is mandatory to use DataSource provided by the application server.

All connection-pool settings are ignored by this implementation.

ConnectionFactoryDBCPImpl

An implementation using commons-dbcp to pool the connections.

This implementation allows a wide range off different settings, more info about the configuration properties can be found in
metadata repository connection-pool section.

4.5.11.3. ConnectionManager

The org.apache.ojb.broker.accesslayer.ConnectionManagerIF interface implementation is a pluggable
component (via the OJB.properties file - more about the OJB.properties file here) responsible for managing the connection
usage lifecycle and connection status (commit/rollback of connections).

public interface ConnectionManagerIF
{

JdbcConnectionDescriptor getConnectionDescriptor();

Platform getSupportedPlatform();

boolean isAlive(Connection conn);

Connection getConnection() throws LookupException;

boolean isInLocalTransaction();

void localBegin();

void localCommit();

void localRollback();

OJB Documentation

Page 148
Copyright © All rights reserved.

error:#ext:commons-pool
error:#ext:ojb.properties
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#ext:commons-dbcp
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#ext:ojb.properties
error:#site:ojb-properties

void releaseConnection();

void setBatchMode(boolean mode);

boolean isBatchMode();

void executeBatch();

void executeBatchIfNecessary();

void clearBatch();
}

The ConnectionManager was used by the PersistenceBroker to handle connection usage lifecycle.

4.5.11.4. Questions and Answers

How does OJB handle connection pooling?

OJB does connection pooling per default, expect for datasources. Datasources never will be pooled.

Responsible for managing the connections in OJB are implementations of the
org.apache.ojb.broker.accesslayer.ConnectionFactory.java interface. There are several
implementations shipped with OJB called
org.apache.ojb.broker.accesslayer.ConnectionFactoryXXXImpl.java. You can find among other
things a none pooling implementation and a implementation using jakarta-DBCP api.

To manage the connection pooling define in your jdbc-connection-descriptor a connection-pool element. Here you can specify
the properties for the used ConnectionFactory implementation. More common info see repository section or in repository.dtd.

Can I directly obtain a java.sql.Connection within OJB?

The PB-api enabled the possibility to obtain a connection from the current used PersistenceBroker instance:

PersistenceBroker broker = PersistenceBrokerFactory.createPersistenceBroker(myKey);
broker.beginTransaction();
// do something

Connection con = broker.serviceConnectionManager().getConnection();
// perform your connction action and do more
// close the created statement and result set

broker.commitTransaction();
broker.close();

After obtain the connection with broker.serviceConnectionManager().getConnection(), the connection can
be used in a 'normal' way. The user is responsible for cleanup of created statements and result sets, so close statements and
result sets after use.

For read-only operations there is no need to start a PB-tx.

Note:
Do not commit the connection instance, this will be done by OJB when PersistenceBroker commit-/abortTransaction was called.
Never do a Connection.close() call on the obtained connection instance by hand!!
This will be handled by the ConnectionFactory.

If no transaction is running, it is possible to release a connection after use by hand with call:

pBroker.serviceConnectionManager().releaseConnection();

This call cleanup the used connection and pass the instance to release method of ConnectionFactory (this will e.g. return

OJB Documentation

Page 149
Copyright © All rights reserved.

error:#site:repository/jdbc-connection-descriptor
error:#site:repository/connection-pool
error:#site:repository
error:#ext:ojb/repository.dtd

connection it to pool or close it).

If you don't do any connection cleanup at the latest the connection will be released on PB.close() call.

Users who interested in this section also interested in 'Is it possible to perform my own sql-queries in OJB?'.

4.5.12. The Object Cache

FIXME (arminw):
this document is not finished yet.

4.5.12.1. Introduction

OJB was shipped with several ObjectCache implementations. All implementations can be found in
org.apache.ojb.broker.cache package. To classify the different implementations we differ local cache and
shared/global cache (we use both terms synonymous) implementations.

• Local cache implementation mean that each instance use its own object map to manage cached objects.
• Shared/global cache implementations share one (in most cases static) map to manage cached objects.

A distributed object cache implementation supports caching of objects across different JVM.

4.5.12.2. Why a cache and how it works?

OJB provides a pluggable object cache provided by the ObjectCache interface.

public interface ObjectCache
{

/**
* Write to cache.
*/
public void cache(Identity oid, Object obj);

/**
* Lookup object from cache.
*/
public Object lookup(Identity oid);

/**
* Removes an Object from the cache.
*/
public void remove(Identity oid);

/**
* Clear the ObjectCache.
*/
public void clear();

}

Each PersistenceBroker instance using its own ObjectCache instance. The ObjectCache instances are created by the
ObjectCacheFactory class.

Each cache implementation holds Objects previously loaded or stored by the PersistenceBroker - dependend on the
implementation.
Using a Cache has several advantages:

• It increases performance as it reduces database lookups or/and object materialization. If an object is looked up by Identity
the associated PersistenceBroker instance, does not perform a SELECT against the database immediately but first looks up
the cache if the requested object is already loaded. If the object is cached it is returned as the lookup result. If it is not
cached a SELECT is performed.

OJB Documentation

Page 150
Copyright © All rights reserved.

error:#site:faq/performSQL
error:#site:howto/clustering

Other queries were performed against the database, but before an object from the ResultSet was materialized the object
identity was looked up in cache. If not found the whole object was materialized.

• It allows to perform circular lookups (as by crossreferenced objects) that would result in non-terminating loops without
such a cache.

4.5.12.3. How to change the used ObjectCache implementation

The object-cache element/property can be used to specify the ObjectCache implementation used by OJB. There are three
levels of declaration:

in OJB.properties file, to declare the standard (default) ObjectCache implementation. The declared ObjectCache
implementation was initialized with default properties, it's not possible to pass additional configuration properties on this level
of declaration.

#---
Object cache
#---
The ObjectCacheClass entry tells OJB which concrete instance Cache
implementation is to be used.
ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl
#

on jdbc-connection-descriptor level , to declare ObjectCache implementation on a per connection/user level. Additional
configuration properties can be passed by using attribute element entries:

<jdbc-connection-descriptor ...>
...
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="useAutoSync" attribute-value="true"/>
</object-cache>
...
</jdbc-connection-descriptor>

on class-descriptor level , to declare ObjectCache implementation on a per class level. Additional configuration properties can
be passed by using attribute element entries:

<class-descriptor
class="org.apache.ojb.broker.util.sequence.HighLowSequence"
table="OJB_HL_SEQ"
>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>
...
</class-descriptor>

Note:
The priority of the declared object-cache elements are:
per class > per jdbc-connection-descriptor > standard

E.g. if you declare ObjectCache 'DefaultCache' as standard and set ObjectCache 'CacheA' in class-descriptor for class A and
class B does not declare an object-cache element. Then OJB use 'CacheA' as ObjectCache for class A and 'DefaultCache' for
class B.

4.5.12.4. Shipped cache implementations

ObjectCacheDefaultImpl

Per default OJB use a shared reference based ObjectCache implementation. It's a really fast cache but there are a few
drawbacks. There is no transaction isolation, when thread one modify an object, thread two will see the modification when

OJB Documentation

Page 151
Copyright © All rights reserved.

error:#ext:ojb.properties
error:#site:repository/jdbc-connection-descriptor
error:#site:repository/class-descriptor

lookup the same object or use a reference of the same object. If you rollback/abort a transaction the corrupted objects will not
be removed from the cache (when using PB-api, top-level api may support automatic cache synchronization). You have to do
this using

broker.removeFromCache(obj);

// or (using Identity object)
ObjectCache cache = broker.serviceObjectCache();
cache.remove(oid);

by your own or enable the useAutoSync property (more info see below).

This implementation use SoftReference to wrap all cached objects. If the cached object was not longer referenced by your
application but only by the cache, it can be reclaimed by the garbage collector.
As we don't know when the garbage collector reclaims the freed objects, it is possible to set a timeout property. So an
cached object was only returned from cache if it was not garbage collected and was not timed out.

To enable this ObjectCache implementation

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="timeout" attribute-value="600"/>

</object-cache>

Implementation configuration properties:

Property Key Property Values

timeout Lifetime of the cached objects in seconds. If
expired, the cached object was discarded -
default was 900 sec. When set to -1 the lifetime
of the cached object depends only on GC and
do never get timed out.

autoSync If set true all cached/looked up objects within a
PB-transaction are traced. If the the
PB-transaction was aborted all traced objects
will be removed from cache. Default is false.

NOTE: This does not prevent "dirty-reads" by
concurrent threads (more info see above).

It's not a smart solution for keeping cache in sync
with DB but should do the job in most cases.
E.g. if you lookup 1000 objects within a transaction
and modify one object and then abort the transaction,
1000 objects will be passed to cache, 1000 objects
will be traced and all 1000 objects will be removed
from cache. If you read these objects without tx or in
a former tx and then modify one object in a tx and
abort the tx, only one object was traced/removed.

cachingKeyType Determines how the key was build for the
cached objects:
0 - Identity object was used as key, this was the
default setting.
1 - Idenity + jcdAlias name was used as key.
Useful when the same object metadata model
(DescriptorRepository instance) are used for
different databases (JdbcConnectionDescriptor)
2 - Identity + model (DescriptorRepository) was
used as key. Useful when different metadata
model (DescriptorRepository instance) are used
for the same database. Keep in mind that there

OJB Documentation

Page 152
Copyright © All rights reserved.

was no synchronization between cached objects
with same Identity but different metadata model.
3 - all together (Idenity + jcdAlias + model)

Recommendation:
If you take care of cache synchronization and be aware of dirty reads, this implementation is useful for read-only or less update
centric classes.

ObjectCachePerBrokerImpl

This local cache implementation allows to have dedicated caches per PersistenceBroker instance. All calls are delegated to the
cache associated with the current broker instance. When the broker

• does commit a transaction
• does abort/rollback a transaction
• was closed (returned to pool)

the cache was cleared. So no dirty reads will occur, because each thread use it's own PersistenceBroker instance. No corrupted
objects will be found in cache, because the cache was cleared after use.

ObjectCacheJCSImpl

A shared ObjectCache implementation using a JCS region for each classname. More info see turbine-JCS.

ObjectCacheEmptyImpl

This is an 'empty' ObjectCache implementation. Useful when caching was not desired.

Note:
This implementaion does not support circular References. Be careful when using this implementaion with references (this may change in further versions).

ObjectCacheOSCacheImpl

A implementation using OpenSymphony's OSCache. More info see in Clustering HOWTO.

More implementations ...

Additional ObjectCache implementations can be found in org.apache.ojb.broker.cache package.

4.5.12.5. Distributed ObjectCache?

If OJB was used in a clustered enviroment it is mandatory to distribute all shared cached objects across different JVM. More
information how to realize such a cache see here.

4.5.12.6. Implement your own cache

The OJB cache implementations are quite simple but do a good job for most scenarios. If you need a more sophisticated cache
(e.g. with MRU memory management strategies) you'll write your own implementation of the interface
ojb.broker.cache.ObjectCache.
Integration of your implementation in OJB is easy since the object cache is a pluggable component. All you have to do, is to
declare it in the OJB.properties file by setting the ObjectCacheClass property.

Note:
Of course we interested in your solutions! If you have implemented something interesting, just contact us.

OJB Documentation

Page 153
Copyright © All rights reserved.

error:#ext:jakarta/jcs
error:#site:howto/clustering
error:#site:clustering
error:#site:guides/ojb-properties

4.5.12.7. CacheFilter feature

What does cache filtering mean
TODO

Default CacheFilter implementations
TODO

Implement your own filter
TODO

4.5.12.8. Future prospects

TODO

4.5.13. Sequence Manager

4.5.13.1. The OJB Sequence Manager

All sequence manager implementations you will find under the org.apache.ojb.broker.util.sequence package
using the following naming convention SequenceManagerXXXImpl.

Automatical assignment of unique values

As mentioned in mapping tutorial OJB provides a mechanism to automatic assign unique values for primary key attributes.
You just have to enable the autoincrement attribute in the respective FieldDescriptor of the XML repository file as
follows:

<class-descriptor
class="my.Article"
table="ARTICLE"

>
<field-descriptor
name="articleId"
column="ARTICLE_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>
....

</class-descriptor>

This definitions contains the following information:
The attribute articleId is mapped on the table's column ARTICLE_ID. The JDBC Type of this column is INTEGER. This
is a primary key column and OJB shall automatically assign unique values to this attribute.

This mechanism works for all whole-numbered column types like BIGINT, INTEGER, SMALLINT,... and for CHAR,
VARCHAR coliumns. This mechanism helps you to keep your business logic free from code that computes unique Ids for
primary key attributes.

Force computation of unique values

By default OJB triggers the computation of unique ids during calls to PersistenceBroker.store(...). Sometimes it will be
necessary to have the ids computed in advance, before a new persistent object was written to database. This can be done by
simply obtaining the Identity of the respective object as follows:

Identity oid = broker.serviceIdentity().buildIdentity(Object newPersistentObject);

OJB Documentation

Page 154
Copyright © All rights reserved.

error:#site:mapping-tutorial
error:#site:repository/field-descriptor

This creates an Identity object for the new persistent object and set all primary key values of the new persistent object - But it
only works if autoincrement is enabled for the primary key fields.

Warning:
Force computation of unique values is not allowed when using database based Identity columns for primary key generation (e.g via Identity column supporting sequence
manager), because the real PK value is at the earliest available after database insert operation. If you nevertheless force PK computing, OJB will use an temporary dummy PK
value in the Identity object and this may lead to unexpeted behavior.

Info about lookup persistent objects by primary key fields see here.

How to change the sequence manager?

To enable a specific SequenceManager implementation declare an sequence-manager within the
jdbc-connection-descriptor element in the repository file. If no sequence-manager was specified in the
jdbc-connection-descriptor, OJB use a default sequence manager implementation (default was
SequenceManagerHighLowImpl).

Further information you could find in the repository.dtd section sequence-manager element.

Example jdbc-connection-descriptor using sequence-manager tag:

<jdbc-connection-descriptor
jcd-alias="farAway"
platform="Hsqldb"
jdbc-level="2.0"
driver="org.hsqldb.jdbcDriver"
protocol="jdbc"
subprotocol="hsqldb"
dbalias="../OJB_FarAway"
username="sa"
password=""
batch-mode="false"

>
<connection-pool

maxActive="5"
whenExhaustedAction="0"
validationQuery="select count(*) from OJB_HL_SEQ"

/>

<sequence-manager className="org.apache.ojb.broker.util.
sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="grabSize" attribute-value="5"/>
<attribute attribute-name="globalSequenceId"

attribute-value="false"/>
<attribute attribute-name="globalSequenceStart"

attribute-value="10000"/>
</sequence-manager>

</jdbc-connection-descriptor>

The mandatory className attribute needs the full-qualified class name of the desired sequence-manager implementation. If
a implementation needs configuration properties you pass them using attribute tags with attribute-name represents
the property name and attribute-value the property value. Each sequence manager implementation shows all properties
on the according javadoc page.

SequenceManager implementations

Source code of all SequenceManager implementations can be found in
org.apache.ojb.broker.util.sequence package.
If you still think something is missing you can just write your own sequence manager implementation.

OJB Documentation

Page 155
Copyright © All rights reserved.

error:#ext:api/identity
error:#site:pb-tutorial/find-by-pk
error:#site:repository
error:#ext:repository.dtd

High/Low sequence manager

Per default OJB internally uses a High/Low algorithm based sequence manager for the generation of unique ids, as described
in Mapping Objects To Relational Databases.
This implementation is called ojb.broker.util.sequence.SequenceManagerHighLowImpl and is able to
generate IDs unique to a given object and all extent objects declarated in the objects class descriptor.
If you ask for an uid using an interface with several implementor classes, or a baseclass with several subclasses the returned
uid have to be unique accross all tables representing objects of the extent in question (more see here).
It's also possible to use this implementation in a global mode, generate global unique id's.

<sequence-manager className=
"org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="globalSequenceId"

attribute-value="false"/>
<attribute attribute-name="globalSequenceStart"

attribute-value="10000"/>
<attribute attribute-name="autoNaming"

attribute-value="true"/>
</sequence-manager>

With property grabSize you set the size of the assigned ids (default was 20).

If property globalSequenceId was set true you will get global unique ids over all persistent objects. Default was
false.
The attribute globalSequenceStart define the start value of the global id generation (default was 10000).

This sequence manager implementation supports user defined sequence-names to manage the sequences. The attribute
autoNaming define if sequence names should be build automatic if none found in field-descriptor.
If set 'true' OJB try to build a sequence name automatic if none found in field-descriptor and set this name as
sequence-name in field-descriptor (see more). If set 'false' OJB throws an exception if none sequence name was found in
field-descriptor (default was 'true').

Limitations:
- do not use in managed environments when connections were enlisted in running transactions, e.g. when using DataSources
of an application server
- if set connection-pool attribute 'whenExhaustedAction' to 'block' (wait for connection if connection-pool is exhausted), under
heavy load this sequence manager implementation can block application.
- superfluously to mention, do not use if other non-OJB applications insert objects too

In-Memory sequence manager

Another sequence manager implementation is a In-Memory version called
ojb.broker.util.sequence.SequenceManagerInMemoryImpl.
Only the first time an uid was requested for a object, the manager query the database for the max value of the target column -
all following request were performed in memory. This implementation ditto generate unique ids across all extents, using the
same mechanism as the High/Low implementation.

<sequence-manager className="org.apache.ojb.broker.util.
sequence.SequenceManagerInMemoryImpl">

<attribute attribute-name="autoNaming"
attribute-value="true"/>

</sequence-manager>

For attribute autoNaming see

This sequence manager implementation supports user defined sequence-names to manage the sequences (see more) or if not

OJB Documentation

Page 156
Copyright © All rights reserved.

error:#ext:ambysoft

set in field-descriptor it is done automatic.

This is the fastest standard sequence manager implementation, but has some Limitations:
- do not use in clustered environments
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert objects too

Database sequences based implementation

If your database support sequence key generation (e.g. Oracle, SAP DB, PostgreSQL) you could use the
SequenceManagerNextValImpl implementation let your database generate the requested ids.

<sequence-manager className="org.apache.ojb.broker.util.
sequence.SequenceManagerNextValImpl">

<attribute attribute-name="autoNaming"
attribute-value="true"/>

</sequence-manager>

Attribute autoNaming default was 'true'. If set 'true' OJB try to build a sequence name automatic if none found in
field-descriptor and set this generated name as sequence-name in field-descriptor.
If set 'false' OJB throws an exception if none sequence name was found in field-descriptor, ditto OJB does NOT try to create a
database sequence entry when for given sequence name no database sequence could be found.

When using this sequence manager it is possible to define a sequence-name field-descriptor attribute in the repository
file for each autoincrement/pk field. If you don't specify a sequence name, the sequence manager try to build a extent-aware
sequence name on its own - except you set attribute autoNaming to 'false', then an exception will be thrown.
Keep in mind that in this case you are responsible to be aware of extents. Thus you have to use the same sequence-name
attribute value for all extents, even if the extents were mapped to different database tables.
See usage of the sequence-name attribute:

<class-descriptor
class="org.apache.ojb.broker.sequence.SMDatabaseSequence"
table="SM_TAB_DATABASE_SEQUENCE"

>
<field-descriptor
name="seqId"
column="SEQ_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
sequence-name="TEST_SEQUENCE"
/>

....
</class-descriptor>

Limitations:
- none known

Database sequences based high/low implementation

Based on the sequence manager implementation described above, but use a high/low algorithm to avoid database access.

<sequence-manager className="org.apache.ojb.broker.util.
sequence.SequenceManagerSeqHiLoImpl">

<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming"

attribute-value="true"/>
</sequence-manager>

With the property grabSize you set the size of the assigned ids. For attribute autoNaming see.

This sequence manager implementation supports user defined sequence-names to manage the sequences (see more) or if not

OJB Documentation

Page 157
Copyright © All rights reserved.

set in field-descriptor it is done automatic.

Limitations:
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert objects too

Oracle-style sequencing

(By Ryan Vanderwerf et al.) This solution will give those seeking an oracle-style sequence generator a final answer (Identity
columns really suck). If you are using multiple application servers in your environment, and your database does not support
read locking like Microsoft SQL Server, this is the only safe way to guarantee unique keys (HighLowSequenceManager WILL
give out duplicate keys, and corrupt your data).
The SequenceManagerStoredProcedureImpl implementation enabled database sequence key generation in a
Oracle-style for all databases (e.g. MSSQL, MySQL, DB2, ...).
First add a new table OJB_NEXTVAL_SEQ to your database.

CREATE TABLE OJB_NEXTVAL_SEQ
(

SEQ_NAME VARCHAR(150) NOT NULL,
MAX_KEY INTEGER,
CONSTRAINT SYS_PK_OJB_NEXTVAL PRIMARY KEY(SEQ_NAME)

)

You will also need a stored procedure called ojb_nextval_proc that will take care of giving you a guaranteed unique
sequence number.
Here is an example for the stored procedure you need to use sequencing for MSSQL server:

CREATE PROCEDURE OJB_NEXTVAL_PROC
@SEQ_NAME varchar(150)
AS
declare @MAX_KEY BIGINT
-- return an error if sequence does not exist
-- so we will know if someone truncates the table
set @MAX_KEY = 0

UPDATE OJB_NEXTVAL_SEQ
SET @MAX_KEY = MAX_KEY = MAX_KEY + 1
WHERE SEQ_NAME = @SEQ_NAME

if @MAX_KEY = 0
select 1/0
else
select @MAX_KEY
RETURN @MAX_KEY

You have to adapt this script if MSSQL was not used (We are interested in scripts for other databases). Last, enable this
sequence manager implementation:

<sequence-manager className="org.apache.ojb.broker.util.
sequence.SequenceManagerStoredProcedureImpl">

<attribute attribute-name="autoNaming"
attribute-value="true"/>

</sequence-manager>

For attribute autoNaming see .

This sequence manager implementation supports user defined sequence-names to manage the sequences (see more) or if not
set in field-descriptor it is done automatic.

Limitations:
- currently none known

Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

OJB Documentation

Page 158
Copyright © All rights reserved.

For those users you are using SQL Server 7.0 and up, the uniqueidentifier was introduced, and allows for your rows Primary
Keys to be GUID's that are guaranteed to be unique in time and space.

However, this type is different than the Identity field type, whereas there is no way to programmatically retrieve the inserted
value. Most implementations when using the u.i. field type set a default value of "newid()". The
SequenceManagerMSSQLGuidImpl class manages this process for you as if it was any normal generated sequence/identity
field.

Assuming that your PK on your table is set to 'uniqueidentifier', your field-description would be the same as using any other
SequenceManager:

<field-descriptor
name="guid"
column="document_file_guid"
jdbc-type="VARCHAR"
primarykey="true"
autoincrement="true"

/>

Note that the jdbc-type is a VARCHAR, and thus the attribute (in this case 'guid') on your class should be a String (SQL Server
does the conversion from the String representation to the binary representation when retrieved/set).

You also need to turn on the SequenceManager in your jdbc-connection-descriptor like this:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerMSSQLGuidImpl"

/>

Limitations:
-This will only work with SQL Server 7.0 and higher as the uniqueidentifier type was not introduced until then.
This works well in situations where other applications might be updated the database as well, because it guarantees (well, as
much as Microsoft can guarantee) that there will be no collisions between the Guids generated.

Identity based sequence manager

This sequence manager implementation supports database Identity columns (supported by MySQL, MsSQL, HSQL, ...). When
using identity columns we have to do a trick to make the sequence manager work.
OJB identify each persistence capable object by a unique ojb-Identity object. These ojb-Identity objects were created using the
sequence manager instance to get UID's. Often these ojb-Identity objects were created before the persistence capable object
was written to database.
When using Identity columns it is not possible to retrieve the next valid UID before the object was written to database. As
recently as the real object was written to database, you can ask the DB for the last generated UID. Thus in
SequenceManagerNativeImpl we have to do a trick and use a 'temporary' UID till the object was written to database.
So, if it's possible try to avoid using Identity columns in your database model. If not use this sequence manager
implementation to as a workaround for the Identity problem.

To enable this sequence manager implementation set in your jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNativeImpl">

</sequence-manager>

To declare the identity column in the repository.xml file add primarykey="true", autoincrement="true" and
access="readonly" to the field-descriptor for your table's primary key identity column.

<field-descriptor

OJB Documentation

Page 159
Copyright © All rights reserved.

name="identifier"
column="NATIVE_ID"
jdbc-type="BIGINT"
primarykey="true"
autoincrement="true"
access="readonly"/>

Limitations:
- The Identity columns have to start with value >= 1 and should never be negative.
- Use of Identity columns is not extent aware (This may change in further versions). More info here.

How to write my own sequence manager?

Very easy to do, just write a implementation class of the interface
org.apache.ojb.broker.util.sequence.SequenceManager. OJB use a factory (
SequenceManagerFactory) to obtain sequence manager instances.

This Factory can be configured to generate instances of your specific implementation by adding a sequence-manager tag
in the jdbc-connection-descriptor.

<sequence-manager className="my.SequenceManagerMYImpl">
</sequence-manager>

That's it!

If your sequence manager implementation was derived from
org.apache.ojb.broker.util.sequence.AbstractSequenceManager it's easy to pass configuration
properties to your implementation using attribute tags.

<sequence-manager className="my.SequenceManagerMYImpl">
<attribute attribute-name="myProperty" attribute-value="test"/>
</sequence-manager>

With

public String getConfigurationProperty(String key, String defaultValue)

method get the properties in your implementation class.

Note:
Of course we interested in your solutions! If you have implemented something interesting, just contact us.

Questions

When using sequence-name attribute in field-descriptor?

Most SequenceManager implementations based on sequence names. If you want retain control of sequencing use your own
sequence-name attribute in the field-descriptor. In that case you are reponsible to use the same name across
extents (see more info about extents and polymorphism). Per default the sequence manager build its own extent aware
sequence name with an simple algorithm (see
org.apache.ojb.broker.util.sequence.SequenceManagerHelper#buildSequenceName) if necessary.
In most cases this should be sufficient. If you have a very complex data model and you will do many metadata changes in the
repository file in future, then it could be better to explicit use sequence-names in the field-descriptor. See more
avoid pitfals.

What to hell does extent aware mean?

Say we have a abstract base class Animal and two classes Dog and Cat which extend Animal. For each non-abstract class

OJB Documentation

Page 160
Copyright © All rights reserved.

error:#site:advanced-technique/polymorphism

we create a separate database table.
We will be able to do a query like give me all animals. Thus the uid's of Dog and Cat objects must be unique across the tables
of both classes or else you may not get a vaild query result.
The reason for this behaviour is the org.apache.ojb.broker.Identity class implementation (this may change in
further versions).

How could I prevent auto-build of the sequence-name?

All shipped SequenceManager implementations which using sequence names for UID generation, support by default
auto-build (autoNaming) of the sequence name if none was found in the field-descriptor.
To prevent this, all relevant SM implementations support a autoNaming property - set via attribute element. If set
false OJB doesn't try to build sequence names automatic.

<sequence-manager className="XYZ">
...

<attribute attribute-name="autoNaming" attribute-value="true"/>
...
</sequence-manager>

Sequence manager handling using multiple databases

If you use multiple databases you have to declare a sequence manager in each jdbc-connection-descriptor. If you
don't specify a sequence manager OJB use the default one (currently
ojb.broker.util.sequence.SequenceManagerHighLowImpl).

One sequence manager with multiple databases?

OJB was intended to use a sequence manager per database. But it shouldn't be complicated to realize a global sequence
manager solution by writing your own SequenceManager implementation.

Can I get direct access to the sequence manager?

That's no problem:

PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(myPBKey);
SequenceManager sm = broker.serviceSequenceManager();
...
broker.close();

If you use autoincrement=true in your field-descriptor, there is no reason to obtain UID directly from the
sequence manager or to handle UID in your object model.

Note:
Don't use SequenceManagerFactory#getSequenceManager(PersistenceBroker broker), this method returns a new sequence manager instance for the given broker instance and
not the current used SM instance of the given PersistenceBroker instance]

Any known pitfalls?

• When enable a sequence manager implementation based on sequence-name attributes and if the name was not set as an
attribute in the field-descriptor (see), an simple algorithm was used to build the sequence name.
The algorithm try to get the top-level class of the field's enclosing class, if no top-level class was found, the table name of
the field's enclosing class was used. If a top-level class was found, the first found extent class table name was used as
sequence name.
When using base classes/interfaces with extent classes based on different database tables and the extent-class entries
in repository often change, the algorithm could be corrupted, because the first found extent class's table name could be
change.

OJB Documentation

Page 161
Copyright © All rights reserved.

To avoid this, remove the implementation internal sequence name entry (e.g. OJB_HL_SEQ table entry when using the
Hi/Lo implementation, or remove the database sequence entry when using the 'Nextval' implementation) in that case, or use
custom sequence name attributes in the field descriptor.

4.5.14. OJB logging configuration

4.5.14.1. Logging in OJB

For generating log messages, OJB provides its own, simplistic logging component PoorMansLoggerImpl, but is also able to
use the two most common Java logging libraries, commons-logging (which is actually a wrapper around several logging
components) and Log4j. In addition, it is also possible to define your own logging implementation.

Per default, OJB uses its own PoorMansLoggerImpl which does not require configuration and prints to stdout.

4.5.14.2. Logging configuration within OJB

How and when OJB determines what kind of logging to use

Logging is the first component of OJB that is initialized. If you access any component of OJB, logging will be initialized first
before that component is doing anything else. Therefore, you'll have to provide for the configuration of logging before you
access OJB in your program (this is mostly relevant if you plan to initialize OJB at runtime as is described below). Please note
that logging configuration is independent of the configuration of other parts of OJB, namely the runtime (via OJB.properties)
and the database/repository (via repository.xml).

These are the individual steps OJB performs in order to initialize the logging component:

1. First, OJB checks whether the system property org.apache.ojb.broker.util.logging.Logger.class is
set. If specified, this property gives the fully qualified class name of the logger class (a class implementing the Logger
interface). Along with this property, another property is then read which may specify a properties file for this logger class,
org.apache.ojb.broker.util.logging.Logger.configFile.

2. If this property is not set, then OJB tries to read the file OJB-logging.properties. The name and path of this file
can be changed by setting the runtime property of the same name. See below for the contents of this file.

3. For backwards compatibility, OJB next tries to read the logging settings from the file OJB.properties which is the normal
runtime configuration file of OJB. Again, the name and path of this file can be changed by setting the runtime property of
the same name. This file may contain the same entries as the OJB-logging.properties file.

4. If the the OJB.properties file does not contain logging settings, next it is checked whether the commons-logging log
property org.apache.commons.logging.Log or the commons-logging log factory system property
org.apache.commons.logging.LogFactory is set. If that's the case, OJB will use commons-logging for its
logging purposes.

5. Next, OJB checks for the presence of the Log4j properties file log4j.properties. If it is found, the OJB uses Log4j
directley (without commons-logging).

6. Finally, OJB tries to find the commons-logging properties file commons-logging.properties which when found
directs OJB to use commons-logging for its logging.

7. If none of the above is true, or if the specified logger class could not be found or initialized, then OJB defaults to its
PoorMansLoggerImpl logger which simply logs to stdout.

The only OJB component whose logging is not initialized this way, is the boot logger which is used by logging component
itself and a few other core components. It will (for obvious reasons) always use PoorMansLoggerImpl and therefore log to
stdout. You can define the log level of the boot logger via the OJB.bootLogLevel system property. Per default, WARN
is used.

Configuration of logging for the individual components

Regardless of the logging implementation that is used by OJB, the configuration is generally similar. The individual logging

OJB Documentation

Page 162
Copyright © All rights reserved.

error:#ext:api/poor-mans-logger
error:#ext:jakarta/commons-logging
error:#ext:log4j
error:#ext:api/poor-mans-logger
error:#site:ojb-properties
error:#site:repository
error:#ext:api/logger
error:#site:ojb-properties
error:#ext:api/poor-mans-logger

implementations mainly differ in the syntax and in the configuration of the format of the output and of the output target (where
to log to). See below for specific details and examples.
In general, you specify a default log level and for every component (usually a class) that should log differently, the amount and
level of detail that is logged about that component. These are the levels:

DEBUG
Messages that express what OJB is currently doing. This is the most detailed debugging level
INFO
Informational messages
WARN
Warnings that may denote potentional problems (this is the default level)
ERROR
As the name says, this level is for errors which means that some action could not be completed successfully
FATAL
Fatal errors which usually prevent an application from continuing

The levels DEBUG and INFO usually result in a lot of log messages which will reduce the performance of the application.
Therefore these levels should only be used when necessary.

There are two special loggers to be aware of. The boot logger is the logger used by the logging component itself as well as a
few other core components. It will therefore always use the PoorMansLoggerImpl logging implementation. You can configure
its logging level via the OJB.bootLogLevel system property.
The default logger is denoted in the OJB-logging.properties file by the keyword DEFAULT instead of the class
name. It is used by components that don't require their own logging configuration (usually because they are rather small
components).

4.5.14.3. Logging configuration via configuration files

OJB-logging.properties

This file usually specifies which logging implementation to use using the
org.apache.ojb.broker.util.logging.Logger.class property, and which properties file this logger has (if
any) using the org.apache.ojb.broker.util.logging.Logger.configFile property. You should also use
this file to specify log levels for OJB's components if you're not using Log4j or commons-logging (which have their own
configuration files).

A typical OJB-logging.properties file looks like this:

Which logger to use
org.apache.ojb.broker.util.logging.Logger.class=org.apache.ojb.broker.util.logging.PoorMansLoggerImpl

Configuration file of the logger
#org.apache.ojb.broker.util.logging.Logger.configFile=

Global default log level used for all logging entities if not specified
ROOT.LogLevel=ERROR

The log level of the default logger
DEFAULT.LogLevel=WARN

Logger for PersistenceBrokerImpl class
org.apache.ojb.broker.core.PersistenceBrokerImpl.LogLevel=WARN

Logger for RepositoryXmlHandler, useful for debugging parsing of repository.xml!
org.apache.ojb.broker.metadata.RepositoryXmlHandler.LogLevel=WARN

commons-logging.properties

OJB Documentation

Page 163
Copyright © All rights reserved.

error:#ext:api/poor-mans-logger

This file is used by commons-logging. For details on its structure see here.

An example commons-logging.properties file would be:

Use Log4j
org.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger

Configuration file of the log
log4j.configuration=log4j.properties

Note:
Since commons-logging provides the same function as the logging component of OJB, it will likely be used as OJB's logging component in the near future.

log4j.properties

The commons-logging configuration file. Details can be found here.

A sample log4j configuration is:

Root logging level is WARN, and we're using two logging targets
log4j.rootCategory=WARN, A1, A2

A1 is set to be ConsoleAppender sending its output to System.out
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

Appender A2 writes to the file "org.apache.ojb.log".
log4j.appender.A2=org.apache.log4j.FileAppender
log4j.appender.A2.File=org.apache.ojb.log

Truncate the log file if it aleady exists.
log4j.appender.A2.Append=false

A2 uses the PatternLayout.
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

Special logging directives for individual components
log4j.logger.org.apache.ojb.broker.metadata.RepositoryXmlHandler=DEBUG
log4j.logger.org.apache.ojb.broker.accesslayer.ConnectionManager=INFO
log4j.logger.org.apache.ojb.odmg=INFO

Where to put the configuration files

OJB and the different logging implementations usually look up their configuration files in the classpath. So for instance, OJB
searches for the OJB-logging.properties file directly in any of the entries of the classpath, directories and jar files. If
the classpath contains in that order some-library.jar, db-ojb.jar, and ., then it will first search in the two jars
(which themselves contain a directory structure in which OJB will search only in the root), and lastly in the current directory
(which only happens if . is part of the classpath) but not in sub directories of it.

For applications, this classpath can easily be set either as an environment variable CLASSPATH or by using the commandline
switch -classpath when invoking the java executable.

For web applications however, the server will define the classpath. There are specific folders in the webapp structure that are
always part of the webapp's classpath. The one that is normally used to store configuration files, is the classes folder:

[folder containing webapps]\
mywebapp\

OJB Documentation

Page 164
Copyright © All rights reserved.

error:#ext:jakarta/commons-logging
error:#ext:jakarta/commons-logging/configuration
error:#ext:log4j
error:#ext:log4j/configuration

WEB-INF\
lib\
classes\ <-- Put your configuration files here

4.5.14.4. Logging configuration at runtime

Sometimes you want to configure OJB completely at runtime (within your program). How to do that for logging depends on
the used logging implementation, but you can usually configure them via system properties. The only thing to keep in mind is
that logging in OJB is initialized as soon as you use one of its components, so you'll have to define the properties prior to using
any OJB parts.

With system properties (which are accessible via System.getProperty() from within a Java program) you can always
define the following OJB logging settings:

org.apache.ojb.broker.util.logging.Logger.class
Which logger OJB shall use
org.apache.ojb.broker.util.logging.Logger.configFile
The config file of the logger
OJB-logging.properties
The path to the logging properties file, default is OJB-logging.properties
OJB.properties
The path to the OJB properties file (which may contain logging settings), default is OJB.properties
org.apache.commons.logging.Log
Use commons-logging with the specified log implementation
org.apache.commons.logging.LogFactory
Use commons-logging with the specified log factory
log4j.configuration
When using Log4j directly or via commons-logging, this is the Log4j configuration file (default is
log4j.properties)

In addition, all Log4j properties (e.g. log4j.rootCategory) can be specified as system properties.

4.5.14.5. Defining your own logger

It is rather easy to use your own logger. All you need to do is to provide a class that implements the interface Logger. Besides
the actual log methods (debug, info, warn, error, fatal) this interface defines a method void
configure(Configuration) which is used to initialize the logger with the logging properties (as contained in
OJB-logging.properties).

Note:
Because commons-logging performs a similar function to the OJB logging component, it is likely that it will be used as such in the near future. Therefore you're encouraged to
also implement the Log interface which is nearly the same as the Logger interface.

4.5.15. The ODMG Lock Manager

4.5.15.1. What it does

The OJB ODMG implementation provides object level transactions as specified by the ODMG. This includes features like
registering objects to transactions, persistence by reachability (a toplevel object is registered to a transaction, and also all its
associated objects become registered implicitely) and as a very important aspect: object level locking.
Lockmanagement is needed to synchronize concurrent access to objects from multiple transactions (possibly from remote
machines).
An example: There are two transactions tx1 and tx2 running on different physical machines. Tx1 acquired a write lock on
an object obj with the globally unique identity oid. Now also tx2 tries to get a write lock on an object obj' (it's not the

OJB Documentation

Page 165
Copyright © All rights reserved.

error:#ext:api/logger
error:#ext:jakarta/commons-logging/api-log
error:#ext:api/logger

same object as it resides in a different VM!) with the same identity oid (an OJB Identity is unique accross VMs !). The OJB
LockManager is responsible for detecting this conflict and doesn't allow tx2 to obtain a write lock to prevent data
inconsistency.

The ODMG Api allows transactions to lock an object obj as follows:

org.odmg.Transaction.lock(Object obj, int lockMode),

where lockMode defines the locking mode:

/** Read lock mode.*/
public static final int READ = 1;

/** Upgrade lock mode. */
public static final int UPGRADE = 2;

/** Write lock mode. */
public static final int WRITE = 4;

A sample session could look as follows:

// get odmg facade instance
Implementation odmg = OJB.getInstance();

//open database
Database db = odmg.newDatabase();
db.open("repository.xml", Database.OPEN_READ_WRITE);

// start a transaction
Transaction tx = odmg.newTransaction();
tx.begin();

MyClass myObject = ... ;

// lock object for read access
tx.lock(myObject, Transaction.READ);

// now perform read access on myObject ...

// lock object for write access
tx.lock(myObject, Transaction.UPGRADE);

// now perform write access on myObject ...

// finally commit transaction to make changes to myObject persistent
tx.commit();

The ODMG specification does not say if locks must be acquired explicitely by client applications or may be acquired
implicitely. OJB provides implicit locking for the application programmers convenience: On commit of a transaction all
read-locked objects are checked for modifications. If a modification is detected, a write lock is acquired for the respective
object. If automatic acquisition of read- or write-lock failes, the transaction is aborted.

On locking an object to a transaction, OJB automatically locks all associated objects (as part of the persistence by reachability
feature) with the same locking level. If application use large object nets which are shared among several transactions
acquisition of write-locks may be very difficult. Thus OJB can be configured to aquire only read-locks for associated objects.
You can change this behaviour by modifying the file OJB.properties and changing the entry LockAssociations=WRITE
to LockAssociations=READ.

The ODMG specification does not prescribe transaction isolationlevels or locking strategies to be used. Thus there are no API
calls for setting isolationlevels. OJB provides four different isolationlevels that can be configured for each persistent class in
the XML repository.
The isolationlevel of a class can be configured with the following attribute to a ClassDescriptor:

OJB Documentation

Page 166
Copyright © All rights reserved.

error:#site:ojb-properties

<ClassDescriptor isolation="read-uncomitted" ...>
...

</ClassDescriptor>

The four supported values are:

• read-uncommitted
• read-committed
• repeatable-read
• serializable

The semantics of these isolationlevels is defined below.

4.5.15.2. How it works

To provide Lockmanagement in a massively distributed environment as the OJB client/server architecture, OJB implements a
LockManager that allows transaction coordination accross multiple threads, multiple VMs and even multiple physical
machines running OJB ODMG transactions. The Default Implementation of this LockManager uses a database table to store
locks. To make locks persistent allows to make them visible to all connected ODMG clients. Thus there is no need for an
additional LockManager server that is accessed from all ODMG clients.

The LockManager interface provides the following API:

public interface LockManager
{

/**
* aquires a readlock for transaction tx on object obj.
* Returns true if successful, else false.
*/
public abstract boolean readLock(TransactionImpl tx, Object obj);

/**
* aquires a writelock for transaction tx on object obj.
* Returns true if successful, else false.
*/
public abstract boolean writeLock(TransactionImpl tx, Object obj);

/**
* upgrades readlock for transaction tx on object obj to a writelock.
* If no readlock existed a writelock is acquired anyway.
* Returns true if successful, else false.
*/
public abstract boolean upgradeLock(TransactionImpl tx, Object obj);

/**
* releases a lock for transaction tx on object obj.
* Returns true if successful, else false.
*/
public abstract boolean releaseLock(TransactionImpl tx, Object obj);

/**
* checks if there is a readlock for transaction tx on object obj.
* Returns true if so, else false.
*/
public abstract boolean checkRead(TransactionImpl tx, Object obj);

/**
* checks if there is a writelock for transaction tx on object obj.
* Returns true if so, else false.
*/
public abstract boolean checkWrite(TransactionImpl tx, Object obj);

}

The lockmanager must allow and disallow locking according to the Transaction Isolationlevel specified for
obj.getClass()in the XML RepositoryFile. It does so by applying a corresponding LockStrategy. LockStrategies are

OJB Documentation

Page 167
Copyright © All rights reserved.

selected by the LockStrategyFactory:

private static LockStrategy readUncommitedStrategy =
new ReadUncommittedStrategy();

private static LockStrategy readCommitedStrategy =
new ReadCommittedStrategy();

private static LockStrategy readRepeatableStrategy =
new RepeatableReadStrategy();

private static LockStrategy serializableStrategy =
new SerializableStrategy();

/**
* Obtains a LockStrategy for Object obj. The Strategy to be used is
* selected by evaluating the ClassDescriptor of obj.getClass().
*
* @return LockStrategy
*/
public static LockStrategy getStrategyFor(Object obj)
{

int isolationLevel = getIsolationLevel(obj.getClass());
switch (isolationLevel)
{

case IsolationLevels.RW_READ_UNCOMMITTED:
return readUncommitedStrategy;

case IsolationLevels.RW_READ_COMMITTED:
return readCommitedStrategy;

case IsolationLevels.RW_REPEATABLE_READ:
return readRepeatableStrategy;

case IsolationLevels.RW_SERIALIZABLE:
return serializableStrategy;

default:
return readUncommitedStrategy;

}
}

The four LockStrategies implement different behaviour according to the underlying isolationlevel. The semantics of the
strategies are defined by the following table:

Nr. Name of
TestCase

Transactions Transaction-Isolationlevel

Tx1 Tx2 ReadUncommitedReadCommitedRepeatableReadsSerializable

1 SingleReadlockR True True True True

18 ReadThenReadR True True True True

R

2 UpgradeReadlockR True True True True

U

3 ReadThenWriteR True True True True

W

4 SingleWritelockW True True True True

5 WriteThenReadW True True True True

R

OJB Documentation

Page 168
Copyright © All rights reserved.

6 MultipleReadlockR R True True True False

7 UpgradeWithExistingReaderR U True True False False

8 WriteWithExistingReaderR W True True False False

9 UpgradeWithMultipleReadersR R True True False False

U

10 WriteWithMultipleReadersR R True True False False

W

11 UpgradeWithMultipleReadersOn1R R True True False False

W

12 WriteWithMultipleReadersOn1R R True True False False

W

13 ReadWithExistingWriterW R True False False False

14 MultipleWritelocksW W False False False False

15 ReleaseReadLockR True True True True

Rel W

16 ReleaseUpgradeLockU True True True True

Rel W

17 ReleaseWriteLockW True True True True

Rel W

Acquire
ReadLock

R

Acquire
WriteLock

W

Upgrade
Lock

U

Release
Lock

Rel

The table is to be read as follows. The acquisition of a single read lock on a given object (case 1) is allowed (returns True) for
all isolationlevels. To upgrade a single read lock (case 2) is also allowed for all isolationlevels. If there is already a write lock
on a given object for tx1, it is not allowed (returns False) to obtain a write lock from tx2 for all isolationlevels (case 14).

OJB Documentation

Page 169
Copyright © All rights reserved.

The isolationlevels can be simply characterized as follows:

Uncommitted Reads
Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining read locks is allowed even if
another transaction is writing to that object (case 13). (Thats why this level is also called dirty reads)

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locks is allowed only if there is no write
lock on the given object (case 13).

Repeatable Reads
As commited reads, but obtaining a write lock on an object that has been locked for reading by another transaction is not
allowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object (case 6).

The proper behaviour of the LockStrategies is checked by JUnit TestCases that implement test methods for each of the 17
cases specified in the above table. (See code for classes test.ojb.odmg.LockTestXXX)

4.5.15.3. Locking in distributed environment

############ TODO ############

4.5.15.4. Implement you own lock manager

The LockManager default implementation uses a database table to make locks globally visible to all connected clients. This is
a foolproof solution as it does not require a separate LockManager server. But it involves a lot of additional database traffic, as
each lock check, acquisition or release results in database operations.
This may not be viable in some environments. Thus OJB allows to plug in user defined LockManagers implementing the
ojb.odmg.locking.LockManager interface. OJB obtains its LockManager from the factory
ojb.odmg.locking.LockManagerFactory. This Factory can be configured to generate instances of a specific
implementation by changing the following entry in the configuration file OJB Properties file:

LockManagerClass=ojb.odmg.locking.LockManagerDefaultImpl

to:

LockManagerClass=acme.com.MyOwnLockManagerImpl.

Note:
Of course I'm interested in your solutions! If you have implemented something interesting, just contact me.

4.5.16. XDoclet OJB module documentation

4.5.16.1. Acquiring and building

The XDoclet OJB module is part of OJB source. As such, the source of the module is part of the OJB source tree and can be
found in directory src/xdoclet. Likewise, binary versions of the module and the required libraries (xjavadoc, xdoclet) are to be
found in the lib folder.

In order to build the XDoclet OJB module from source, you'll need a source distribution of XDoclet version 1.2, either a
source distribution from the sourceforge download site or a CVS checkout/drop. See the XDoclet website at
http://xdoclet.sourceforge.net/install.html for details.

OJB Documentation

Page 170
Copyright © All rights reserved.

error:#ext:xdoclet/install

Building with a XDoclet source distribution

Unpack the source distribution of XDoclet which is contained in a file
xdoclet-src-<version>.<archive-format> somewhere. If you unpacked it side-by-side of OJB, you'll get a
directory layout similar to:

\xdoclet-1.2
\config
\core
\lib
...

\db-ojb
\bin
\contrib
...

The XDoclet OJB module is then build using the build-xdoclet-module.xml ant script:

ant -Dxdoclet.src.dir=../xdoclet-1.2 -f build-xdoclet-module.xml

The build process will take some time, and after successful compilation the three jars xjavadoc-<version>.jar,
xdoclet-<version>.jar, and xdoclet-ojb-module-<version>.jar are copied to the library directory of
OJB.

Building with a XDoclet CVS checkout

When checking out from CVS (the xdoclet-all target), you'll get a directory like:

\xdoclet-all
\xdoclet

\config
\core
...

\xdocletgui
\xjavadoc

\db-ojb
\bin
\contrib
...

Building is XDoclet OJB module is performed by calling:

ant -Dxdoclet.src.dir=../xdoclet-all/xdoclet -f build-xdoclet-module.xml

Since this is the default structure assumed by the build script, this can be shortend to:

ant -f build-xdoclet-module.xml

Other build options

The build script for the XDoclet OJB module uses the OJB build properties so the following line added to the
build.properties file in the OJB root directory allows to omit the -Dxdoclet.src.dir=<xdoclet src dir>
commandline option:

xdoclet.src.dir=<xdoclet src dir>

4.5.16.2. Usage

Using the XDoclet OJB module is rather easy. Put the module jar along with the xdoclet and xjavadc jars in a place where ant
will find it, and then invoke it in your build file like:

OJB Documentation

Page 171
Copyright © All rights reserved.

<target name="repository-files">
<taskdef name="ojbdoclet"

classname="xdoclet.modules.ojb.OjbDocletTask"
classpathref="build-classpath">

<ojbdoclet destdir="./build">
<fileset dir="./src"/>
<ojbrepository destinationFile="repository_user.xml"/>
<torqueschema databaseName="test" destinationFile="project-schema.xml"/>

</ojbdoclet>
</target>

The XDoclet OJB module has two sub tasks, ojbrepository and torqueschema, which generate the OJB repository
part containing the user descriptors and the torque table schema, respectively. Please note that the XDoclet OJB module (like
all xdoclet tasks) expects the directory structure of its input java source files to match their package structure. In this regard it
is similar to the javac ant task.
Due to a bug in XDoclet, you should not call the ojbdoclet task more than once in the same taskdef scope. So, each
ojbdoclet call should be in its own target with a leading taskdef.

The main ojbdoclet task has two attributes:

destdir
The destination directory where generated files will be placed.
checks : none | basic | strict (default)
The amount of the checks performed. Per default, strict checks are performed which means that for instance
classes specified in an attribute (e.g. collection-class, row-reader etc.) are loaded from the classpath
and checked. So in this mode it is necessary to have OJB as well as the processed classes on the classpath
(using the classpathref attribute of the taskdef ant task above). If this is for some reason not possible,
then use basic which performs most of the checks but does not load classes from the classpath. none does
not perform any checks so use it with care and only if really necessary (in this case it would be helpful if you
would post the problem to the ojb-user mailing list).

The ojbrepository subtask has the following attributes:

destinationFile
Specifies the output file. The default is repository_user.xml.
verbose : true | false (default)
Whether the task should output some information about its progress.

The torqueschema subtask has these attributes:

databaseName
This attribute gives the name of the database for torque (required).
destinationFile
The output file, default is project-schema.xml.
dtdUrl
Allows to specify the url of the torque dtd. This is necessary e.g. for XML parsers that have problems with the
default dtd url (http://jakarta.apache.org/turbine/dtd/database.dtd), or when using a newer version of torque.
generateForeignkeys : true (default) | false
Whether foreignkey tags are generated in the torque database schema.
verbose : true | false (default)
Whether the task outputs some progress information.

The classpathref attribute in the taskdef can be used to define the classpath for xdoclet (containing the xdoclet and ojb
module jars), e.g. via:

<path id="build-classpath">
<fileset dir="lib">

<include name="**/*.jar"/>
</fileset>

</path>

OJB Documentation

Page 172
Copyright © All rights reserved.

Using the generated torque schema is a bit more tricky. The easiest way is to use the build-torque.xml script which is
part of OJB. Include the lib subdirectory of the OJB distribution which also includes torque (e.g. in build-classpath as
shown above). You will also want to use your OJB settings (if you're using the ojb-blank project, then only
build.properties), so include them at the beginning of the build script if they are not already there:

<property file="build.properties"/>

Now you can create the database with ant calls similar to these:

<target name="init-db" depends="repository-files">
<!-- Torque's build file -->
<property name="torque.buildFile"

value="build-torque.xml"/>

<!-- The name of the database which we're taking from the profile -->
<property name="torque.project"

value="${databaseName}"/>

<!-- Where the schemas (your project and, if required, ojb's internal tables) are -->
<property name="torque.schema.dir"

value="src/schema"/>

<!-- Build directory of Torque -->
<property name="torque.output.dir"

value="build"/>

<!-- Torque will put the generated sql here -->
<property name="torque.sql.dir"

value="${torque.output.dir}"/>

<!-- Torque shall use the classpath (to find the jdbc driver etc.) -->
<property name="torque.useClasspath"

value="true"/>

<!-- Which jdbc driver to use (again from the profile) -->
<property name="torque.database.driver"

value="${jdbcRuntimeDriver}"/>

<!-- The url used to build the database; note that this may be different
from the url to access the database (e.g. for MySQL) -->

<property name="torque.database.buildUrl"
value="${urlProtocol}:${urlSubprotocol}:${urlDbalias}"/>

<!-- Now we're generating the database sql -->
<ant dir="."

antfile="${torque.buildFile}"
target="sql">

</ant>
<!-- Next we create the database -->
<ant dir="."

antfile="${torque.buildFile}"
target="create-db">

</ant>
<!-- And the tables -->
<ant dir="."

antfile="${torque.buildFile}"
target="insert-sql">

</ant>
</target>

As you can see, the major problem of using Torque is to correctly setup Torque's build properties.

One important thing to note here is that the latter two calls modify the database and in the process remove any existing data, so
use them with care. Similar to the above targets, you can use the additional targets datadump for storing the data currently in
the database in an XML file, and datasql for inserting the data from an XML file into the database.

OJB Documentation

Page 173
Copyright © All rights reserved.

error:#site:getting-started

Also, these steps are only valid for the torque that is delivered with OJB, but probably not for newer or older versions.

4.5.16.3. Tag reference

Interfaces and Classes
ojb.class
ojb.extent-class
ojb.modify-inherited
ojb.object-cache
ojb.index
ojb.delete-procedure
ojb.insert-procedure
ojb.update-procedure
ojb.constant-argument
ojb.runtime-argument
Fields and Bean properties
ojb.field
References
ojb.reference
Collections
ojb.collection
Nested objects
ojb.nested
ojb.modify-nested

4.5.16.4. Interfaces and Classes

ojb.class

The ojb.class tag marks interfaces and classes that shall be present in the repository descriptor. This includes types that are
used as reference targets or as collection elements, but for instance not abstract base classes not used elsewhere.

Attributes:

attributes
Optionally contains attributes of the class as a comma-separated list of name-value pairs.
determine-extents : true (default) | false
When set to true, then the XDoclet OJB module will automatically determine all extents (ojb-relevant sub
types) of this type. If set to false, then extents need to be specified via the ojb.extent-class class tag (see
below).
documentation
Optionally contains documentation on the class.
generate-table-info : true (default) | false
This attribute controls whether the type has data and should therefore get a torque table descriptor. When set to
false, no field, reference or collection descriptors are generated.
include-inherited : true (default) | false
Determines whether base type fields/references/collections with the appropriate tags (ojb.field, ojb.reference,
ojb.collection) will be included in the descriptor and table definition of this class. Note that all base type
fields/references/collections with an appropriate tag are included regardless of whether the base types have the
ojb.class tag or not.
table
The name of the table used for this type. Is only used when table info is generated. If not specified, then the

OJB Documentation

Page 174
Copyright © All rights reserved.

short name of the type is used.
The following class-descriptor attributes are also supported in the ojb.class tag and will be written directly to the
generated class descriptor (see the repository.dtd for their meaning):

• accept-locks
• factory-class
• factory-method
• initialization-method
• isolation-level
• proxy
• proxy-prefetching-limit
• refresh
• row-reader
Example: (from the unit tests)

/**
* @ojb.class generate-table-info="false"
*/
public abstract class AbstractArticle implements InterfaceArticle, java.io.Serializable
...

/**
* @ojb.class table="Artikel"
* proxy="dynamic"
* include-inherited="true"
* documentation="This is important documentation on the Article class."
* attributes="color=blue,size=big"
*/
public class Article extends AbstractArticle implements InterfaceArticle, java.io.Serializable
...

The AbstractArticle class will have an class descriptor in the repository file, but no field, reference or collection
descriptors. The Article class however will not only have descriptors for its own fields/references/collections but also for
those inherited from AbstractArticle. Also, its table definition in the torque file will be called "Artikel", not "Article".
The resulting class descriptors look like:

<class-descriptor
class="org.apache.ojb.broker.AbstractArticle"

>
<extent-class class-ref="org.apache.ojb.broker.Article"/>

</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<documentation>This is important documentation on the Article class.</documentation>
...
<attribute attribute-name="color" attribute-value="blue"/>
<attribute attribute-name="size" attribute-value="big"/>

</class-descriptor>
...

ojb.extent-class

Use the ojb.extent-class to explicitly specify extents (direct persistent sub types) of the current type. The class-ref attribute
contains the fully qualified name of the class. However, these tags are only evaluated if the determine-extents attribute of the
ojb.class tag is set to false.

OJB Documentation

Page 175
Copyright © All rights reserved.

Attributes:

class-ref
The fully qualified name of the sub-class (required).

Example:

/**
* @ojb.class determine-extents="false"
* generate-table-info="false"
* @ojb.extent-class class-ref="org.apache.ojb.broker.CdArticle"
*/
public abstract class AbstractCdArticle extends Article implements java.io.Serializable
...

which results in:

<class-descriptor
class="org.apache.ojb.broker.AbstractCdArticle"

>
<extent-class class-ref="org.apache.ojb.broker.CdArticle"/>

</class-descriptor>

ojb.modify-inherited

Allows to modify attributes of inherited fields/references/collections (normally, all attributes are used without modifications)
for this and all sub types. One special case is the specification of an empty value which leads to a reset of the attribute value.
As a result the default value is used for this attribute.

Attributes: All of ojb.field, ojb.reference, and ojb.collection (with the exception of indirection-table and remote-foreignkey),
and also:

ignore : true | false (default)
Specifies that this feature will be ignored in this type (but only in the current type, not in subtypes).
name
The name of the field/reference/collection to modify (required).

Example:

/**
* @ojb.class table="Artikel"
* @ojb.modify-inherited name="productGroup"
* proxy="true"
* auto-update="object"
*/
public class ArticleWithReferenceProxy extends Article

produces the class descriptor

<class-descriptor
class="org.apache.ojb.broker.ArticleWithReferenceProxy"
table="Artikel"

>
...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"
proxy="true"
auto-update="object"

>
<documentation>this is the reference to an articles productgroup</documentation>
<attribute attribute-name="color" attribute-value="red"/>
<attribute attribute-name="size" attribute-value="tiny"/>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>

OJB Documentation

Page 176
Copyright © All rights reserved.

</class-descriptor>

ojb.object-cache

The ojb.object-cache tag allows to specify the ObjectCache implementation that OJB uses for objects of this class (instead of
the one defined in the jdbc connection descriptor or in the ojb.properties file). Classes specified with this tag have to
implement the org.apache.ojb.broker.cache.ObjectCache interface. Note that object cache specifications are
not inherited.

Attributes:

attributes
Optionally contains attributes of the object cache as a comma-separated list of name-value pairs.
class
The fully qualified name of the object cache class (required).
documentation
Optionally contains documentation on the object cache specification.

Example:

/**
* @ojb.class
* @ojb.object-cache class="org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl"
* documentation="Some important documentation"
*/
public class SomeClass implements Serializable
{

...
}

and the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl">

<documentation>Some important documentation</documentation>
</object-cache>
...

</class-descriptor>

ojb.index

The ojb.index tag is used to define possibly unique indices for the class. An index consists of at least one field of the class
(either locally defined or inherited, anonymous or explicit). There is an default index (without a name) that is made up by all
fields that have the indexed attribute set to true. All other indices have to be defined via the ojb.index tag. In contrast to the
indexed attribute, indices defined via the ojb.index tag are not inherited.

Attributes:

documentation
Optionally contains documentation on the index.
fields
The fields that make up the index separated by commas (required).
name
The name of the index (required). If there are multiple indices with the same name, then only the first one is
used (all others are ignored).
unique : true | false (default)

OJB Documentation

Page 177
Copyright © All rights reserved.

Whether the index is unique or not.
Example:

/**
* @ojb.class table="SITE"
* @ojb.index name="NAME_UNIQUE"
* unique="true"
* fields="name"
*/
public class Site implements Serializable
{

/**
* @ojb.field indexed="true"
*/
private Integer nr;
/**
* @ojb.field column="NAME"
* length="100"
*/
private String name;
...

}

the class descriptor

<class-descriptor
class="org.apache.ojb.odmg.shared.Site"
table="SITE"

>
<field-descriptor

name="nr"
column="nr"
jdbc-type="INTEGER"
indexed="true"

>
</field-descriptor>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"
length="100"

>
</field-descriptor>
...
<index-descriptor

name="NAME_UNIQUE"
unique="true"

>
<index-column name="NAME"/>

</index-descriptor>
</class-descriptor>

and the torque table schema

<table name="SITE">
<column name="nr"

javaName="nr"
type="INTEGER"

/>
<column name="NAME"

javaName="name"
type="VARCHAR"
size="100"

/>
...
<index>

<index-column name="nr"/>

OJB Documentation

Page 178
Copyright © All rights reserved.

</index>
<unique name="NAME_UNIQUE">

<unique-column name="NAME"/>
</unique>

</table>

ojb.delete-procedure

Declares a database procedure that is used for deleting persistent objects.

Attributes:

arguments
A comma-separated list of the names of constant or runtime arguments specified in the same class.
attributes
Optionally contains attributes of the procedure as a comma-separated list of name-value pairs.
documentation
Optionally contains documentation on the procedure.
include-pk-only : true | false (default)
Whether all fields of the class that make up the primary key, shall be passed to the procedure. If set to true
then the arguments value is ignored.
name
The name of the procedure (required).
return-field-ref
Identifies a field of the class that will receive the return value of the procedure. Use only if the procedure has a
return value.

Example:

/**
* @ojb.class
* @ojb.delete-procedure name="DELETE_PROC"
* arguments="arg1,arg2"
* return-field-ref="attr2"
* documentation="Some important documentation"
* @ojb.constant-argument name="arg1"
* value="0"
* @ojb.runtime-argument name="arg2"
* field-ref="attr1"
*/
public class SomeClass
{

/** @ojb.field */
private Integer attr1;
/** @ojb.field */
private String attr2;
...

}

leads to the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
<field-descriptor

name="attr1"
column="attr1"
jdbc-type="INTEGER"

>
</field-descriptor>
<field-descriptor

name="attr2"

OJB Documentation

Page 179
Copyright © All rights reserved.

column="attr2"
jdbc-type="VARCHAR"
length="254"

>
</field-descriptor>
...
<delete-procedure

name="DELETE_PROC"
return-field-ref="attr2"

>
<documentation>Some important documentation</documentation>
<constant-argument

value="0"
>
</constant-argument>
<runtime-argument

field-ref="attr2"
>
</runtime-argument>

</delete-procedure>
</class-descriptor>

ojb.insert-procedure

Identifies the database procedure that shall be used for inserting objects into the database.

Attributes:

arguments
Comma-separated list of names of constant or runtime arguments that are specified in the same class.
attributes
Contains optional attributes of the procedure in a comma-separated list of name-value pairs.
documentation
Contains optional documentation on the procedure.
include-all-fields : true | false (default)
Specifies whether all persistent fields of the class shall be passed to the procedure. If so, then the arguments
value is ignored.
name
The name of the procedure (required).
return-field-ref
The persistent field that receives the return value of the procedure (should only be used if the procedure returns
a value).

For an example see constant argument.

ojb.update-procedure

The database procedure that will be used for updating persistent objects in the database.

Attributes:

arguments
A comma-separated list of names of constant or runtime arguments in the same class.
attributes
The optional attributes of the procedure in a comma-separated list of name-value pairs.
documentation
Optional documentation on the procedure.
include-all-fields : true | false (default)
Whether all persistent fields of the class shall be passed to the procedure in which case the arguments value is
ignored.

OJB Documentation

Page 180
Copyright © All rights reserved.

name
Name of the database procedure (required).
return-field-ref
A persistent field that will receive the return value of the procedure (only to be used if the procedure returns a
value).

For an example see runtime argument.

ojb.constant-argument

A constant argument for a database procedure. These arguments are referenced by the procedure tags in the arguments
attribute via their names.

Attributes:

attributes
Optionally contains attributes of the argument.
documentation
Optionally contains documentation on the argument.
value
The constant value.
name
The identifier of the argument to be used the arguments attribute of a procedure tag (required).

Example:

/**
* @ojb.class
* @ojb.insert-procedure name="INSERT_PROC"
* arguments="arg"
* @ojb.constant-argument name="arg"
* value="Some value"
* attributes="name=value"
*/
public class SomeClass
{

...
}

will result in the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
...
<insert-procedure

name="INSERT_PROC"
>

<constant-argument
value="Some value"

>
<attribute attribute-name="name" attribute-value="value"/>

</constant-argument>
</insert-procedure>

</class-descriptor>

ojb.runtime-argument

An argument for a database procedure that is backed by a persistent field. Similar to constant arguments the name is important
for referencing by the procedure tags in the arguments attribute.

OJB Documentation

Page 181
Copyright © All rights reserved.

Attributes:

attributes
Contains optionally attributes of the argument.
documentation
Optionally contains documentation on the argument.
field-ref
The persistent field that delivers the value. If unspecified, then in the procedure call null will be used.
name
Identifier of the argument for using it in the arguments attribute of a procedure tag (required).
return
If the field receives a value (?).

Example:

/**
* @ojb.class
* @ojb.update-procedure name="UPDATE_PROC"
* arguments="arg"
* @ojb.runtime-argument name="arg"
* field-ref="attr"
* documentation="Some documentation"
*/
public class SomeClass
{

/** @ojb.field */
private Integer attr;
...

}

will result in the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
<field-descriptor

name="attr"
column="attr"
jdbc-type="INTEGER"

>
</field-descriptor>
...
<update-procedure

name="UPDATE_PROC"
>

<runtime-argument
value="attr"

>
<documentation>Some documentation</documentation>

</runtime-argument>
</update-procedure>

</class-descriptor>

4.5.16.5. Fields and Bean properties

ojb.field

Fields or accessor methods (i.e. get/is and set methods) for properties are marked with the ojb.field tag to denote a persistent
field. When a method is marked, then the corresponding bean property is used for naming purposes (e.g. "value" for a method
getValue()). The XDoclet OJB module ensures that a field is not present more than once, therefore it is safe to mark both

OJB Documentation

Page 182
Copyright © All rights reserved.

fields and their accessors. However, in that case the three ojb.field tags are required to have the same attributes.

Due to a bug in XDoclet, you currently cannot process final or transient fields.

Marked fields are used for descriptor generation in the same type (if it has an ojb.class tag) and all sub types with the ojb.class
tag having the include-inherited attribute set to true.
It is also possible to use the ojb.field tag at the class level (i.e. in the JavaDoc comment of the class). In this case, the tag is
used to define an anonymous field, e.g. a "field" that has no counterpart in the class but exists in the database. For anonymous
fields, both the name and the jdbc-type attributes are required, and the access attribute is ignored (it defaults to the value
anonymous). Beside these differences, anonymous fields are handled like other fields, (e.g. they result in field-descriptor
entries in the repository descriptor, and in columns in the table schema, and they are inherited and can be modified via the
ojb.modify-inherited tag.

The XDoclet OJB module orders the fields in the repository descriptor and table schema according to the following rules:

1. Fields (anonymous and non-anonymous) from base types/nested objects and from the current file that have an id, sorted by
the id value. If fields have the same id, then they are sorted following the rules for fields without an id.

2. Fields (anonymous and non-anonymous) from base types/nested objects and from the current file that have no id, in the
order they appear starting with the farthest base type. Per class, the anonymous fields come first, followed by the
non-anonymous fields.

Attributes:

access : readonly | readwrite (default)
Specifies the accessibility of the field. readonly marks fields that are not to modified. readwrite marks fields
that may be read and written to. Anonymous fields do not have to be marked (i.e. anonymous value) as the
position of the ojb.field tag in the class JavaDoc comment suffices.
attributes
Optionally contains attributes of the field as a comma-separated list of name-value pairs.
autoincrement : none (default) | ojb | database
Defines whether this field gets its value automatically. If ojb is specified, then OJB fills the value using a
sequence manager. If the value is database, then the column is also defined as autoIncrement in the
torque schema (i.e. the database fills the field), and in the repository descriptor, the field is marked as
access='readonly' (if it isn't an anonymous field). The database value is intended to be used with the
org.apache.ojb.broker.util.sequence.SequenceManagerNativeImpl sequence manager. For
details, see the Sequence Manager documentation.
The default value is none which means that the field is not automatically filled.
column
The name of the database column for this field. If not given, then the name of the attribute is used.
conversion
The name of the class to be used for conversion between the java type of the field (e.g. java.lang.Boolean
or java.util.Date) and the java type for the JDBC type (e.g. java.lang.Integer or java.sql.Date).
Conversion classes must implement the
org.apache.ojb.broker.accesslayer.conversions.FieldConversion interface. If no explicit JDBC
type is defined and the java type has no defined conversion (see below), then per default the
org.apache.ojb.broker.accesslayer.conversions.Object2ByteArrFieldConversion
conversion class is used.
Default conversion is also used for the following java types when no jdbc type is given (default type is used
instead), and no conversion is specified:

Java type Default conversion

org.apache.ojb.broker.util.GUID org.apache.ojb.broker.accesslayer.conversions.GUID2StringFieldConversion

documentation
Optionally contains documentation on the field.

OJB Documentation

Page 183
Copyright © All rights reserved.

id
An integer specifying the position in the repository descriptor and table schema. For the placement rules see
above.
jdbc-type : BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE | FLOAT | REAL | NUMERIC |
DECIMAL | CHAR | VARCHAR | LONGVARCHAR | DATE | TIME | TIMESTAMP | BINARY | VARBINARY |
LONGVARBINARY | CLOB | BLOB | STRUCT | ARRAY | REF | BOOLEAN | DATALINK
The JDBC type for the column. The XDoclet OJB module will automatically determine a jdbc type for the field if
none is specified. This means that for anonymous fields, the jdbc-type attribute is required. The automatic
mapping performed by the XDoclet OJB module from java type to jdbc type is as follows:

Java type JDBC type

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

char CHAR

float REAL

double FLOAT

java.lang.Boolean BIT

java.lang.Byte TINYINT

java.lang.Short SMALLINT

java.lang.Integer INTEGER

java.lang.Long BIGINT

java.lang.Character CHAR

java.lang.Float REAL

java.lang.Double FLOAT

java.lang.String VARCHAR

java.util.Date DATE

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.sql.Blob BLOB

java.sql.Clob CLOB

java.sql.Ref REF

java.sql.Struct STRUCT

java.math.BigDecimal DECIMAL

org.apache.ojb.broker.util.GUID VARCHAR

OJB Documentation

Page 184
Copyright © All rights reserved.

For any other type (including array types) the default mapping is to LONGVARBINARY using the
Object2ByteArrFieldConversion conversion (see conversion attribute above).

length
The length of the column which might be required by the jdbc type in some databases. This is the reason that
for some jdbc types, the XDoclet OJB module imposes default lengths if no length is specified:

Jdbc type Default length

CHAR 1

VARCHAR 254

name
The name of the field. This attribute is required for anonymous fields, otherwise it is ignored.
precision
scale
The precision and scale of the column if required by the jdbc type. They are usually used in combination with
the DECIMAL and NUMERIC types, and then specifiy the number of digits before (precision) and after (scale)
the comma (excluding the plus/minus sign). Due to restrictions in some databases (e.g. MySQL), the XDoclet
OJB module imposes default values for some types if none are specified:

Jdbc type Default values for precision, scale

DECIMAL 20,0 (this corresponds to the range of long
where the longest number is
-9223372036854775808).

NUMERIC 20,0

For other types, if only the precision is specified, the scale defaults to 0. If only scale is specified, precision defaults to 1.

Other attributes supported in the ojb.field tag that have the same meaning as in the repository descriptor (and partly in the
torque table schema) are:

• default-fetch
• indexed
• locking
• nullable
• primarykey
• sequence-name
• update-lock
Examples:

/**
* @ojb.field column="Auslaufartikel"
* jdbc-type="INTEGER"
* conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
* id="10"
* attributes="color=green,size=small"
*/
protected boolean isSelloutArticle;

will result in the following field descriptor:

<field-descriptor
name="isSelloutArticle"
column="Auslaufartikel"
jdbc-type="INTEGER"
conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"

>

OJB Documentation

Page 185
Copyright © All rights reserved.

<attribute attribute-name="color" attribute-value="green"/>
<attribute attribute-name="size" attribute-value="small"/>

</field-descriptor>

The column descriptor looks like:

<table name="Artikel">
...
<column name="Auslaufartikel"

javaName="isSelloutArticle"
type="INTEGER"

/>
...

</table>

An anonymous field is declared like this:

/**
* @ojb.class table="TABLE_F"
* include-inherited="false"
* @ojb.field name="eID"
* column="E_ID"
* jdbc-type="INTEGER"
* @ojb.reference class-ref="org.apache.ojb.broker.E"
* auto-retrieve="true"
* auto-update="object"
* auto-delete="object"
* foreignkey="eID"
*/
public class F extends E implements Serializable
...

In this case an anonymous field is declared and also used as the foreignkey of an anonymous reference. The corresponding
class descriptor looks like:

<class-descriptor
class="org.apache.ojb.broker.F"
table="TABLE_F"

>
<field-descriptor

name="eID"
column="E_ID"
jdbc-type="INTEGER"
access="anonymous"

>
</field-descriptor>
...
<reference-descriptor

name="super"
class-ref="org.apache.ojb.broker.E"
auto-retrieve="true"
auto-update="object"
auto-delete="object"

>
<foreignkey field-ref="eID"/>

</reference-descriptor>
</class-descriptor>

Here the anonymous field and reference (which implicitly refers to super) are used to establish the super-subtype relationship
between E and F on the database level. For details on this see the advanced technique section.

4.5.16.6. References

ojb.reference

OJB Documentation

Page 186
Copyright © All rights reserved.

error:#site:advanced-technique

Similar to fields, references (java fields or accessor methods) are marked with the ojb.reference tag. We have a reference
when the type of the java field is itself a persistent class (has an ojb.class tag) and therefore the java field represents an
association. This means that the referenced type of an association (or the one specified by the class-ref attribute, see below) is
required to be present in the repository descriptor (it has the ojb.class tag).
Foreign keys of references are also declared in the torque table schema (see example below).
OJB currently requires that the referenced type has at least one field used to implement the reference, usually some id of an
integer type.
A reference can be stated in the JavaDoc comment of the class (anonymous reference), but in this case it silently refer to
super (see the example of ojb.field) which can be used to establish an inheritance relationship. Note that anonymous
references are not inherited (in contrast to anonymous fields and normal references).

Attributes:

attributes
Optionally contains attributes of the reference as a comma-separated list of name-value pairs.
class-ref
Allows to explicitly specify the referenced type. Normally the XDoclet OJB module searches the type of the field
and its sub types for the nearest type with the ojb.class tag. If the type is specified explicitly, then this type is
used instead. For anonymous references, the class-ref has to specified as there is no field to determine the
type from.
Note that the type is required to have the ojb.class tag.
documentation
Optionally contains documentation on the reference.
foreignkey
Contains one or more foreign key fields separated by commas (required). The foreign key fields are fields with
the ojb.field tag in the same class as the reference, which implement the association, i.e. contains the values of
the primarykeys of the referenced object.

Other supported attributes (see repository.dtd for their meaning) written directly to the repository descriptor file:

• auto-delete
• auto-retrieve
• auto-update
• otm-dependent
• proxy
• proxy-prefetching-limit
• refresh
Example:

public abstract class AbstractArticle implements InterfaceArticle, java.io.Serializable
{

protected InterfaceProductGroup productGroup;

/**
* @ojb.reference class-ref="org.apache.ojb.broker.ProductGroup"
* foreignkey="productGroupId"
* documentation="this is the reference to an articles productgroup"
* attributes="color=red,size=tiny"
*/
protected InterfaceProductGroup productGroup;
/**
* @ojb.field
*/
protected int productGroupId;
...

}

Here the java type is InterfaceProductGroup although the repository reference uses the sub type ProductGroup.

OJB Documentation

Page 187
Copyright © All rights reserved.

The generated reference descriptor looks like:

<field-descriptor
name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

>
</field-descriptor>
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<documentation>this is the reference to an articles productgroup</documentation>
<attribute attribute-name="color" attribute-value="red"/>
<attribute attribute-name="size" attribute-value="tiny"/>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>

In the torque table schema for the Article class, the foreign key for the product group is explicitly declared:

<table name="Artikel">
...
<column name="Kategorie_Nr"

javaName="productGroupId"
type="INTEGER"

/>
...
<foreign-key foreignTable="Kategorien">

<reference local="Kategorie_Nr" foreign="Kategorie_Nr"/>
</foreign-key>

</table>

For an example of an anonymous reference, see the examples of ojb.field.

4.5.16.7. Collections

ojb.collection

Persistent collections which implement 1:n or m:n associations are denoted by the ojb.collection tag. If the collection is an
array, then the XDoclet OJB module can determine the element type automatically (analogous to references). Otherwise the
type must be specified using the element-class-ref attribute. m:n associations are also supported (collections on both sides) via
the indirection-table, foreignkey and remote-foreignkey attributes.

Attributes:

attributes
Optionally contains attributes of the collection as a comma-separated list of name-value pairs.
collection-class
Specifies the class that implements the collection. This attribute is usually only required if the actual type of the
collection object shall be different from the variable type.
Collection classes that implement java.util.Collection can be handled by OJB as-is so specifying them
is not necessary. For the types that do not, the XDoclet OJB module checks whether the collection field type
implements the org.apache.ojb.broker.ManageableCollection interface, and if so, generates the
collection-class attribute automatically.
documentation
Optionally contains documentation on the collection.
element-class-ref
Allows to explicitly specify the type of the collection elements. Note that the type is required to have the
ojb.class tag.
foreignkey

OJB Documentation

Page 188
Copyright © All rights reserved.

Contains one or more foreign key field or columns separated by commas (required).
If the collection implements an 1:n association, then this attribute specifies the fields in the element type that
implement the association on the element side, i.e. they refer to the primary keys of the class containing this
collection. Note that these fields are required to have the ojb.field tag.
When the collection is one part of an m:n association (e.g. with an indirection table), this attribute specifies the
columns in the indirection table that point to the type owning this collection. This attribute is required of both
collections. If the other type has no explicit collection, use the remote-foreignkey attribute to specify the foreign
keys for the other type.
indirection-table
Gives the name of the indirection table used for m:n associations. The XDoclet OJB module will create an
appropriate torque table schema. The specified foreign keys are taken from the foreignkey attribute in this
class and the corresponding collection in the element class, or if the element class has no collection, from the
remote-foreignkey attribute of this collection. The XDoclet OJB module associates the foreignkeys (in the
order they are stated in the foreignkey/ remote-foreignkey attributes) to the ordered primarykey fields (for the
ordering rules see the ojb.field tag), and use ther jdbc type (and length setting if necessary) of these primarey
keys for the columns.
orderby
Contains the fields used for sorting the collection and, optionally, the sorting order (either ASC or DESC for
ascending or descending, respectively) as a comma-separated list of name-value pairs. For instance,
field1=DESC,field2,field3=ASC specifies three fields after which to sort, the first one in descending
order and the other two in ascending order (which is the default and can be omitted).
query-customizer
Specifies a query customizer for the collection. The type is required to implement
org.apache.ojb.broker.accesslayer.QueryCustomizer.
query-customizer-attributes
Specifies attributes for the query customizer. This attribute is ignored if no query customizer is specified for this
collection.
remote-foreignkey
Contains one or more foreign key columns (separated by commas) in the indirection table pointing to the
elements. Note that this field should only be used if the other type does not have a collection itself which the
XDoclet OJB module can use to retrieve the foreign keys. This attribute is ignored if used with 1:n collections
(no indirection table specified).

The same attributes as for references are written directly to the repository descriptor file (see repository.dtd) :

• auto-delete
• auto-retrieve
• auto-update
• otm-dependent
• proxy
• proxy-prefetching-limit
• refresh
Examples:

/**
* @ojb.collection element-class-ref="org.apache.ojb.broker.Article"
* foreignkey="productGroupId"
* auto-retrieve="true"
* auto-update="link"
* auto-delete="object"
* orderby="productGroupId=DESC"
* query-customizer="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl"
* query-customizer-attributes="attr1=value1"
*/

OJB Documentation

Page 189
Copyright © All rights reserved.

private ArticleCollection allArticlesInGroup;

The corresponding collection descriptor is:

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
collection-class="org.apache.ojb.broker.ArticleCollection"
auto-retrieve="true"
auto-update="link"
auto-delete="object"

>
<orderby name="productGroupId" sort="DESC"/>
<inverse-foreignkey field-ref="productGroupId"/>
<query-customizer class="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl">

<attribute attribute-name="attr1" attribute-value="value1"/>
</query-customizer>

</collection-descriptor>

An m:n collection is defined using the indirection-table attribute:

/**
* @ojb.class generate-table-info="false"
*/
public abstract class BaseContentImpl implements Content
{

/**
* @ojb.collection element-class-ref="org.apache.ojb.broker.Qualifier"
* auto-retrieve="true"
* auto-update="link"
* auto-delete="none"
* indirection-table="CONTENT_QUALIFIER"
* foreignkey="CONTENT_ID"
* remote-foreignkey="QUALIFIER_ID"
*/
private List qualifiers;
...

}

/**
* @ojb.class table="NEWS"
*/
public class News extends BaseContentImpl
{

...
}

/**
* @ojb.class generate-table-info="false"
*/
public interface Qualifier extends Serializable
{

...
}

The BaseContentImpl has a m:n association to the Qualifier interface. for the BaseContentImpl class, this
association is implemented via the CONTENT_ID column (specified by the foreignkey) in the indirection table
CONTENT_QUALIFIER. Usually, both ends of an m:n association have a collection implementing the association, and for
both ends the foreignkey specifies the indirection table column pointing to the class at this end. The Qualifier interface
however does not contain a collection which could be used to determine the indirection table column that implements the
association from its side. So, this column is also specified in the BaseContentImpl class using the remote-foreignkey
attribute. The class descriptors are:

<class-descriptor
class="org.apache.ojb.broker.BaseContentImpl"

>

OJB Documentation

Page 190
Copyright © All rights reserved.

<extent-class class-ref="org.apache.ojb.broker.News"/>
</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.News"
table="NEWS"

>
...
<collection-descriptor

name="qualifiers"
element-class-ref="org.apache.ojb.broker.Qualifier"
indirection-table="CONTENT_QUALIFIER"
auto-retrieve="true"
auto-update="link"
auto-delete="none"

>
<fk-pointing-to-this-class column="CONTENT_ID"/>
<fk-pointing-to-element-class column="QUALIFIER_ID"/>

</collection-descriptor>
</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.Qualifier"

>
<extent-class class-ref="org.apache.ojb.broker.BaseQualifierImpl"/>

</class-descriptor>

As can be seen, the collection definition is inherited in the News class and the two indirection table columns pointing to the
ends of the m:n associaton are correctly specified.

4.5.16.8. Nested objects

ojb.nested

The features of a class can be included in another class by declaring a field of that type and using this tag. The XDoclet OJB
module will then add every tagged feature (i.e. fields/bean properties with ojb.field, ojb.reference or ojb.collection tag, or even
with ojb.nested) from the type of the field to the current class descriptor. It is not required that the field's type has the ojb.class
tag, though.
All attributes of the features are copied (even primarykey) and modified if necessary (e.g. the foreignkey of a reference is
adjusted accordingly). For changing an attribute use the ojb.modify-nested tag.

For an example of nesting, see the example of ojb.modify-nested.

ojb.modify-nested

Similar to ojb.modify-inherited, this tag allows to modify attributes of a nested feature.

Attributes: All of ojb.field, ojb.reference, and ojb.collection (with the exception of indirection-table and remote-foreignkey),
and also:

ignore : true | false (default)
Specifies that this feature will not be nested.
name
The name of the field/reference/collection to modify (required). Use here the name of the feature in the nested
type.

Example:

The two classes:

OJB Documentation

Page 191
Copyright © All rights reserved.

public class NestedObject implements java.io.Serializable
{

/** @ojb.field primarykey="true" */
protected int id;

/** @ojb.field */
protected boolean hasValue;

/** @ojb.field */
protected int containerId;

/**
* @ojb.reference foreignkey="containerId"
*/
protected ContainerObject container;

...
}

/** @ojb.class */
public class ContainerObject implements java.io.Serializable
{

/**
* @ojb.field primarykey="true"
* autoincrement="ojb"
* id="1"
*/
protected int id;

/** @ojb.field id="2" */
protected String name;

/**
* @ojb.nested
* @ojb.modify-nested name="hasValue"
* jdbc-type="INTEGER"
*

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
* id="3"
* @ojb.modify-nested name="id"
* primarykey=""
*/
protected NestedObject nestedObj;

...
}

result in the one class descriptor

<class-descriptor
class="ContainerObject"
table="ContainerObject"

>
<field-descriptor

name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="name"
jdbc-type="VARCHAR"
length="24"

/>
<field-descriptor

name="nestedObj::hasValue"
column="nestedObj_hasValue"

OJB Documentation

Page 192
Copyright © All rights reserved.

jdbc-type="INTEGER"
conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"

/>
<field-descriptor

name="nestedObj::id"
column="nestedObj_id"
jdbc-type="INTEGER"

/>
<field-descriptor

name="nestedObj::containerId"
column="nestedObj_containerId"
jdbc-type="INTEGER"

/>
<reference-descriptor

name="nestedObj::container"
class-ref="ContainerObject"

>
<foreignkey field-ref="nestedObj::containerId"/>

</reference-descriptor>
...

</class-descriptor>

and the table descriptor

<table name="ContainerObject">
<column name="id"

javaName="id"
type="INTEGER"
primaryKey="true"
required="true"

/>
<column name="name"

javaName="name"
type="VARCHAR"
size="24"

/>
<column name="nestedObj_hasValue"

type="INTEGER"
/>
<column name="nestedObj_id"

type="INTEGER"
/>
<column name="nestedObj_containerId"

type="INTEGER"
/>
<foreign-key foreignTable=\"ContainerObject\">\n"+

<reference local=\"nestedObj_containerId\" foreign=\"id\"/>\n"+
</foreign-key>\n"+
...

</table>

Note how one ojb.modify-nested tag changes the type of the nested hasValue field, add a conversion and specifies the
position for it. The other modification tag removes the primarykey status of the nested id field.

4.5.17. OJB Performance

4.5.17.1. Introduction

" There is no such thing as a free lunch."
(North American proverb)

Object/relational mapping tools hide the details of relational databases from the application developer. The developer can
concentrate on implementing business logic and is liberated from caring about RDBMS related coding with JDBC and SQL.

O/R mapping tools allow to separate business logic from RDBMS access by forming an additional software layer between

OJB Documentation

Page 193
Copyright © All rights reserved.

business logic and RDBMS. Introducing new software layers always eats up additional computing resources.
In short: the price for using O/R tools is performance.

Software architects have to take in account this tradeoff between programming comfort and performance to decide if it is
appropiate to use an O/R tool for a specific software system.

This document describes the OJB Performance Test Suite which was created to lighten the decision between native JDBC,
OJB (the different OJB API's) and other O/R mapper.

4.5.17.2. The Performance Test Suite

The OJB Performance Test Suite allows to compare OJB against native JDBC programming against your RDBMS of choice
and run OJB in a virtual multithreaded environment. Further on it is possible to compare OJB against any O/R mapping tool
using a simple framework.

All tests are integrated in the OJB build script, you only need to perform the according ant target:

ant target

The following 'targets' exist:

• perf-test multithreaded performance/stress test of PB/OTM/ODMG api against native JDBC
• performance older single threaded test, OJB API implementations (PB, ODMG) against native JDBC
• [performance3 multithreaded test against two different databases - developers test]

By changing the JdbcConnectionDescriptor in the configuration files you can point to your specific RDBMS. Please refer to
this document for details.

4.5.17.3. Interpreting test results

Interpreting the result of these benchmarks carefully will help to decide whether using OJB is viable for specific application
scenarios or if native JDBC programming should be used for performance reasons.

Take care of compareable configuration properties when run performance tests with different O/R tools.

If the decision made to use an O/R mapping tool the comparison with other tools helps to find the best one for the thought
scenario. But performance shouldn't be the only reason to take a specific O/R tool. There are many other points to consider:

- Usability of the supported API's
- Flexibility of the framework
- Scalability of the framework
- Community support
- The different licences of Open Source projects
- etcetera ...

4.5.17.4. How OJB compares to native JDBC programming?

OJB is shipped with tests compares native JDBC with ODMG and PB-API implementation. This part of the test suite is
integrated into the OJB build mechanism.
A single client test you can invoke it by typing ant performance or ant performance.

If running OJB out of the box the tests will be performed against the Hypersonic SQL shipped with OJB. A typical output
looks like follows:

performance:
[ojb] .[performance] INFO: Test for PB-api
[ojb] [performance] INFO:
[ojb] [performance] INFO: inserting 2500 Objects: 3257 msec

OJB Documentation

Page 194
Copyright © All rights reserved.

error:#site:platform

[ojb] [performance] INFO: updating 2500 Objects: 1396 msec
[ojb] [performance] INFO: querying 2500 Objects: 1322 msec
[ojb] [performance] INFO: querying 2500 Objects: 26 msec
[ojb] [performance] INFO: fetching 2500 Objects: 495 msec
[ojb] [performance] INFO: deleting 2500 Objects: 592 msec
[ojb] [performance] INFO:
[ojb] [performance] INFO: inserting 2500 Objects: 869 msec
[ojb] [performance] INFO: updating 2500 Objects: 1567 msec
[ojb] [performance] INFO: querying 2500 Objects: 734 msec
[ojb] [performance] INFO: querying 2500 Objects: 20 msec
[ojb] [performance] INFO: fetching 2500 Objects: 288 msec
[ojb] [performance] INFO: deleting 2500 Objects: 447 msec
[ojb] [performance] INFO:
[ojb] [performance] INFO: inserting 2500 Objects: 979 msec
[ojb] [performance] INFO: updating 2500 Objects: 1240 msec
[ojb] [performance] INFO: querying 2500 Objects: 741 msec
[ojb] [performance] INFO: querying 2500 Objects: 18 msec
[ojb] [performance] INFO: fetching 2500 Objects: 289 msec
[ojb] [performance] INFO: deleting 2500 Objects: 446 msec

[ojb] Time: 18,964

[ojb] OK (1 test)

[jdbc] .[performance] INFO: Test for native JDBC
[jdbc] [performance] INFO:
[jdbc] [performance] INFO: inserting 2500 Objects: 651 msec
[jdbc] [performance] INFO: updating 2500 Objects: 775 msec
[jdbc] [performance] INFO: querying 2500 Objects: 616 msec
[jdbc] [performance] INFO: querying 2500 Objects: 384 msec
[jdbc] [performance] INFO: fetching 2500 Objects: 49 msec
[jdbc] [performance] INFO: deleting 2500 Objects: 213 msec
[jdbc] [performance] INFO:
[jdbc] [performance] INFO: inserting 2500 Objects: 508 msec
[jdbc] [performance] INFO: updating 2500 Objects: 686 msec
[jdbc] [performance] INFO: querying 2500 Objects: 390 msec
[jdbc] [performance] INFO: querying 2500 Objects: 360 msec
[jdbc] [performance] INFO: fetching 2500 Objects: 46 msec
[jdbc] [performance] INFO: deleting 2500 Objects: 204 msec
[jdbc] [performance] INFO:
[jdbc] [performance] INFO: inserting 2500 Objects: 538 msec
[jdbc] [performance] INFO: updating 2500 Objects: 775 msec
[jdbc] [performance] INFO: querying 2500 Objects: 384 msec
[jdbc] [performance] INFO: querying 2500 Objects: 360 msec
[jdbc] [performance] INFO: fetching 2500 Objects: 48 msec
[jdbc] [performance] INFO: deleting 2500 Objects: 204 msec

[jdbc] Time: 18,363

[jdbc] OK (1 test)

[odmg] .[performance] INFO: Test for ODMG-api
[odmg] [performance] INFO:
[odmg] [performance] INFO: inserting 2500 Objects: 12151 msec
[odmg] [performance] INFO: updating 2500 Objects: 2937 msec
[odmg] [performance] INFO: querying 2500 Objects: 4691 msec
[odmg] [performance] INFO: querying 2500 Objects: 2239 msec
[odmg] [performance] INFO: fetching 2500 Objects: 1633 msec
[odmg] [performance] INFO: deleting 2500 Objects: 1815 msec
[odmg] [performance] INFO:
[odmg] [performance] INFO: inserting 2500 Objects: 2483 msec
[odmg] [performance] INFO: updating 2500 Objects: 2868 msec
[odmg] [performance] INFO: querying 2500 Objects: 3272 msec
[odmg] [performance] INFO: querying 2500 Objects: 2223 msec
[odmg] [performance] INFO: fetching 2500 Objects: 1038 msec
[odmg] [performance] INFO: deleting 2500 Objects: 1717 msec
[odmg] [performance] INFO:
[odmg] [performance] INFO: inserting 2500 Objects: 2666 msec
[odmg] [performance] INFO: updating 2500 Objects: 2841 msec

OJB Documentation

Page 195
Copyright © All rights reserved.

[odmg] [performance] INFO: querying 2500 Objects: 2092 msec
[odmg] [performance] INFO: querying 2500 Objects: 2161 msec
[odmg] [performance] INFO: fetching 2500 Objects: 1036 msec
[odmg] [performance] INFO: deleting 2500 Objects: 1741 msec

[odmg] Time: 55,186

Some notes on these test results:

• You see a consistently better performance in the second and third run. this is caused by warming up effects of JVM and
OJB.

• PB and native JDBC need about the same time for the three runs although JDBC performance is better for most operations.
this is caused by the second run of the querying operations. In the second run OJB can load all objects from the cache, thus
the time is much shorter. Hence the interesting result: if you have an application that has a lot of lookups, OJB can be
faster than a native JDBC application!

• ODMG is much slower than PB or JDBC. This is due to the complex object level transaction management it is doing.
• You can see that for HSQLDB operations like insert and update are much faster with JDBC than with PB (60% and more).

This ratio is so high, because HSQLDB is much faster than ordinary database servers (as it's inmemory). If you work
against Oracle or DB2 the percentual OJB overhead is going down a lot (10 - 15 %), as the database latency is much longer
than the OJB overhead.

It's easy to change target database. Please refer to this document for details.
Also it's possible to change the number of test objects by editing the ant-target in build.xml.

Another test compares PB-api,ODMG-api and native JDBC you can find next section.

4.5.17.5. OJB performance in multi-threaded environments

This test was created to check the performance and stability of the supported API's (PB-api, ODMG-api, JDO-api) in a
multithreaded environment. Also this test compares the api's and native JDBC.
Running this test out of the box (a virgin OJB version against hsql) shouldn't cause any problems. To run the JDO-api test too,
see JDO tutorial and comment in the test in target perf-test in build.xml

FIXME (arminw):
A test for JDO API is missed.

Per default OJB use hsql as database, by changing the JdbcConnectionDescriptor in the repository.xml file you can point to
your specific RDBMS. Please refer to this document for details.

To run the multithreaded performance test call

ant perf-test

A typical output of this test looks like (OJB against hsql server, 2-tier, 100 MBit network):

[ojb] ==
[ojb] OJB PERFORMANCE TEST SUMMARY
[ojb] 10 concurrent threads, handle 2000 objects per thread
[ojb] - performance mode
[ojb] ==
[ojb] API Period Total Insert Fetch Update Delete
[ojb] [sec] [sec] [msec] [msec] [msec] [msec]
[ojb] --
[ojb] JDBC 7.786 7.374 3951 76 2435 911
[ojb] PB 9.807 8.333 5096 121 2192 922
[ojb] ODMG 19.562 18.205 8432 1488 5064 3219
[ojb] OTM 24.953 21.272 10688 223 4326 6033
[ojb] ==

[ojb] PerfTest takes 191 [sec]

OJB Documentation

Page 196
Copyright © All rights reserved.

error:#site:jdo-tutorial
error:#site:platform

To change the test properties go to target perf-test in the build.xml file and change the program parameter.
The test needs five parameter:
- A comma separated list of the test implementation classes (no blanks!)
- The number of test loops
- The number of concurrent threads
- The number of managed objects per thread
- The desired test mode. false means run in performance mode, true means run in stress mode (useful only for developer
to check stability).

<target name="perf-test" depends="prepare-testdb"
description="Simple performance benchmark and stress test for PB- and ODMG-api">

<java fork="yes" classname="org.apache.ojb.performance.PerfMain"
dir="${build.test}/ojb" taskname="ojb" failonerror="true" >

<classpath refid="runtime-classpath"/>

<!-- comma separated list of the PerfTest implementations -->
<arg value=
"org.apache.ojb.broker.OJBPerfTest$JdbcPerfTest,\
org.apache.ojb.broker.OJBPerfTest$PBPerfTest,\
org.apache.ojb.broker.OJBPerfTest$ODMGPerfTest,\
org.apache.ojb.broker.OJBPerfTest$OTMPerfTest"
/>
<!-- test loops, default was 3 -->
<arg value="3"/>
<!-- performed threads, default was 10 -->
<arg value="10"/>
<!-- number of managed objects per thread, default was 2000 -->
<arg value="2000"/>
<!-- if 'false' we use performance mode, 'true' we do run in stress mode -->
<arg value="false"/>

<jvmarg value="-Xms128m"/>
<jvmarg value="-Xmx256m"/>

</java>
<!-- do some cleanup -->
<ant target="copy-testdb"/>

</target>

4.5.17.6. How OJB compares to other O/R mapping tools?

Many user ask this question and there is more than one answer. But OJB was shipped with a simple performance "framework"
(independend from OJB) which allows a rudimentarily comparision of OJB with other (java-based) O/R mapping tools.
All involved classes can be found in dirctory [db-ojb]/src/test in package org.apache.ojb.performance.

Call ant perf-test-jar to build the jar file contain all necessary classes to set up a test with an arbitrary O/R mapper.
After the build, the db-ojb-XXX-performance.jar can be found in [db-ojb]/dist directory.

Steps to set up the test for other O/R frameworks:

• Implement a class derived from PerfTest
• Implement a class derived from PerfHandle
• [If persistent objects used within your mapping tool must be derived from a specific base class or must be implement a

specific interface write your own persistent object class by implementing PerfArticle interface and override method
#newPerfArticle() in your PerfHandle implementation class.
Otherwise a default implementation of PerfArticle was used]

That's it!

You can find a example implementation called org.apache.ojb.broker.OJBPerfTest in the test-sources directory
under [db-ojb]/src/test (when using source-distribution). This implementation class is used to compare performance

OJB Documentation

Page 197
Copyright © All rights reserved.

error:#ext:api/perf-test
error:#ext:api/perf-handle
error:#ext:api/perf-article
error:#ext:api/perf-article

of the PB-API, ODMG-API, OTM-api and native JDBC.

See more section multi-threaded performance. OJBPerfTest is made up of inner classes. At each case two inner classes
represent a test for one api (as described above).

Run the test
You have two possibilities to run the test:
a) Integration in the OJB build script
Add the full qualified class name of your PerfTest implementation class to the perf-test target of the OJB build.xml
file, add all necessary jar files to [db-ojb]/lib. The working directory of the test is [db-ojb]/target/test/ojb.
b) Run PerfMain
It's possible to run the test using org.apache.ojb.performance.PerfMain.

java -classpath CLASSPATH org.apache.ojb.performance.PerfMain
[comma separated list of PerfTest implementation classes, no blanks!]
[number of test loops]
[number of threads]
[number of insert/fetch/delete loops per thread]
[boolean - run in stress mode if set true,
run in performance mode if set false, default false]

For example:

java -classpath CLASSPATH my.A_PerfTest,my.B_PerfTest 3 10 2000 false

This will use A_PerfTest and B_PerfTest and perform three loops each loop run 10 threads and each thread operate on
2000 objects. The test run in performance mode.

Take care of compareable configuration properties when run performance tests with different O/R tools (caching, locking,
sequence key generation, connection pooling, ...).

Note:
Please, don't start flame wars by posting performance results to mailing lists made with this simple test. This test was created for OJB QA and to give a clue how good or bad
OJB performs, NOT to start discussion like XY is 12% faster then XZ!!.

4.5.17.7. What are the best settings for maximal performance?

We don't know, that depends from the environment OJB runs (hardware, database, driver, application server, ...). But there are
some settings which affect the performance:

• The API you use, e.g. PB-api is much faster then the ODMG-api. See which API for more information.
• ConnectionFactory implementation / Connection pooling. See connection pooling for more information.
• PersistentField class implementation.See OJB.properties section 'PersistentFieldClass' for more information.
• Used sequence manager implementation. See sequence manager for more information.
• Use of batch mode (when supported by the DB). See repository.dtd element 'jdbc-connection-descriptor' for more

information.
• PersistenceBroker pool size. See OJB.properties for more information.

To test the different settings use the tests of the performance test suite.

4.6. Howto's

4.6.1. Howto's Summary

4.6.1.1. Howto's

Here can be found a summary of all Howto documentation submitted by OJB Users and Developers.

OJB Documentation

Page 198
Copyright © All rights reserved.

error:#site:faq/api-differences
error:#site:faq
error:#ext:ojb.properties
error:#site:sequence-manager
error:#ext:repository.dtd
error:#ext:ojb.properties

• How to build large metadata mappings
• Using anonymous keys for cleaner objects
• Using native database sequences
• Using Oracle LOB's
• Using OJB in a clustered environment
• Working with stored procedures

4.6.2. How to build O/R mapping meta data files

4.6.2.1. How to build O/R mapping files

Writing the repository.xml file for only a few classes can easily be done manually with the text or xml editor of your choice.

But keeping the repository in sync with the java codebase and the database gets more difficult if several hundred classes and
large developer teams are involved.

This page contains tips how to integrate mapping tools and code-generators into your build process.

4.6.2.2. classification of O/R related transformations

Let's start with a classification of the source transformation problems that developers have to face in an O/R environment.

Typical development environments contain some or all of the following artefacts:

• A UML model containing at least class diagrams of the persistent classes. All modern UML tools can export to the XMI
standard format.

• Other tools, such as Torque, also use a model based approach but use different model file formats (typically XML based)
• Java source code for the persistent classes. The Java source code can possibly be enhanced with xdoclet tags.
• The OJB repository.xml file. This file contains all the class-descriptors for the persistent classes.
• The database. This could be an online DB or a DDL script representing the database tables. The database contains all tables

used to store instances of the persistent classes.

The technique you will use depends a lot on the problem you have to solve, on the methodology and the tool chain you have in
use, which of transformations between those artefacts fit to your development process.

1. Forward engineering from XMI: A UML model in XMI format with class diagrams of your persistent classes exists and
is used as the master source (model driven approach). Java code, repository.xml and DDL for the database tables have to
be generated from this model.

2. Forward engineering from Torque: A model of the persistent entity classes exists in form of a Torque.XML file. Java
code, repository.xml and DDL for the database tables have to be generated from this model.

3. Forward engineering from the repository.xml: The OJB repository.xml file is used a model format. Java code and DDL
for the database tables have to be generated from this model.

4. Xdoclet transformation from Java code: Java code for the persistent classes exists and contains special comment tags in
the Xdoclet ojb-module format. Repository.xml and DDL for the database tables have to be generated from the java files
via Xdoclet transformation.

5. Reverse engineering from database: There is a database with existing tables or a DDL script. Java code and
repository.xml have to be generated from the database.

These transformations are depicted in the following graphics. The numbers close to the arrows correspond to the numbers in
the above enumeration. All related transformations have the same colour.

mapping tools image

In the following sections we will have a closer look at each of these transformations an discuss tools that provide support each
approach.

4.6.2.3. Forward engineering from XMI

OJB Documentation

Page 199
Copyright © All rights reserved.

error:#site:howto/large-metadata
error:#site:howto/anonymous-keys
error:#site:howto/db-sequences
error:#site:howto/use-lobs
error:#site:howto/clustering
error:#site:howto/stored-procedures

This approach is recommended if you start from scratch with a new project and have to deal with a large number of persistent
classes. This approach works best when there are no restrictions regarding the database, like integration of legacy tables.

Forward engineering from XMI fits perfectly into a model driven architecture (MDA) software development process.

Tool support

• AXGen
AXgen is a code generator using XMI as input and Velocity templates for transformation.
The power of AXgen is in its simplicity. You don't have to understand complicated structure of your XMI file to write an
XSLT stylsheet for transformation. AXgen uses nsuml to deal with the xmi file, which gives access to the Metamodel in an
objectoriented way.
Further AXgen makes use of Jakartas Velocity. Velocity is a very sophisticated Java-based template engine. This means
that inside your templates you can call Java methods. Feel free to write templates that generate anything you want.
Our motive for AXgen is to generate Java Classes for use in a O/R Mapping tool that allows transparent persistence for
Java Objects against relational databases. Therefore AXgen comes with a bundle of ready to use templates for generating
ObJectRelationalBridge (OJB) specific stuff like:
• Entity Classes
• XML Repository
• SQL script to build the DB scheme

• AndroMDA
AndroMDA is a code generator framework - it takes a Unified Modeling Language (UML) model from a CASE-tool in
XMI format and generates custom components. It comes with a set of sample templates that generate classes attributed
with XDoclet tags. One build step later, the XDoclet tool generates full-blown components that can readily be deployed in
the JBoss application server (and the other servers that XDoclet can feed).

OJB Documentation

Page 200
Copyright © All rights reserved.

error:#ext:axgen
error:#ext:andromda

andromeda image
Currently AndroMDA provides no special support for OJB. But by tagging classes with tags of the XDoclet OJB module it
is possible to use it as a full forward engineering engine.

• Searching the Sourceforge project list for "XMI" returns a long list of projects dealing with code generation. It may be a
good idea to check if you find a tool that matches your requirements.

4.6.2.4. Forward engineering from Torque

Torque
Torque is a persistence layer. Torque includes a generator to generate all the database resources required by your application
and includes a runtime environment to run the generated classes.

Torque was developed as part of the Turbine Framework. It is now decoupled and can be used by itself. Starting with version
2.2 Turbine uses the decoupled Torque.

Torque uses a single XML database schema to generate the SQL for your target database and Torque's Peer-based object
relation model representing your XML database schema.

You can use devaki-nextobjects to create the model for your application.

OJB uses Torque's generator engine to setup the testbed database and feed it with initial data.

OJB Documentation

Page 201
Copyright © All rights reserved.

error:#ext:torque
error:#ext:devaki

Besides the SQL generation facilities Torque also provides special support for OJB related transformations. It provides the
following two ant targets:

• ojb-model
generates a simple object model for ojb

• ojb-repository
generates the repository for ojb

A complete list of all availableTorque targets can be found at the Torque Generator site.

4.6.2.5. Forward engineering from repository.xml

There is currently no tool available that directly supports this model. It is not difficult to implement an XSLT stylesheet that
transforms the OJB repository.xml directly into DDL Statements.

An even simpler approach could be to transform the repository.xml file into a Torque xml file. DDL can then be generated by
the Torque engine.
If you write such an XSLT file please tell us about it!

4.6.2.6. XDoclet transformation from Java code

XDoclet
XDoclet is a code generation engine. It enables Attribute-Oriented Programming for java. In short, this means that you can add
more significance to your code by adding meta data (attributes) to your java sources. This is done in special JavaDoc tags.

OJB was shipped with its own xdoclet-module.

XDoclet will parse your source files and generate many artifacts such as XML descriptors and/or source code from it. These
files are generated from templates that use the information provided in the source code and its JavaDoc tags.

XDoclet lets you apply Continuous Integration in component-oriented development. Developers should concentrate their
editing work on only one Java source file per component.

XDoclet originated as a tool for creating EJBs, it has evolved into a general-purpose code generation engine. XDoclet consists
of a core and a constantly growing number of modules.

4.6.2.7. Reverse engineering from database

• Druid
Druid is a tool that allows users to create databases in a graphical way. The user can add or import tables, fields, folders to
group tables and can modify most of the database options that follow the SQL-92 standard. In addition to sql options, the
user can document each table and each field with HTML information. It is distributed with modules for generating Java
classes, OJB metadata, and JDO metadata.

• Impart Eclipse Plugin for OJB
The Impart Eclipse plugin is based on the OJB ReverseDB Tool and provides the same functionality (and also some
additional goodies). It ships as a plugin to the Eclipse IDE. It provides a very convenient GUI that integrates smoothly into
the Eclipse platform.

• RDBS2J
RDBS2J is a GUI based mapping tool from relational database scheme to persistent java classes which use JDO as
persistence mechanism. The mapping can be modified by the GUI.
The current version is designed to create code for OJB.
The ODMG and the JDO interface are supported. RDBS2J creates the *.jdo files and the repository_user.xml, which are
needed by OJB.

• The OJB ReverseDB tool
OJB ships with a simple reverse engineering tool that allows to connect to a RDBMS via JDBC and to take the tables from

OJB Documentation

Page 202
Copyright © All rights reserved.

error:#ext:torque/gen
error:#ext:xdoclet
error:#site:xdoclet-module
error:#ext:druide
error:#ext:impart
error:#ext:rdbs2j

the database catalog as input.
This tool provides a nice GUI to generate Java classes and the matching repository.xml file.
You can invoke the ReverseDB tool with the ANT target reverse-db.

Note:
The ReverseDB tool is not up to date - any help is welcome.

4.6.3. HOWTO - Use Anonymous Keys

4.6.3.1. Why Do We Need Anonymous Keys?

The core difference between referential integrity in Java and in an RDBMS lies in where the specific referential information is
maintained. Java, and most modern OO languages, maintain referential integrity information in the runtime environment.
Actual object relationships are maintained by the virtual machine so that the symbolic variable used in the application is
dereferenced it will in fact provide access to the object instance which it is expected to provide access to. There is no need for
a manual lookup or search across the heap for the correct object instance. Entity reference integrity is maintained and handled
for the programmer by the environment.

Relational databases, on the other, purposefully place the referential integrity and lookups into the problem domain - that is the
problem they are designed to solve. An RDBMS presumes you can design something more efficient for your specific
circumstances than the JVM does (you trust its ability to do object lookups in the heap is sufficiently efficient). As an RDBMS
has a much larger heap equivalent it is designed to not operate under that assumption (mostly). So, in an RDBMS the concept
of specific foreign keys exists to maintain the referential integrity.

In crossing the object to relational entity barrier there is a mismatch between the referential integrity implementations. Java
programmers do not want to have to maintain both object referential integrity and key referential integrity analogous to

{
Foo child = new SomeOtherFooType();
Foo parent = new SomeFooType();
child.setParent(parent);
child.setParentId(parent.getId());
}

This is double the work required - you set up the object relationship, then set up the key relationship. OJB knows about the
relationship of the objects, thus it is only needed to do

{
Foo child = new Foo();
Foo parent = new Foo();
child.setParent(parent);
}

OJB can provide transparent key relationship maintenance behind the scenes for 1:1 relations via anonymous access fields. As
object relationships change, the relationships will be propogated into the key values without the Java object ever being aware
of a relational key being in use. This means that the java object does not need to specify a FK field for the reference.

Without use of anonymous keys class Foo have to look like:

class Foo
{

Integer id;
Integer fkParentFoo;
Foo parent;

// optional getter/setter
....

{

OJB Documentation

Page 203
Copyright © All rights reserved.

error:#site:basic-technique/one-to-one

When using anonymous keys the FK field will become obsolete:

class Foo
{

Integer id;
Foo parent;

// optional getter/setter
....

{

Note:
Under specific conditions it's also possible to use anonymous keys for other relations or primary keys. More info in advanced-technique section.

4.6.3.2. How it works

To play for safety it is mandatory to understand how this feature is working. More information how it works please see here.

4.6.3.3. Using Anonymous Keys

Now we can start using of the anonymous key feature. In this section the using is detailed described on the basis of an example.

The Code

Take the following classes designed to model a particular problem domain. They may do it reasonably well, or may not.
Presume they model it perfectly well for the problem being solved.

public class Desk
{

private Finish finish;
/** Contains Drawer instances */
private List drawers;
private int numberOfLegs;
private Integer id;

public Desk()
{

this.drawers = new ArrayList();
}

public List getDrawers()
{

return this.drawers;
}

public int getNumberOfLegs()
{

return this.numberOfLegs;
}

public void setNumberOfLegs(int num)
{

this.numberOfLegs = num;
}

public Finish getFinish()
{

return this.finish;
}

public void setFinish(Finish finish)
{

this.finish = finish;

OJB Documentation

Page 204
Copyright © All rights reserved.

error:#site:advanced-technique/anonymous-keys
error:#site:advanced-technique/anonymous-keys

}
}

public class Drawer
{

/** Contains Thing instances */
private List stuffInDrawer;
private Integer id;

public List getStuffInDrawer()
{

return this.stuffInDrawer;
}

public Drawer()
{

this.stuffInDrawer = new ArrayList();
}

}

public class Finish
{

private String wood;
private String color;
private Integer id;

public String getWood()
{

return this.wood;
}

public void setWood(String wood)
{

this.wood = wood;
}

public String getColor()
{

return this.color;
}

public void setColor(String color)
{

this.color = color;
}

}

public class Thing
{

private String name;
private Integer id;

public String getName()
{

return this.name;
}

public void setName(String name)
{

this.name = name;
}

}

A Desk will typically reference multiple drawers and one finish.

The Database

OJB Documentation

Page 205
Copyright © All rights reserved.

When we need to store our instances in a database we use a fairly typical table per class persistance model.

CREATE TABLE finish
(

id INTEGER PRIMARY KEY,
wood VARCHAR(255),
color VARCHAR(255)

);

CREATE TABLE desk
(

id INTEGER PRIMARY KEY,
num_legs INTEGER,
finish_id INTEGER,
FOREIGN KEY (finish_id) REFERENCES finish(id)

);

CREATE TABLE drawer
(

id INTEGER PRIMARY KEY,
desk_id INTEGER,
FOREIGN KEY (desk_id) REFERENCES desk(id)

);

CREATE TABLE thing
(

id INTEGER PRIMARY KEY,
name VARCHAR(255),
drawer_id INTEGER,
FOREIGN KEY (drawer_id) REFERENCES drawer(id)

);

At the database level the possible relationships need to be explicitely defined by the foreign key constraints. These model all
the possible object relationships according to the domain model (until generics enter the Java language for the collections API,
this is technically untrue for the classes used here).

The Repository Configuration

When we go to map the classes to the database, it is almost a one-to-one property to field mapping. The exception here is the
primary key on each entity. This is meaningless information in Java, so we would like to keep it out of the object model.
Anonymous access keys allow us to do that.

The repository.xml must know about the database columns used for referential integrity, but OJB can maintain the foreign key
relationships behind the scenes - freeing the developer to focus on more accurate modeling of her objects to the problem,
instead of the the persistance mechanism. Doing this is also very simple - in the repository.xml file mark the field descriptors
with a access="anonymous" attribute.

<class-descriptor
class="Desk"
table="desk">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="numberOfLegs"
column="num_legs"
jdbc-type="INTEGER"
/>

<field-descriptor

OJB Documentation

Page 206
Copyright © All rights reserved.

name="finishId"
column="finish_id"
jdbc-type="INTEGER"
access="anonymous" />

<collection-descriptor
name="drawers"
element-class-ref="Drawer"
>
<inverse-foreignkey field-ref="deskId"/>

</collection-descriptor>

<reference-descriptor
name="finish"
class-ref="Finish">

<foreignkey field-ref="finishId"/>
</reference-descriptor>

</class-descriptor>

<class-descriptor
class="Finish"
table="finish">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="wood"
column="wood"
jdbc-type="VARCHAR"
size="255"
/>

<field-descriptor
name="color"
column="color"
jdbc-type="VARCHAR"
size="255"
/>

</class-descriptor>

<class-descriptor
class="Drawer"
table="drawer">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="deskId"
column="desk_id"
jdbc-type="INTEGER"
access="anonymous"
/>

<collection-descriptor
name="stuffInDrawer"
element-class-ref="Thing"
>
<inverse-foreignkey field-ref="drawerId"/>

</collection-descriptor>
</class-descriptor>

OJB Documentation

Page 207
Copyright © All rights reserved.

<class-descriptor
class="Thing"
table="thing">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="name"
column="name"
jdbc-type="VARCHAR"
size="255"
/>

<field-descriptor
name="drawerId"
column="drawer_id"
jdbc-type="INTEGER"
access="anonymous"
/>

</class-descriptor>

Look first at the class descriptor for the Thing class. Notice the field-descriptor with the name attribute "drawerId". This field
is labeled as anonymous access. Because it is anonymous access OJB will not attempt to assign the value here to a "drawerId"
field or property on the Thing class. Normally the name attribute is used as the Java name for the attribute, in this case it is not.
The name is still required because it is used as an indicated for references to this anonymous field.

In the field descriptor for Drawer, look at the collection descriptor with the name stuffInDrawer. This collection descriptor
references a foreign key with the field-ref="drawerId". This reference is to the anonymous field descriptor in the
Thing descriptor. The field-ref matches to the name in the descriptor whether or not the name also maps to the Java attribute
name. This dual use of name can be confusing - be careful.

The same type mapping that is used for the collection descriptor in the Drawer descriptor is also used for the 1:1 reference
descriptor in the Desk descriptor.

The primary keys are populated into the objects as it is generally a good practice to not implement primary keys as anonymous
access fields. Primary keys may be anonymous-access but references will get lost if the cache is cleared or the persistent object
is serialized.

4.6.3.4. Benefits and Drawbacks

There are both benefits and drawbacks to using anonymous field references for maintaining referential integrity between Java
objects and database relations. The most immediate benefit is avoiding semantic code duplication. The second major benefit is
avoiding cluttering class definitions with persistance mechanism artifacts. In a well layered application, the persistance
mechanism will not really need to be so obvious in the object model implementation. Anonymous fields helpt o achieve this -
thereby making persistence mechanisms more flexible. Moving to a different one becomes easier.

4.6.4. HOWTO - Use DB Sequences

4.6.4.1. Introduction

It is easy to use OJB with with database generated sequences. Typically a table using database generated sequences will
autogenerate a unique id for a field as the default value for that field. This can be particularly useful if multiple applications
access the same database. Not every application will be using OJB and find it convenient to pull unique values from a high/low
table. Using a database managed sequence can help to enforce unique id's across applications all adding to the same database.
All of that said, care needs to be taken as using database generated sequences imposes some portability problems.

OJB Documentation

Page 208
Copyright © All rights reserved.

OJB includes a sequence manager implementation that is aware of database sequences and how to use them. It is known to
work against Oracle, SAP DB, and PostgreSQL. MySQL has its own sequence manager implementation because it is special.
This tutorial will build against PostgreSQL, but working against Oracle or SAP will work the same way.

Additional information on sequence managers is available in the Sequence Manager documentation.

4.6.4.2. The Sample Database

Before we can work with OJB against a database with a sequence, we need the database. We will create a simple table that
pulls its primary key from a sequence named 'UniqueIdentifier'.

CREATE TABLE thingie
(

name VARCHAR(50),
id INTEGER DEFAULT NEXTVAL('UniqueIdentifier')

)

We must also define the sequence from which it is drawing values:

CREATE SEQUENCE UniqueIdentifier;

So that we have the following table:

Table "public.thingie"
Column | Type | Modifiers
--------+-----------------------+---
name | character varying(50) |
id | integer | default nextval('UniqueIdentifier'::text)

If we manually insert some entries into this table they will have their id field set automagically.

INSERT INTO thingie (name) VALUES ('Fred');
INSERT INTO thingie (name) VALUES ('Wilma');
SELECT name, id FROM thingie;

name | id
-------+----
Fred | 0
Wilma | 1
(2 rows)

4.6.4.3. Using OJB

The Database Repository Descriptor

The next step is to configure OJB to access our thingie table. We need to configure the corrct sequence manager in the
repository-database.xml.

The default repository-database.xml uses the High/Low Sequence manager. We will delete or comment out that
entry, and replace it with the org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl
manager. This manager will pull the next value from a named sequence and use it. The entry for our sequence manager in the
repository is:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl" />

This needs to be declared within the JDBC Connection descriptor, so an entire repository-database.xml might look
like:

<jdbc-connection-descriptor

OJB Documentation

Page 209
Copyright © All rights reserved.

error:#site:sequence-manager

jcd-alias="default"
default-connection="true"
platform="PostgreSQL"
jdbc-level="2.0"
driver="org.postgresql.Driver"
protocol="jdbc"
subprotocol="postgresql"
dbalias="test"
username="tester"
password=""
eager-release="false"
batch-mode="false"
useAutoCommit="1"
ignoreAutoCommitExceptions="false"
>

<connection-pool
maxActive="21"
validationQuery=""/>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl" />

</jdbc-connection-descriptor>

Defining a Thingie Class

For the sake of simplicity we will make a very basic Java Thingie:

public class Thingie
{

/** thingie(name) */
private String name;

/** thingie(id) */
private int id;

public String getName() { return this.name; }
public void setName(String name) { this.name = name; }

public int getId() { return this.id; }
}

We also need a class descriptor in repository-user.xml that appears as follows:

<class-descriptor
class="Thingie"
table="THINGIE"
>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
sequence-name="UniqueIdentifier"
/>

<field-descriptor
name="name"
column="NAME"
jdbc-type="VARCHAR"
/>

</class-descriptor>

Look over the id field descriptor carefully. The autoincrement and sequence-name attributes are important for
getting our desired behavior. These tell OJB to use the sequence manager we defined to auto-increment the the value in id,
and they also tell the sequence manager which database sequence to use - in this case UniqueIdentifier

OJB Documentation

Page 210
Copyright © All rights reserved.

We could allow OJB to create an extent-aware sequence and use it, however as we are working against a table that defaults to a
specific named sequence, we want to make sure to pull values from that same sequence. Information on allowing OJB to create
its own sequences is available in the Sequence Manager documentation.

Using Thingie

Just to demonstrate that this all works, here is a simple application that uses our Thingie.

import org.apache.ojb.broker.PersistenceBroker;
import org.apache.ojb.broker.PersistenceBrokerFactory;

public class ThingieDriver
{

public static void main(String [] args)
{

PersistenceBroker broker = PersistenceBrokerFactory.defaultPersistenceBroker();

Thingie thing = new Thingie();
Thingie otherThing = new Thingie();

thing.setName("Mabob");
otherThing.setName("Majig");

broker.beginTransaction();
broker.store(thing);
broker.store(otherThing);
broker.commitTransaction();

System.out.println(thing.getName() + " : " + thing.getId());
System.out.println(otherThing.getName() + " : " + otherThing.getId());
broker.close();

}
}

When it is run, it will create two Thingie instances, store them in the database, and report on their assigned id values.

java -cp [...] ThingieDriver

Mabob : 2
Majig : 3

4.6.5. HOWTO - Work with LOB Data Types

4.6.5.1. Using Oracle LOB Data Types with OJB

Introduction

In a lot of applications there is a need to store large text or binary objects into the database. The definition of large usually
means that the object's size is beyond the maximum length of a character field. In Oracle this means the objects to be stored
can grow to > 4 KB each.

Depending on the application you are developing your "large objects" may either be in the range of some Kilobytes (for
example when storing text-only E-Mails or regular XML documents), but they may also extend to several Megabytes (thinking
of any binary data such as larger graphics, PDFs, videos, etc.).

In practice, the interface between your application and the database used for fetching and storing of your "large objects" needs
to be different depending on the expected size. While it is probably perfectly acceptable to handle XML documents or E-Mails
in memory as a string and always completely retrieve or store them in one chunk this will hardly be a good idea for video files
for example.

This HOWTO will explain:

OJB Documentation

Page 211
Copyright © All rights reserved.

error:#site:sequence-manager

1. Why you would want to store large objects in the database
2. Oracle LARGE versus LOB data types
3. LOB handling in OJB using JDBC LOB types

This tutorial presumes you are familiar with the basics of OJB.

4.6.5.2. Backgrounder: Large objects in databases

This section is meant to fill in non-DBA people on some of the topics you need to understand when discussing large objects in
databases.

Your database: The most expensive file system?

Depending on background some people tend to store anything in a database while others are biased against that. As databases
use a file system for physical storage anyway, why would it make sense to store pictures, videos and the like as a large object
in a database rather that just create a set of folders and store them right into the database.

When listening to Oracle's marketing campaingns one might get the impression that there is no need to have plain filesystems
anymore and that they all will vanish and be replaced by Oracle database servers. If that happened this would definitely boast
Oracle's revenues, but at the same time make IT cost in companies explode.

But there are applications where it in fact makes sense to have the database take care of unstructured data that you would
otherwise just store in a file. The most common criteria for storing non-relational data in the database instead of storing it
directly into the file system is whenever there is a strong link between this non-relatinal and some relational data.

Typical examples for that would be:

1. Pictures or videos of houses in a real estate agent's offer database
2. E-Mails related to a customer's order

If you are not storing these objects into the database you would need to create a link between the relational and the
non-relational data by saving filenames in the database. This means that you application is responsible for managing this weak
link in any respect. In order to make sure your application will be robust you need to make sure in your own code that

1. When creating a new record you create a valid and unique filename for storing the object.
2. When deleting a record you delete the corresponding file as well
3. When accessing the file referred to in the record you double-check the file is there and no locked

(There might be other, more subtle implications.)

All this is done for you by the database in case you choose to store your objects there. In addition to that, when discussing text
data, a database might come with an option to automatically index the stored text documents for easy retrievel. This would
allow you to perform an SQL seach such as "give me all customers that ever referred to the project foo in an e-mail". (In
Oracle you need to install the InterMedia option, aka Oracle Text in order to get this extra functionality. Several vendors have
also worked on technologies that allowed to seach rich content such as PDFs files, pictures or even sound or video stored in a
database from SQL.)

Oracle LARGE versus LOB datatypes

Some people are worried about the efficiency of storing large objects in databases and the implications on performance. They
are not necessarily entirely wrong in fearing that storing large objects in databases might be problematic the best or might
require a lot of tweaks to parameters in order to be able to handle the large objects. It all depends on how a database
implements storing large objects.

Oracle comes with two completely different mechanisms for that:

1. LARGE objects
2. LOB objects

OJB Documentation

Page 212
Copyright © All rights reserved.

When comparing the LARGE datatypes such as (*fixme*) to the LOB datatypes such as CLOB, BLOB, NCLOB (*fixme*)
they don't read that different at first. But there is a huge difference in how they are handled both internally inside the database
as well when storing and retrieving from the database client.

LARGE fields are embedded directly into the table row. This has some consequences you should be aware of:

1. If your record is made up of 5 VARCHAR fields with a maximum length of 40 bytes each and one LONGVARCHAR and
you store 10 MB into the LONGVARCHAR column, your database row will extent to 10.000.200 bytes or roughly 10 MB.

2. The database always reads or writes the entire row. So if you do a SELECT on the VARCHAR fields in order to display
their content in a user interface as a basis for the user to decide if he or she will need the content of the LONGVARCHAR
at all the database will already have fetched all the 10 MB. If you SELECT and display 25 records each with a 10 MB
object in it this will mean about 250 MB of I/O.

3. When storing or fetching such a row you need to make sure your fetch buffer is sized appropriately.

In practice this cannot be efficient. It might work as long as you stay in the KB range, but you will most likely run into trouble
as soon as it gets into the MBs per record. Additionally, there are more limitations to the concept of LONG datatypes such as
limiting the number of them you can have in one row and how you can index them. This is probably why Oracle decided to
deprecate LONG datatypes in favor of LOB columns.

A lot of non-Oracle-DBA people believe that LOB means "large OBject" because some other vendors have used the term
BLOB for "Binary Large OBject" in their products. This is not only wrong but - even worse - misleading, because people are
asking: "What's the difference between large and long?" (Bear with all non native English speakers here, please!)

Instead, LOB stands for Locator OBject which exactly describes what is is. It is a pointer to the place where the actual data
itself is stored. This locator will need only occupy some bytes in the row thus not harming row size at all. So all the issues
discussed above vanish immediatelly. For the sake of simplicity think of a LOB as a pointer to a file on the databases internal
file system that stores the actual content of that field. (Oracle might use plain files or different mechanisms in their
implementation, we don't have to care.)

But as there is always a trade-off while LOBs are exstremely handy inside a row, they are more complex to store and retrieve.
As opposed to all other column types their actual content stays where it is even if you transfer the row from the database to the
client. All that goes over the wire in that case will be a token representing the actual LOB column content.

In order to read the content or to write LOB content it needs to open a separate stream connection over the network that can be
read from or written to similar to a file on a network file system. JDBC (starting at version *fixme*) comes with special
objects such as java.sql.Blob and java.sql.Clob to access the content of LOBs that do not represent character arrays or strings
but streams!

4.6.5.3. Large Objects in OJB

After having skipped the above Backgrounder (in case you do Oracle administration for a living) of having read and
understood it (hopefully applies to the rest of us) now that you've most likely decided to go for LOBs and forget about LONGs
how is this handled with OJB?

Strategy 1: Using streams for LOB I/O

########## to be written #########

Strategy 2: Embedding OJB content in Java objects

########## to be written #########

Querying CLOB content

########## to be written #########

OJB Documentation

Page 213
Copyright © All rights reserved.

4.6.6. HOWTO - Use OJB in clustered environments

4.6.6.1. How to use OJB in clustered environments

Object/Relational Bridge will work fine in environments that require robustness features such as load-balancing, failover, and
clustering. However, there are some important steps that you need to take in order for your data to be secure, and to prevent
isolation failures. These steps are outlined below.

I have tested this in a number of environments, and with Servlet engines and J2EE environments. If you run into problems,
please post questions to the OJB users mail list.

This outline for clustering is based on an email from the OJB Users Mail List: This is that mail.

4.6.6.2. Three steps to clustering your OJB application

A lot of people keep asking for robust ways to run their OJB engines in multi-VM or clustered environments. This email
covers how to do that safely and securely using Open Symphony's OSCache caching product.

OSCache is a high-performance, robust caching product that supports clustering. I've been using it for a while in production
and it is excellent.

Back to the Topic: There are three main things that you should do in order to make your OJB application ready for using a
cache in a multi-VM or distributed environment.

First: Take care of the sequence manager

that you define within jdbc-connection-descriptor element in your repository.xml file. If none was set OJB use per default the
SequenceManagerHighLowImpl sequence manager implementation.

Note:
As of Release Candidate 5 (rc5), you can use SequenceManagerHighLowImpl in distributed (non-managed) environments. The SequenceManagerHighLowImpl now supports its
own optimistic locking that makes the implementation cluster aware by versioning an entry in the OJB_HL_SEQ table.

However, the SequenceManagerHighLowImpl has not been heavily tested in clustered environments, so if you want absolute
security use an sequence manager implementation which delegates key generation to database.

If your database supports database based sequence key generation (like PostgreSQL, Oracle, ...) it's recommended to use
SequenceManagerNextValImpl (supports database based sequence keys). Using this sequence manager will prevent
conflicts in multi-vm or clustered environments. More about sequence manager here.

Handling sequence names

If you are using SequenceManagerNextValImpl you have two possibilities:

• Do it by your own:
• Create a sequence object in your database.

• An Oracle sequence lookslike: "create sequence ackSequence increment by 1 start with 1;"
• A Postgres sequence looks like: "CREATE SEQUENCE ackSequence START 1";

• For other databases you're on your own.
• To tell OJB to use that sequence for your table add in your repository.xml the sequence name to the field-descriptor for

your table's primary key field:

<field-descriptor
name="ackID"
column="ACKID"
jdbc-type="INTEGER"

OJB Documentation

Page 214
Copyright © All rights reserved.

error:#ext:ojb/archives/mail-archive/user/clustering-link
error:#site:repository/jdbc-connection-descriptor
error:#site:sequence-manager

primarykey="true"
autoincrement="true"
sequence-name="ackSequence"
/>
• Let OJB do that job for you:

The SequenceManagerNextValImpl implementation create the sequence in database automatic if none was found. If
you don't want to declare a sequence-name attribute in your field-descriptor, you can enable an automatic sequence
name building by setting a specific custom-attribute , then SequenceManagerNextValImpl build an internal
sequence name if none was found.

<sequence-manager className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">
<attribute attribute-name="autoNaming" attribute-value="true"/>

</sequence-manager>

More about sequence manager here.

Second: Enable optimistic locking

You need to secure the data at the database. Thomas Mahler (lead OJB developer and considerable ORM guru) recommended
in one email that you use the Optimistic Locking feature that is provided by OJB when using the PB API in a clustered
environment. Sounds good to me. To do this you need to do three small steps:

Note:
When using one of the top-level API in most cases Pessimistic (Object) Locking is supported. In that case it is recommended to use a distributed lock management instead of
optimistic locking. More information about ODMG API and Locking here.

• Add a database column to your table that is either an INTEGER or a TIMESTAMP
• Add the field to your java class, and getter/setter methods (depends on the used PersistentField implementation):

private Integer ackOptLock;

public Integer getAckOptLock()
{
return ackOptLock;
}

public void setAckOptLock(Integer ackOptLock)
{
this.ackOptLock = ackOptLock;
}
• Add the column to your table in your repository:

<field-descriptor
name="ackOptLock"
column="ACKOPTLOCK"
jdbc-type="INTEGER"
locking="true"/>

Now OJB will handle the locking for you. No explicit transactional code necessary!

Do The Cache

You're basically in good shape at this point. Now you've just got to set up OSCache to work with OJB. Here are the steps for
that:

• Download OSCache from OSCache. Add the oscache-2.0.x.jar to your project so that it is in your classpath (for
Servlet/J2EE users place in your WEB-INF/lib directory). You will also need commons-collections.jar and
commons-logging.jar, if you don't already have them.

• Download JavaGroups from JavaGroups. Add the javagroups-all.jar to your classpath (for Servlet/J2EE users place in your
WEB-INF/lib directory).

OJB Documentation

Page 215
Copyright © All rights reserved.

error:#site:repository/custom-attribute
error:#site:sequence-manager
error:#site:lock-manager
error:#site:advanced-technique/persistent-field
error:#ext:oscache
error:#ext:javagroups

• In your OJB.properties file change the ObjectCacheClass property to be the following:
ObjectCacheClass=org.nacse.jlib.ObjectCacheOSCacheImpl
To make OSCache the default used cache implementation. More info about object caching here.

• Add oscache.properties from your OSCache distribution to your project so that it is in the classpath (for Servlet/J2EE users
place in your WEB-INF/classes directory). Open the file and make the following changes:
1. Add the following line to the CACHE LISTENERS section of your oscache.properties file:

cache.event.listeners=com.opensymphony.oscache.plugins.clustersupport.JavaGroupsBroadcastingListener
2. Add the following line at the end of the oscache.properties file (your network must support multicast):

cache.cluster.multicast.ip=231.12.21.132
• Add the following class to your project (feel free to change package name, but make sure that you specify the full qualified

class name in OJB.properties file). You can find source of this class under
db-ojb/contrib/src/ObjectCacheOSCacheImpl.
Source for ObjectCacheOSCacheImpl:

public class ObjectCacheOSCacheImpl implements ObjectCache
{

private static GeneralCacheAdministrator admin = new GeneralCacheAdministrator();
private static final int NO_REFRESH = CacheEntry.INDEFINITE_EXPIRY;

public ObjectCacheOSCacheImpl()
{
}

public ObjectCacheOSCacheImpl(PersistenceBroker broker, Properties prop)
{
}

public void cache(Identity oid, Object obj)
{

try
{

this.remove(oid);
admin.putInCache(oid.toString(), obj);

}
catch(Exception e)
{

throw new RuntimeCacheException(e.getMessage());
}

}

public Object lookup(Identity oid)
{

try
{

return admin.getFromCache(oid.toString(), NO_REFRESH);
}
catch(Exception e)
{

admin.cancelUpdate(oid.toString());
return null;

}
}

public void remove(Identity oid)
{

try
{

admin.flushEntry(oid.toString());
}
catch(Exception e)
{

throw new RuntimeCacheException(e.getMessage());
}

}

OJB Documentation

Page 216
Copyright © All rights reserved.

error:#site:object-cache

public void clear()
{

if(admin != null)
{

try
{

admin.flushAll();
}
catch(Exception e)
{

throw new RuntimeCacheException(e);
}

}
}

}

You're ready to go! Now just create two instances of your application and see how they communicate at the cache level. Very
cool.

4.6.6.3. Notes

• For J2EE/Servlet users: I have tested this on a number of different application servers. If you're having problems with your
engine, post an email to the OJB Users mail list.

• OSCache also supports JMS for clustering here, which I haven't covered. If you either don't have access to a multicast
network, or just plain like JMS, please refer to the OSCache documentation for help with that, see OSCache Clustering
with JMS).

• I have also tested this with Tangosol Coherence. Please refer to this Blog entry for that setup: Coherence Setup
• OJB also has ships with JCS. Feel free to try that one out on your own.

4.6.7. HOWTO - Stored Procedure Support

4.6.7.1. Introduction

OJB supports the use of stored procedures to handle the basic DML operations (INSERT, UPDATE, and DELETE). This
document will describe the entries that you'll need to add to your repository in order to get OJB to utilize stored procedures
instead of 'traditional' INSERT, UPDATE or DELETE statements.

Please note that there will be references to 'stored procedures' throughout this document. However, this is just a simplification
for the purposes of this document. Any place you see a reference to 'stored procedure', you can assume that either a stored
procedure or function can be used.

Information presented in this document includes the following:

• Basic repository entries
• Common attributes for all procedure descriptors
• An overview of the insert procedure, update procedure and delete procedure descriptors.
• Information about the argument descriptors that are supported for all procedure
• A simple example and a more complex example

4.6.7.2. Repository entries

For any persistable class (i.e. "com.myproject.Customer") where you want to utilize stored procedures to handle persistence
operations instead of traditional DML statements (i.e. INSERT, UPDATE or DELETE), you will need to include one or more
of the following descriptors within the corresponding class-descriptor for the persistable class:

• insert-procedure - identifies the stored procedure that is to be used whenever a class needs to be inserted into the
database.

• update-procedure - identifies the stored procedure that is to be used whenever a class needs to be updated in the
database.

OJB Documentation

Page 217
Copyright © All rights reserved.

error:#ext:oscache/os-clustering
error:#ext:oscache/os-clustering
error:#ext:tangosol-blog

• delete-procedure - identifies the stored procedure that is to be used whenever a class needs to be removed from the
database.

All of these descriptors must be nested within the class-descriptor that they apply to. Here is an example of a simple
class-descriptor that includes each of the procedure descriptors listed above:

<class-descriptor class="com.myproject.Customer" table="CUSTOMER">
<field-descriptor column="ID" jdbc-type="DECIMAL" name="id" primarykey="true"/>
<field-descriptor column="NAME" jdbc-type="VARCHAR" name="name"/>
<insert-procedure name="CUSTOMER_PKG.ADD">

<runtime-argument field-ref="id" return="true"/>
<runtime-argument field-ref="name"/>

</insert-procedure>
<update-procedure name="CUSTOMER_PKG.CHG">

<runtime-argument field-ref="id"/>
<runtime-argument field-ref="name"/>

</update-procedure>
<delete-procedure name="CUSTOMER_PKG.CHG">

<runtime-argument field-ref="id"/>
</delete-procedure>
</class-descriptor>

4.6.7.3. Common attributes

All three procedure descriptors have the following attributes in common:

• name - This is the name of the stored procedure that is to be used to handle the specific persistence operation.
• return-field-ref - This identifies the field in the class where the return value from the stored procedure will be

stored. If this attribute is blank or not specified, then OJB will assume that the stored procedure does not return a value and
will format the SQL command accordingly.

The basic syntax that is used to call a procedure that has a return value looks something like this:

{?= call <procedure-name>[<arg1>,<arg2>, ...]}

The basic syntax that is used to call a procedure that does not include a return value looks something like this:

{call <procedure-name>[<arg1>,<arg2>, ...]}

When OJB assembles the SQL to call a stored procedure, it will use the value of the 'name' attribute in place of
'procedure-name' in these two examples.

In addition, if the procedure descriptor includes a value in the 'return-field-ref' attribute that is 'valid', then the syntax that OJB
builds will include the placeholder for the result parameter.

The previous section referred to the idea of a 'valid' value in the 'return-field-ref' attribute. A value is considered to be 'valid' if
it meets the following criteria:

• The value is not blank
• There is a field-descriptor with a 'name' that matches the value in the 'return-field-ref' attribute.

If the 'return-field-ref' attribute is not 'valid', then the placeholder for the result parameter will not be included in the SQL that
OJB assembles.

4.6.7.4. insert-procedure

The insert-procedure descriptor identifies the stored procedure that should be used whenever a class needs to be inserted into
the database. In addition to the common attributes listed earlier, the insert-procedure includes the following attribute:

• include-all-fields

This attribute provides an efficient mechanism for passing all attributes of a persistable class to a stored procedure. If this
attribute is set to true, then OJB will ignore any nested argument descriptors. Instead, OJB will assume that the argument list

OJB Documentation

Page 218
Copyright © All rights reserved.

for the stored procedure includes arguments for all attributes of the persistable class and that those arguments appear in the
same order as the field-descriptors for the persistable class.

The default value for this attribute is 'false'.

Note:
If the field-descriptors in your repository do not 'align' exactly with the argument list for the stored procedure, or you want to maintain explicit control over the values that are
passed to the stored procedure, then either set the 'include-all-fields' attribute to 'false' or leave it off the insert-procedure descriptor.

4.6.7.5. update-procedure

The update-procedure descriptor identifies the stored procedure that should be used whenever a class needs to be updated in
the database. In addition to the common attributes listed earlier, the update-procedure includes the following attribute:

• include-all-fields

This attribute provides the same capabilities and has the same caveats as the include-all-fields attribute on the insert-procedure
descriptor.

4.6.7.6. delete-procedure

The delete-procedure descriptor identifies the stored procedure that should be used whenever a class needs to be deleted from
the database. In addition to the common attributes listed earlier, the delete-procedure includes the following attribute:

• include-pk-only
This attribute provides an efficient mechanism for passing all of the attributes that make up the primary key for a
persistable class to the specified stored procedure. If this attribute is set to true, then OJB will ignore any nested argument
descriptors. Instead, OJB will assume that the argument list for the stored procedure includes arguments for all attributes
that make up the primary key for the persistable class (i.e. those field-descriptors where the 'primary-key' attribute is set to
'true'). OJB will also assume that those arguments appear in the same order as the corresponding field-descriptors for the
persistable class.
The default value for this attribute is 'false'.

Note:
If the field-descriptors in your repository that make up the primary key for a persistable class do not 'align' exactly with the argument list for the stored procedure, or you want to
maintain explicit control over the values that are passed to the stored procedure, then either set the 'include-pk-only' attribute to 'false' or leave it off the delete-procedure
descriptor.

4.6.7.7. Argument descriptors

Argument descriptors are the mechanism that you will use to tell OJB two things:

1. How many placeholders should be included in the argument list for a stored procedure?
2. What value should be passed for each of those arguments?

There are two types of argument descriptors that can be defined in the repository:

• runtime arguments used to set a stored procedure argument equal to a value that is only known at runtime.
• constant arguments used to set a stored procedure argument equal to constant value.

You may notice that there is no argument descriptor specifically designed to pass a null value to the procedure. This capability
is provided by the runtime argument descriptor.

The argument descriptors are essentially the 'mappings' between stored procedure arguments and their runtime values. Each
procedure descriptor can include 0 or more argument descriptors in it's definition.

After reading that last comment, you may wonder why OJB allows you to configure a procedure descriptor with no argument
descriptors since the primary focus of OJB is to handle object persistence. How could OJB perform any sort persistence

OJB Documentation

Page 219
Copyright © All rights reserved.

operation using a stored procedure that did not involve the passage of at least one value to the stored procedure? To be honest,
it is extremely unlikely that you would ever set up a procedure descriptor with no argument descriptors. However, since there
is no minimum number of arguments required for a stored procedure, we did not want to implement within OJB a requirement
on the number of arguments that was more restrictive than the limits imposed by most/all database systems.

runtime-argument descriptors

A runtime-argument descriptor is used to set a stored procedure argument equal to a value that is only known at runtime.

Two attributes can be specified for each runtime-argument descriptor:

• field-ref
The 'field-ref' attribute identifies the specific field descriptor that will provide the argument's value. If this attribute is not
specified or does not resolve to a valid field-descriptor, then a null value will be passed to the stored procedure.

• return
The 'return' attribute is used to determine if the argument is used by the stored procedure as an 'output' argument.
If this attribute is set to true, then the corresponding argument will be registered as an output parameter. After execution of
the stored procedure, the value of the argument will be 'harvested' from the CallableStatement and stored in the attribute
identified by the field-ref attribute.
If this attribute is not specified or set to false, then OJB assumes that the argument is simply an 'input' argument, and it will
do nothing special to the argument.

constant-argument descriptors

A constant-argument descriptor is used to set a stored procedure argument equal to constant value.

There is one attribute that can be specified for the constant-argument descriptor:

• value
The 'value' attribute identifies the value for the argument.

4.6.7.8. A simple example

This section provides background information and a simple example that illustrates how OJB's support for stored procedures
can be utilized.

The background information covers the following topics:

• The basic requirements
• The database objects including the table that will be manipulated, the sequence that will be used by the stored procedures

to assign primary key falues, the insert and update triggers that maintain the four 'audit' columns and the package that
provides the stored procedures that will handle the persistence operations.

Click here to skip the background information and go straight to the implementation.

The basic requirements

These are the requirements that must be satisfied by our example

1. All insert, update and delete operations are to be performed by stored procedures.

2. All primary key values are to be by the stored procedure that handles the insert operation. The value that is assigned should
be reflected in the object that 'triggered' the insert operation.

3. For auditing purposes, all tables will include the following set of columns:
• USER_CREATED - This will contain the id of the user who created the record
• DATE_CREATED - The date on which the record was created created
• USER_UPDATED - The id of the user who last modified the record

OJB Documentation

Page 220
Copyright © All rights reserved.

• USER_UPDATED - The date on which the record was last modified
In addition to the inclusion of these columns on each table, the following requirements related to these columns had to be
supported:
1. The values of the two date-related audit columns were to be maintained at the database level via insert and update

triggers.
• The insert trigger will set both DATE_CREATED and DATE_UPDATED to the current system date.
• The update trigger will set DATE_UPDATED to the current system date. The update trigger will also ensure that the

original value of DATE_CREATED is never modified.
2. The values of the two user-related audit columns are to be maintained at the database level via insert and update

triggers.
• The insert and update triggers will ensure that USER_CREATED and USER_UPDATED are appropriately populated.
• The update trigger will ensure that the original value of USER_CREATED is never modified.

3. Any changes that are made by the insert or update triggers to any of the four 'audit' columns had to be reflected in the
object that caused the insert or update operation to occur.

The database objects

The database objects that are described in this section utilize Oracle specific syntax. However, you should not infer from this
that the stored procedure support provided by OJB can only be used to access data that is stored in an Oracle database. In
reality, stored procedures can be used for persistence operations in any database that supports stored procedures.

• The table that will be manipulated,
• The sequence that will be used by the stored procedures to assign primary key values
• The insert and update triggers that maintain the four 'audit' columns
• The package that provides the stored procedures that will handle the persistence operations.

Click here to skip the information about the database objects and go straight to the implementation.

The CUSTOMER table

This example will deal exclusively with persistence operations related to the a table named 'CUSTOMER' that is built using
the following DDL:

CREATE TABLE CUSTOMER
(ID NUMBER(18) NOT NULL
, NAME VARCHAR2(50) NOT NULL
, USER_CREATED VARCHAR2(30)
, DATE_CREATED DATE
, USER_UPDATED VARCHAR2(30)
, DATE_UPDATED DATE
, CONSTRAINT PK_CUSTOMER PRIMARY KEY (ID)
);

The sequence

This sequence will be used to assign unique values to CUSTOMER.ID.

CREATE SEQUENCE CUSTOMER_SEQ;

The insert and update triggers

These two triggers will implement all of the requirements listed above that are related to the four audit columns:

CREATE OR REPLACE TRIGGER CUSTOMER_ITR
BEFORE INSERT ON CUSTOMER
FOR EACH ROW
BEGIN
--
-- Populate the audit dates

OJB Documentation

Page 221
Copyright © All rights reserved.

--
SELECT SYSDATE, SYSDATE
INTO :NEW.DATE_CREATED, :NEW.DATE_UPDATED
FROM DUAL;
--
-- Make sure the user created column is populated.
--
IF :NEW.USER_CREATED IS NULL
THEN
SELECT SYS_CONTEXT('USERENV','TERMINAL')
INTO :NEW.USER_CREATED
FROM DUAL;

END IF;
--
-- Make sure the user updated column is populated.
--
IF :NEW.USER_UPDATED IS NULL
THEN
SELECT SYS_CONTEXT('USERENV','TERMINAL')
INTO :NEW.USER_UPDATED
FROM DUAL;

END IF;
END;
/

CREATE OR REPLACE TRIGGER CUSTOMER_UTR
BEFORE UPDATE ON CUSTOMER
FOR EACH ROW
BEGIN
--
-- Populate the date updated
--
SELECT SYSDATE
INTO :NEW.DATE_UPDATED
FROM DUAL;
--
-- Make sure the user updated column is populated.
--
IF :NEW.USER_UPDATED IS NULL
THEN
SELECT SYS_CONTEXT('USERENV','TERMINAL')
INTO :NEW.USER_UPDATED
FROM DUAL;

END IF;
--
-- Make sure the date/user created are never changed
--
SELECT :OLD.DATE_CREATED, :OLD.USER_CREATED
INTO :NEW.DATE_CREATED, :NEW.USER_CREATED
FROM DUAL;
END;
/

The package

This Oracle package will handle all INSERT, UPDATE and DELETE operations involving the CUSTOMER table.

CREATE OR REPLACE PACKAGE CUSTOMER_PKG AS
--
-- This procedure should be used to add a record to the CUSTOMER table.
--
PROCEDURE ADD (AID IN OUT CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE
, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE);

--

OJB Documentation

Page 222
Copyright © All rights reserved.

-- This procedure should be used to change a record on the CUSTOMER table.
--
PROCEDURE CHANGE (AID IN CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE
, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE);

--
-- This procedure should be used to delete a record from the CUSTOMER table.
--
PROCEDURE DELETE (AID IN CUSTOMER.ID%TYPE);
END CUSTOMER_PKG;
/
CREATE OR REPLACE PACKAGE BODY CUSTOMER_PKG AS
--
-- This procedure should be used to add a record to the CUSTOMER table.
--
PROCEDURE ADD (AID IN OUT CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE
, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE)

IS
NEW_SEQUENCE_1 CUSTOMER.ID%TYPE;

BEGIN
SELECT CUSTOMER_SEQ.NEXTVAL
INTO NEW_SEQUENCE_1
FROM DUAL;

INSERT INTO CUSTOMER (ID, NAME, USER_CREATED, USER_UPDATED)
VALUES (NEW_SEQUENCE_1, ANAME, AUSER_CREATED, AUSER_UPDATED)
RETURNING ID, USER_CREATED, DATE_CREATED, USER_UPDATED, DATE_UPDATED

INTO AID, AUSER_CREATED, ADATE_CREATED, AUSER_UPDATED, ADATE_UPDATED;
END ADD;
--
-- This procedure should be used to change a record on the CUSTOMER table.
--
PROCEDURE CHANGE (AID IN CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE
, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE)

IS
BEGIN
UPDATE CUSTOMER

SET NAME = ANAME
, USER_CREATED = USER_CREATED
, USER_UPDATED = AUSER_UPDATED

WHERE ID = AID
RETURNING USER_CREATED, DATE_CREATED, USER_UPDATED, DATE_UPDATED

INTO AUSER_CREATED, ADATE_CREATED, AUSER_UPDATED, ADATE_UPDATED;
END CHANGE;
--
-- This procedure should be used to delete a record from the CUSTOMER table.
--
PROCEDURE DELETE (AID IN CUSTOMER.ID%TYPE)
IS
BEGIN
DELETE
FROM CUSTOMER
WHERE ID = AID;

END DELETE;
END CUSTOMER_PKG;
/

Please note the following about the structure of the CUSTOMER_PKG package:

OJB Documentation

Page 223
Copyright © All rights reserved.

• The AID argument that is passed to the the ADD procedure is defined as IN OUT. This allows the procedure to return the
newly assigned ID to the caller.

• In the ADD and CHANGE procedures, the arguments that correspond to the four 'audit' columns are defined as IN OUT.
This allows the procedure to return the current value of these columns to the 'caller'.

The implementation

Getting OJB to utilize the stored procedures described earlier in this document is as simple as adding a few descriptors to the
repository. Here is a class-descriptor related to the CUSTOMER table that includes all of the necessary descriptors.

<class-descriptor class="com.myproject.Customer" table="CUSTOMER">
<field-descriptor column="ID" jdbc-type="DECIMAL" name="id" primarykey="true"/>
<field-descriptor column="NAME" jdbc-type="VARCHAR" name="name"/>
<field-descriptor column="USER_CREATED" jdbc-type="VARCHAR" name="userCreated"/>
<field-descriptor column="DATE_CREATED" jdbc-type="TIMESTAMP" name="dateCreated"/>
<field-descriptor column="USER_UPDATED" jdbc-type="VARCHAR" name="userUpdated"/>
<field-descriptor column="DATE_UPDATED" jdbc-type="TIMESTAMP" name="dateUpdated"/>
<insert-procedure name="CUSTOMER_PKG.ADD">
<runtime-argument field-ref="id" return="true"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated" return="true"/>

</insert-procedure>
<update-procedure name="CUSTOMER_PKG.CHG">
<runtime-argument field-ref="id"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated" return="true"/>

</update-procedure>
<delete-procedure name="CUSTOMER_PKG.CHG">
<runtime-argument field-ref="id"/>

</delete-procedure>
</class-descriptor>

Some things to note about this class-descriptor:

1. In the insert-procedure descriptor, the first runtime-argument descriptor correspnds to the "AID" argument that is passed to
the CUSTOMER_PKG.ADD routine. The "return" attribute on this runtime-argument is set to "true". With this
configuration, OJB will 'harvest' the value that is returned by the CUSTOMER_PKG.ADD stored procedure and store the
value in the "id" attribute on the com.myproject.Customer class.

2. In both the insert-procedure and update-procedure descriptors, the runtime-argument descriptors that correspond to the four
'audit' columns all have the "return" argument set to "true". This allows any updates that are made by the procedure or the
insert/update triggers to be reflected in the "Customer" object that caused the insert/update operation to occur.

4.6.7.9. A complex example

This example builds upon the simple example that was presented earlier by introducing some additional requirements beyond
those that were specified in the simple example. Some of these additional requirements may seem a little contrived. To be
honest, they are. The only purpose of these additional requirements is to create situations that illustrate how the additional
capabilities provided by OJB's support for stored procedures can be utilized.

The additional requirements for this example include the following:

• All procedures will include two additional arguments. These two new arguments will be added to the end of the argument
list for all existing procedures.
• ASOURCE_SYSTEM - identifies the system that initiated the persistence operation. This will provide a higher level of

audit tracking capability. In our example, this will always be "SAMPLE".
• ACOST_CENTER - identifies the 'cost center' that should be charged for the persistence operation. In our example, this

OJB Documentation

Page 224
Copyright © All rights reserved.

argument will always be null.
• For all "ADD" and "CHG" stored procedures, the value that was assigned to the "DATE_UPDATED" column will no

longer be returned to the caller via an "IN OUT" argument. Instead, it will be returend to the caller via the procedure's
return value.

Based on these new requirements, the class-descriptor for the "com.myproject.Customer" class will look like this. The specific
changes are detailed below.

<class-descriptor class="com.myproject.Customer" table="CUSTOMER">
<field-descriptor column="ID" jdbc-type="DECIMAL" name="id" primarykey="true"/>
<field-descriptor column="NAME" jdbc-type="VARCHAR" name="name"/>
<field-descriptor column="USER_CREATED" jdbc-type="VARCHAR" name="userCreated"/>
<field-descriptor column="DATE_CREATED" jdbc-type="TIMESTAMP" name="dateCreated"/>
<field-descriptor column="USER_UPDATED" jdbc-type="VARCHAR" name="userUpdated"/>
<field-descriptor column="DATE_UPDATED" jdbc-type="TIMESTAMP" name="dateUpdated"/>
<insert-procedure name="CUSTOMER_PKG.ADD"

return-field-ref="dateUpdated"> <!-- See note 1 -->
<runtime-argument field-ref="id" return="true"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated"/> <!-- See note 2 -->
<constant-argument value="SAMPLE"/> <!-- See note 3 -->
<runtime-argument/> <!-- See note 4 -->

</insert-procedure>
<update-procedure name="CUSTOMER_PKG.CHG"

return-field-ref="dateUpdated"> <!-- See note 1 -->
<runtime-argument field-ref="id"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated"/> <!-- See note 2 -->
<constant-argument value="SAMPLE"/> <!-- See note 3 -->
<runtime-argument/> <!-- See note 4 -->

</update-procedure>
<delete-procedure name="CUSTOMER_PKG.CHG">
<runtime-argument field-ref="id"/>
<constant-argument value="SAMPLE"/> <!-- See note 3 -->
<runtime-argument/> <!-- See note 4 -->

</delete-procedure>
</class-descriptor>

Here are an explanation of each modification:

• Note 1: The value that is returned by the "ADD" and "CHG" stored procedures will now be stored in the "dateUpdated"
attribute on the "com.myproject.Customer" class.

• Note 2: Since the ADATE_UPDATED argument is no longer defined as an "IN OUT" argument, we have removed the
"return" attribute from the corresponding runtime-argument descriptor.

• Note 3: This is the first of two new arguments that were added to the argument list of each procedure. This argument
represents the 'source system', the system that initiated the persistence operation. In our example, we will always pass a
value of 'SAMPLE'.

• Note 4: This is the second of two new arguments that were added to the argument list of each procedure. This argument
represents the 'cost center' that should be charged for the persistence operation. In our example, we have no cost center, so
we need to pass a null value. This is accomplished by including a 'runtime-argument' descriptor that has no 'field-ref'
specified.

4.7. Testing

4.7.1. Testing Summary

OJB Documentation

Page 225
Copyright © All rights reserved.

4.7.1.1. Testing

Here can be found a summary of all (maybe nearly all) documentation about how OJB does testing (a JUnit baseed test suite)
and how to write new tests.

• The OJB test suite
• How to write tests

4.7.2. OJB JUnit Test Suite

4.7.2.1. Introduction

Building an Object/Relational mapping tool with support for multiple API's is really error prone. To create a solid and stable
software, the most awful thing in programmers life has to be done - Testing.

Quality assurance taken seriously! OJB and provide specific tests for each supported API. Currently more than 600 test cases
for regression tests exist. As testing framework JUnit was used.

4.7.2.2. How to run the Test Suite

If the platform depended settings are done, the test suite can be started with the ant target:

ant junit

If compiling of the sources should be skipped use

ant junit-no-compile

If you did not manage to set up the target database with the ant prepare-testdb you can use

ant junit-no-compile-no-prepare

to run the testsuite without generation of the test database (and without compiling).

After running the regression tests you should see a console output as follows:

junit-no-compile-no-prepare:
[junit] Running org.apache.ojb.broker.AllTests
[junit] Tests run: 382, Failures: 0, Errors: 0, Time elapsed: 50,843 sec

[junit] Running org.apache.ojb.odmg.AllTests
[junit] Tests run: 193, Failures: 0, Errors: 0, Time elapsed: 16,243 sec

[junit] Running org.apache.ojb.soda.AllTests
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 8,392 sec

[junit] Running org.apache.ojb.otm.AllTests
[junit] Tests run: 79, Failures: 0, Errors: 0, Time elapsed: 21,871 sec
junit-no-compile:
junit:
BUILD SUCCESSFUL
Total time: 3 minutes 58 seconds

We aim at shipping that releases have no failures and errors in the regression tests! If the Junit tests report errors or failures
something does not work properly! There may be several reasons:

• You made a mistake in configuration (OJB was shipped with settings pass all tests). See platform, OJB.properties,
repository file, .

• Your database doesn't support specific features used by the tests
• Evil hex
• Bug in OJB

OJB Documentation

Page 226
Copyright © All rights reserved.

error:#ext:junit
error:#site:testing/test-suite
error:#site:testing/test-write
error:#ext:junit
error:#site:platform
error:#site:platform
error:#site:ojb-properties
error:#site:repository

JUnit writes a log-file for each tested API. You can find the logs under [db-ojb]/target/test. The log files named like
tests-XXX.txt. The test logs show in detail what's going wrong.

In such a case please check again if you followed all the above steps. If you still have problems you might post a request to the
OJB user mailinglist.

4.7.2.3. What about known issues?

All major known issues are listed in the release-notes file.
The tests reproduce open bugs will be skipped on released OJB versions. It is possible to enable these tests to see all failing test
cases of the shipped version by changing a flag in [db-ojb]/build.properties file:

###
If 'true', junit tests marked as known issue in the junit-test
source code (see OJBTestCase class for more detailed info) will be
skipped. Default value is 'true'. For development 'false' is recommended,
because this will show unsolved problems.
OJB.skip.issues=true

4.7.2.4. Donate own tests for OJB Test Suite

Details about donate own test to OJB you can find here.

4.7.3. OJB - Write Tests

4.7.3.1. Introduction

As described in test suite section OJB emphasise quality assurance and provide a huge test suite. But it is impossible to cover
all parts of OJB with tests and OJB will never be perfect (of course it's nearly perfect ;-)), thus if you miss a test or found an
bug don't hesitate, write your own test and send it to the lists or attach it in the bug report.

4.7.3.2. How to write a new Test

Before start writing your own test case please pay attention of these rules.

The Test Class

All test classes have to inherit from org.apache.ojb.junit.OJBTestCase and have to provide a static main method
to start the Junit test:

public class MyTest extends OJBTestCase
{

public static void main(String[] args)
{

String[] arr = {MyTest.class.getName()};
junit.textui.TestRunner.main(arr);

}

public void testMyFirstOne()
{

....
{

In package org.apache.ojb.junit can be found some test classes for specifc circumstances:

• org.apache.ojb.junit.PBTestCase - Provide a public
org.apache.ojb.broker.PersistenceBroker field.

• org.apache.ojb.junit.ODMGTestCase - Provide public org.odmg.Implementation and
org.odmg.Database fields.

OJB Documentation

Page 227
Copyright © All rights reserved.

error:#ext:ojb/release-notes
error:#site:test-write
error:#site:test-suite
error:#site:mail-lists
error:#ext:bugtracker

• org.apache.ojb.junit.JUnitExtensions - Provide base classes for write multithreaded test classes. More info
see javadoc comment of this class.

A test case for the PB-API may look like:

public class ReferenceRuntimeSettingTest extends PBTestCase
{

public static void main(String[] args)
{

String[] arr = {ReferenceRuntimeSettingTest.class.getName()};
junit.textui.TestRunner.main(arr);

}

public void testChangeReferenceSetting()
{

ClassDescriptor cld = broker.getClassDescriptor(MainObject.class);
// and so on
....

}

The PersistenceBroker cleanup is done by PBTestCase.

Persistent Objects used by Test

We recommend to introduce separate persistent objects for each TestCase class. In test suite two concepts are used:

• Include your persistent objects as public static classes in your test class.
• Separate your test class in an independent package and include the test case and all persistent object classes in this new

package.

Test Class Metadata

Currently all test specific object metadata (class-descriptor used for tests) are shared among several xml files. The naming
convention is repository_junit_XXX.xml. Thus metadata for new tests should be included in one of the existing junit
repository (sub) files or writen in an new separate one and included in repository main file.

<!DOCTYPE descriptor-repository PUBLIC
"-//Apache Software Foundation//DTD OJB Repository//EN"
"repository.dtd"

[
<!ENTITY database SYSTEM "repository_database.xml">
<!ENTITY internal SYSTEM "repository_internal.xml">
<!ENTITY user SYSTEM "repository_user.xml">

<!-- here the junit include files begin -->
<!ENTITY junit SYSTEM "repository_junit.xml">
<!ENTITY junit_odmg SYSTEM "repository_junit_odmg.xml">
<!ENTITY junit_otm SYSTEM "repository_junit_otm.xml">
<!ENTITY junit_ref SYSTEM "repository_junit_reference.xml">
<!ENTITY junit_meta_seq SYSTEM "repository_junit_meta_seq.xml">
<!ENTITY junit_model SYSTEM "repository_junit_model.xml">
<!ENTITY junit_cloneable SYSTEM "repository_junit_cloneable.xml">

<!ENTITY junit_myfirsttest SYSTEM "repository_junit_myfirsttest.xml">
]>
<descriptor-repository version="1.0" isolation-level="read-uncommitted"

proxy-prefetching-limit="50">

<!-- include all used database connections -->
&database;

<!-- include ojb internal mappings here -->
&internal;

<!-- include user defined mappings here -->

OJB Documentation

Page 228
Copyright © All rights reserved.

error:#site:test-suite

&user;

<!-- include mappings for JUnit tests -->
<!-- This could be removed (with <!ENTITY entry),

if junit test suite was not used
-->
&junit;
&junit_odmg;
&junit_otm;
&junit_ref;
&junit_meta_seq;
&junit_model;
&junit_cloneable;

&junit_myfirsttest;

5. All

OJB Documentation

Page 229
Copyright © All rights reserved.

	1 OJB
	1.1 ObJectRelationalBridge - OJB
	1.1.1 Summary
	1.1.1.1 flexibility
	1.1.1.2 scalability
	1.1.1.3 functionality

	1.2 OJB - Features
	1.2.1 Features

	1.3 Status
	1.3.1 PB API (Persistence Broker API)
	1.3.2 OTM API (Object Transaction Manager API)
	1.3.3 ODMG API
	1.3.4 JDO API

	1.4 OJB - Mail Lists
	1.4.1 Mailing Lists

	1.5 OJB - Mail Archives
	1.5.1 Mail Archives

	1.6 OJB - References and Testimonials
	1.6.1 References and Testimonials
	1.6.1.1 projects using OJB
	1.6.1.2 user testimonials

	1.7 Links and further readings
	1.7.1 Summary
	1.7.2 Design
	1.7.3 Further readings on O/R mapping
	1.7.4 Patterns
	1.7.5 OJB tutorials
	1.7.6 Books covering OJB

	2 Download
	3 Development
	3.1 Coding Standards
	3.1.1 Coding Standards

	4 Documentation
	4.1 Documentation
	4.1.1 Introduction

	4.2 Frequently Asked Questions
	4.2.1 Questions
	4.2.2 Answers
	4.2.2.1 1. General
	4.2.2.1.1 1.1. Why OJB? Why do we need another O/R mapping tool?
	4.2.2.1.2 1.2. How is OJB related to ODMG and JDO?
	4.2.2.1.3 1.3. What are the OJB design principals?
	4.2.2.1.4 1.4. Where can I learn more about Object/Relational mapping in general?
	4.2.2.1.5 1.5. How OJB performance compares to native JDBC programming?
	4.2.2.1.6 1.6. How OJB performance compares to other O/R mapping tools?
	4.2.2.1.7 1.7. Is OJB ready for production environments?

	4.2.2.2 2. Getting Started
	4.2.2.2.1 2.1. Help! I'm having problems installing and using OJB!
	4.2.2.2.2 2.2. Help! I still have serious problems installing OJB!
	4.2.2.2.3 2.3. OJB does not start?
	4.2.2.2.4 2.4. Does OJB support my RDBMS?
	4.2.2.2.5 2.5. What are the OJB internal tables for?
	4.2.2.2.6 2.6. What does the exception Could not borrow connection from pool mean?
	4.2.2.2.7 2.7. Any tools help to generate the metadata files?

	4.2.2.3 3. OJB api's
	4.2.2.3.1 3.1. What are the differences between the PersistenceBroker API and the ODMG API? Which one should I use in my applications?
	4.2.2.3.2 3.2. I don't like OQL, can I use the PersistenceBroker Queries within ODMG?
	4.2.2.3.3 3.3. The OJB JDO implementation is not finished, how can I start using OJB?

	4.2.2.4 4. Howto
	4.2.2.4.1 4.1. How to use OJB with my RDBMS?
	4.2.2.4.2 4.2. What are the best settings for maximal performance?
	4.2.2.4.3 4.3. How to page and sort?
	4.2.2.4.4 4.4. What about performance and memory usage if thousands of objects matching a query are returned as a Collection?
	4.2.2.4.5 4.5. When is it helpful to use Proxy Classes?
	4.2.2.4.6 4.6. How can I convert data between RDBMS and OJB?
	4.2.2.4.7 4.7. How can I trace and/or profile SQL statements executed by OJB?
	4.2.2.4.8 4.8. How does OJB manage foreign keys?
	4.2.2.4.9 4.9. How does OJB manage 'null' for primitive primary key?
	4.2.2.4.10 4.10. How to lookup object by primary key?
	4.2.2.4.11 4.11. Difference between getIteratorByQuery() and getCollectionByQuery()?
	4.2.2.4.12 4.12. How can Collections of primitive typed elements be mapped?
	4.2.2.4.13 4.13. How could class 'myClass' represent a collection of 'myClass' objects
	4.2.2.4.14 4.14. How to lookup PersistenceBroker instances?
	4.2.2.4.15 4.15. How to access ODMG?
	4.2.2.4.16 4.16. Needed to put user/password of database connection in repository file?
	4.2.2.4.17 4.17. Many different database user - How do they login?
	4.2.2.4.18 4.18. How do I use multiple databases within OJB?
	4.2.2.4.19 4.19. How does OJB handle connection pooling?
	4.2.2.4.20 4.20. Can I directly obtain a java.sql.Connection within OJB?
	4.2.2.4.21 4.21. Is it possible to perform my own sql-queries in OJB?
	4.2.2.4.22 4.22. Start OJB without a repository file?
	4.2.2.4.23 4.23. Connect to database at runtime?
	4.2.2.4.24 4.24. Add new persistent objects metadata (class-descriptor) at runtime?
	4.2.2.4.25 4.25. Global metadata changes at runtime?
	4.2.2.4.26 4.26. Per thread metadata changes at runtime?
	4.2.2.4.27 4.27. Is it possible to use OJB within EJB's?
	4.2.2.4.28 4.28. Can OJB handle ternary (or higher) associations?
	4.2.2.4.29 4.29. How to map a list of Strings
	4.2.2.4.30 4.30. How to set up Optimistic Locking
	4.2.2.4.31 4.31. How to use OJB in a cluster
	4.2.2.4.32 4.32. How to work with the ObjectCacheEmptyImpl
	4.2.2.4.33 4.33. JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

	4.3 ObJectRelationalBridge - Getting Started
	4.3.1 Acquiring ojb-blank
	4.3.2 Contents of ojb-blank
	4.3.2.1 Sample project

	4.3.3 The build files
	4.3.3.1 Configuration via build.properties
	4.3.3.2 Building via build.xml
	4.3.3.3 Sample project

	4.3.4 The runtime configuration files
	4.3.4.1 Configuring the OJB runtime
	4.3.4.2 Configuring the database connection
	4.3.4.3 Configuring the repository
	4.3.4.4 Sample project

	4.3.5 Learning More

	4.4 Tutorials
	4.4.1 Tutorial Summary
	4.4.1.1 Tutorials

	4.4.2 Mapping Tutorial
	4.4.2.1 What is the Object-Relational Mapping Metadata?
	4.4.2.1.1 The Product Class
	4.4.2.1.2 The Database
	4.4.2.1.3 The Metadata
	4.4.2.1.4 Using the XDoclet module

	4.4.2.2 Advanced Topics
	4.4.2.2.1 Relations
	4.4.2.2.2 Inheritence
	4.4.2.2.3 Anonymous Keys
	4.4.2.2.4 Large Projects
	4.4.2.2.5 Custom JDBC Mapping

	4.4.3 Persistence Broker Tutorial
	4.4.3.1 The PersistenceBroker API
	4.4.3.1.1 Introduction
	4.4.3.1.2 A First Look - Persisting New Objects
	4.4.3.1.3 Querying Persistent Objects
	4.4.3.1.4 Updating Persistent Objects
	4.4.3.1.5 Deleting Persistent Objects
	4.4.3.1.6 Find object by primary key

	4.4.3.2 Notes on Using the PersistenceBroker API
	4.4.3.2.1 Pooling PersistenceBrokers
	4.4.3.2.2 Transactions
	4.4.3.2.3 Exception Handling

	4.4.4 The ODMG API
	4.4.4.1 Introduction
	4.4.4.2 Initializing ODMG
	4.4.4.3 Persisting New Objects
	4.4.4.4 Querying Persistent Objects
	4.4.4.5 Updating Persistent Objects
	4.4.4.6 Deleting Persistent Objects
	4.4.4.7 Notes on Using the ODMG API
	4.4.4.7.1 Transactions
	4.4.4.7.2 Locks
	4.4.4.7.3 Persisting Non-Transactional Objects

	4.4.5 JDO Tutorial
	4.4.5.1 Using the ObJectRelationalBridge JDO API
	4.4.5.1.1 Introduction
	4.4.5.1.2 Running the Tutorial Application

	4.4.5.2 Using the JDO API in the UseCase Implementations
	4.4.5.2.1 Obtaining the JDO PersistenceManager Object
	4.4.5.2.2 Retrieving collections
	4.4.5.2.3 Storing objects
	4.4.5.2.4 Updating Objects
	4.4.5.2.5 Deleting Objects

	4.4.5.3 Conclusion

	4.4.6 Object Transaction Manager Tutorial
	4.4.6.1 The OTM API
	4.4.6.1.1 Introduction
	4.4.6.1.2 Persisting New Objects
	4.4.6.1.3 Deleting Persistent Objects
	4.4.6.1.4 Querying for Objects
	4.4.6.1.5 More Sophisticated Transaction Handling

	4.4.6.2 Notes on the Object Transaction Manager
	4.4.6.2.1 Transactions

	4.5 Reference Guides
	4.5.1 Reference Guides
	4.5.1.1 Reference Guides

	4.5.2 Platforms
	4.5.2.1 how to use OJB with a specific relational database
	4.5.2.2 Basic Concepts
	4.5.2.2.1 OJB internal tables
	4.5.2.2.2 Tables for the regression testbed
	4.5.2.2.3 Tables for the tutorial applications

	4.5.2.3 The setup process
	4.5.2.3.1 Selecting a platform profile
	4.5.2.3.2 editing the profile to point to your target db
	4.5.2.3.3 Executing the build script
	4.5.2.3.4 Verifying the installation

	4.5.3 OJB.properties Configuration File
	4.5.3.1 OJB Configuration
	4.5.3.2 OJB.properties File

	4.5.4 JDBC Types
	4.5.4.1 Mapping of JDBC Types to Java Types
	4.5.4.2 Type and Value Conversions
	4.5.4.2.1 Introduction
	4.5.4.2.2 The problem
	4.5.4.2.3 The Solution

	4.5.5 Repository File
	4.5.5.1 Introduction - repository syntax
	4.5.5.2 descriptor-repository
	4.5.5.2.1 Elements
	4.5.5.2.2 Attributes
	4.5.5.2.2.1 version
	4.5.5.2.2.2 isolation
	4.5.5.2.2.3 proxy-prefetching-limit

	4.5.5.3 jdbc-connection-descriptor
	4.5.5.3.1 Elements
	4.5.5.3.2 Attributes
	4.5.5.3.2.1 jdbcAlias
	4.5.5.3.2.2 default-connection
	4.5.5.3.2.3 platform
	4.5.5.3.2.4 jdbc-level
	4.5.5.3.2.5 eager-release
	4.5.5.3.2.6 batch-mode
	4.5.5.3.2.7 useAutoCommit
	4.5.5.3.2.8 ignoreAutoCommitExceptions
	4.5.5.3.2.9 jndi-datasource-name
	4.5.5.3.2.10 username

	4.5.5.4 connection-pool
	4.5.5.5 sequence-manager
	4.5.5.6 object-cache
	4.5.5.7 custom attribute
	4.5.5.8 class-descriptor
	4.5.5.9 extent-class
	4.5.5.10 field-descriptor
	4.5.5.11 reference-descriptor
	4.5.5.12 foreignkey
	4.5.5.13 collection-descriptor
	4.5.5.14 inverse-foreignkey
	4.5.5.15 fk-pointing-to-this-class
	4.5.5.16 fk-pointing-to-element-class
	4.5.5.17 query-customizer
	4.5.5.18 index-descriptor
	4.5.5.19 index-column
	4.5.5.20 Stored Procedure Support
	4.5.5.20.1 insert-procedure
	4.5.5.20.2 update-procedure
	4.5.5.20.3 delete-procedure
	4.5.5.20.4 runtime-argument
	4.5.5.20.5 constant-argument

	4.5.6 Basic Technique
	4.5.6.1 Mapping 1:1 associations
	4.5.6.1.1 1:1 auto-xxx setting

	4.5.6.2 Mapping 1:n associations
	4.5.6.2.1 1:n auto-xxx setting

	4.5.6.3 Mapping m:n associations
	4.5.6.3.1 Manual decomposition into two 1:n associations
	4.5.6.3.2 Support for Non-Decomposed m:n Mappings
	4.5.6.3.3 m:n auto-xxx setting

	4.5.6.4 Setting Load, Update, and Delete Cascading
	4.5.6.4.1 auto-retrieve setting
	4.5.6.4.2 Link references

	4.5.6.5 Using Proxy Classes
	4.5.6.5.1 Using Dynamic Proxies
	4.5.6.5.2 Using a Single Proxy for a Whole Collection
	4.5.6.5.3 Using a Proxy for a Reference
	4.5.6.5.4 Customizing the proxy mechanism

	4.5.6.6 Type and Value Conversions

	4.5.7 Advanced Technique
	4.5.7.1 Introduction
	4.5.7.2 Extents and Polymorphism
	4.5.7.2.1 Polymorphism
	4.5.7.2.2 Extents

	4.5.7.3 Mapping Inheritance Hierarchies
	4.5.7.3.1 Mapping All Classes on the Same Table
	4.5.7.3.2 Mapping Each Class to a Distinct Table
	4.5.7.3.3 Mapping Classes on Multiple Joined Tables

	4.5.7.4 Using interfaces with OJB
	4.5.7.5 Change PersistentField Class
	4.5.7.6 How do anonymous keys work?
	4.5.7.7 Using Rowreader
	4.5.7.7.1 Rowreader Example

	4.5.7.8 Nested Objects
	4.5.7.9 Instance Callbacks
	4.5.7.10 Manageable Collection
	4.5.7.10.1 Types Allowed for Implementing 1:n and m:n Associations
	4.5.7.10.2 Which collection-class type should be used?

	4.5.7.11 Customizing collection queries
	4.5.7.12 Metadata runtime changes

	4.5.8 OJB Queries
	4.5.8.1 Introduction
	4.5.8.2 Query by Criteria
	4.5.8.2.1 Query Criteria
	4.5.8.2.1.1 in / not in
	4.5.8.2.1.2 and / or
	4.5.8.2.1.3 negating the criteria

	4.5.8.2.2 ordering and grouping
	4.5.8.2.3 subqueries
	4.5.8.2.4 joins
	4.5.8.2.5 user defined alias
	4.5.8.2.6 class hints
	4.5.8.2.7 prefetched relationships
	4.5.8.2.8 querying for objects
	4.5.8.2.9 Report Queries
	4.5.8.2.9.1 Limitations of Report Queries

	4.5.8.3 ODMG OQL
	4.5.8.4 JDO queries

	4.5.9 Metadata handling
	4.5.9.1 Introduction
	4.5.9.2 When does OJB read metadata
	4.5.9.3 Connection metadata
	4.5.9.3.1 Load and merge connection metadata

	4.5.9.4 Persistent object metadata
	4.5.9.4.1 Load and merge object metadata
	4.5.9.4.2 Global object metadata changes
	4.5.9.4.3 Per thread metadata changes
	4.5.9.4.4 Object metadata profiles
	4.5.9.4.5 Reference runtime changes on per query basis
	4.5.9.4.6 Pitfalls

	4.5.9.5 Questions
	4.5.9.5.1 Start OJB without a repository file?
	4.5.9.5.2 Connect to database at runtime?
	4.5.9.5.3 Add new persistent objects metadata (class-descriptor) at runtime?

	4.5.10 Deployment
	4.5.10.1 Introduction
	4.5.10.2 Things needed for deploying OJB
	4.5.10.2.1 1. The OJB binary jar archive
	4.5.10.2.2 2. Configuration data
	4.5.10.2.3 3. External dependencies that do not come with OJB
	4.5.10.2.4 4. Optional jar archives that come with OJB
	4.5.10.2.5 5. Don't forget the JDBC driver

	4.5.10.3 Deployment in standalone applications
	4.5.10.4 Deployment in servlet based applications
	4.5.10.5 Deployment in EJB based applications
	4.5.10.5.1 Configure OJB for managed environments considering as JBoss example
	4.5.10.5.1.1 1. Adapt OJB.properties file
	4.5.10.5.1.2 2. Declare datasource in the repository (repository_database) file and do additional configuration
	4.5.10.5.1.3 [2b. How to deploy ojb test hsqldb database to jboss]
	4.5.10.5.1.4 3. Include all OJB configuration files in classpath
	4.5.10.5.1.5 4. Enclose all libraries OJB depend on
	4.5.10.5.1.6 5. Take care of caching
	4.5.10.5.1.7 6. Take care of locking
	4.5.10.5.1.8 7. Put all together
	4.5.10.5.1.9 7b. Example: Deployable jar
	4.5.10.5.1.10 8. How to access OJB API?
	4.5.10.5.1.11 9. OJB logging within JBoss

	4.5.10.5.2 Example Session Beans
	4.5.10.5.2.1 Introduction
	4.5.10.5.2.2 Generate the sample session beans
	4.5.10.5.2.3 How to run test clients for PB / ODMG - api

	4.5.10.5.3 Packing an .ear file
	4.5.10.5.3.1 The Package Structure
	4.5.10.5.3.2 Make OJB API Resources available

	4.5.10.5.4 Make OJB accessible via JNDI
	4.5.10.5.4.1 JBoss
	4.5.10.5.4.2 Other Application Server

	4.5.10.5.5 Instructions for Weblogic

	4.5.11 OJB - Connection Handling
	4.5.11.1 Introduction
	4.5.11.2 ConnectionFactory
	4.5.11.2.1 ConnectionFactoryPooledImpl
	4.5.11.2.2 ConnectionFactoryNotPooledImpl
	4.5.11.2.3 ConnectionFactoryManagedImpl
	4.5.11.2.4 ConnectionFactoryDBCPImpl

	4.5.11.3 ConnectionManager
	4.5.11.4 Questions and Answers
	4.5.11.4.1 How does OJB handle connection pooling?
	4.5.11.4.2 Can I directly obtain a java.sql.Connection within OJB?

	4.5.12 The Object Cache
	4.5.12.1 Introduction
	4.5.12.2 Why a cache and how it works?
	4.5.12.3 How to change the used ObjectCache implementation
	4.5.12.4 Shipped cache implementations
	4.5.12.4.1 ObjectCacheDefaultImpl
	4.5.12.4.2 ObjectCachePerBrokerImpl
	4.5.12.4.3 ObjectCacheJCSImpl
	4.5.12.4.4 ObjectCacheEmptyImpl
	4.5.12.4.5 ObjectCacheOSCacheImpl
	4.5.12.4.6 More implementations ...

	4.5.12.5 Distributed ObjectCache?
	4.5.12.6 Implement your own cache
	4.5.12.7 CacheFilter feature
	4.5.12.8 Future prospects

	4.5.13 Sequence Manager
	4.5.13.1 The OJB Sequence Manager
	4.5.13.1.1 Automatical assignment of unique values
	4.5.13.1.2 Force computation of unique values
	4.5.13.1.3 How to change the sequence manager?
	4.5.13.1.4 SequenceManager implementations
	4.5.13.1.4.1 High/Low sequence manager
	4.5.13.1.4.2 In-Memory sequence manager
	4.5.13.1.4.3 Database sequences based implementation
	4.5.13.1.4.4 Database sequences based high/low implementation
	4.5.13.1.4.5 Oracle-style sequencing
	4.5.13.1.4.6 Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing
	4.5.13.1.4.7 Identity based sequence manager

	4.5.13.1.5 How to write my own sequence manager?
	4.5.13.1.6 Questions
	4.5.13.1.6.1 When using sequence-name attribute in field-descriptor?
	4.5.13.1.6.2 What to hell does extent aware mean?
	4.5.13.1.6.3 How could I prevent auto-build of the sequence-name?
	4.5.13.1.6.4 Sequence manager handling using multiple databases
	4.5.13.1.6.5 One sequence manager with multiple databases?
	4.5.13.1.6.6 Can I get direct access to the sequence manager?
	4.5.13.1.6.7 Any known pitfalls?

	4.5.14 OJB logging configuration
	4.5.14.1 Logging in OJB
	4.5.14.2 Logging configuration within OJB
	4.5.14.2.1 How and when OJB determines what kind of logging to use
	4.5.14.2.2 Configuration of logging for the individual components

	4.5.14.3 Logging configuration via configuration files
	4.5.14.3.1 OJB-logging.properties
	4.5.14.3.2 commons-logging.properties
	4.5.14.3.3 log4j.properties
	4.5.14.3.4 Where to put the configuration files

	4.5.14.4 Logging configuration at runtime
	4.5.14.5 Defining your own logger

	4.5.15 The ODMG Lock Manager
	4.5.15.1 What it does
	4.5.15.2 How it works
	4.5.15.3 Locking in distributed environment
	4.5.15.4 Implement you own lock manager

	4.5.16 XDoclet OJB module documentation
	4.5.16.1 Acquiring and building
	4.5.16.1.1 Building with a XDoclet source distribution
	4.5.16.1.2 Building with a XDoclet CVS checkout
	4.5.16.1.3 Other build options

	4.5.16.2 Usage
	4.5.16.3 Tag reference
	4.5.16.4 Interfaces and Classes
	4.5.16.4.1 ojb.class
	4.5.16.4.2 ojb.extent-class
	4.5.16.4.3 ojb.modify-inherited
	4.5.16.4.4 ojb.object-cache
	4.5.16.4.5 ojb.index
	4.5.16.4.6 ojb.delete-procedure
	4.5.16.4.7 ojb.insert-procedure
	4.5.16.4.8 ojb.update-procedure
	4.5.16.4.9 ojb.constant-argument
	4.5.16.4.10 ojb.runtime-argument

	4.5.16.5 Fields and Bean properties
	4.5.16.5.1 ojb.field

	4.5.16.6 References
	4.5.16.6.1 ojb.reference

	4.5.16.7 Collections
	4.5.16.7.1 ojb.collection

	4.5.16.8 Nested objects
	4.5.16.8.1 ojb.nested
	4.5.16.8.2 ojb.modify-nested

	4.5.17 OJB Performance
	4.5.17.1 Introduction
	4.5.17.2 The Performance Test Suite
	4.5.17.3 Interpreting test results
	4.5.17.4 How OJB compares to native JDBC programming?
	4.5.17.5 OJB performance in multi-threaded environments
	4.5.17.6 How OJB compares to other O/R mapping tools?
	4.5.17.7 What are the best settings for maximal performance?

	4.6 Howto's
	4.6.1 Howto's Summary
	4.6.1.1 Howto's

	4.6.2 How to build O/R mapping meta data files
	4.6.2.1 How to build O/R mapping files
	4.6.2.2 classification of O/R related transformations
	4.6.2.3 Forward engineering from XMI
	4.6.2.4 Forward engineering from Torque
	4.6.2.5 Forward engineering from repository.xml
	4.6.2.6 XDoclet transformation from Java code
	4.6.2.7 Reverse engineering from database

	4.6.3 HOWTO - Use Anonymous Keys
	4.6.3.1 Why Do We Need Anonymous Keys?
	4.6.3.2 How it works
	4.6.3.3 Using Anonymous Keys
	4.6.3.3.1 The Code
	4.6.3.3.2 The Database
	4.6.3.3.3 The Repository Configuration

	4.6.3.4 Benefits and Drawbacks

	4.6.4 HOWTO - Use DB Sequences
	4.6.4.1 Introduction
	4.6.4.2 The Sample Database
	4.6.4.3 Using OJB
	4.6.4.3.1 The Database Repository Descriptor
	4.6.4.3.2 Defining a Thingie Class
	4.6.4.3.3 Using Thingie

	4.6.5 HOWTO - Work with LOB Data Types
	4.6.5.1 Using Oracle LOB Data Types with OJB
	4.6.5.1.1 Introduction

	4.6.5.2 Backgrounder: Large objects in databases
	4.6.5.2.1 Your database: The most expensive file system?
	4.6.5.2.2 Oracle LARGE versus LOB datatypes

	4.6.5.3 Large Objects in OJB
	4.6.5.3.1 Strategy 1: Using streams for LOB I/O
	4.6.5.3.2 Strategy 2: Embedding OJB content in Java objects
	4.6.5.3.3 Querying CLOB content

	4.6.6 HOWTO - Use OJB in clustered environments
	4.6.6.1 How to use OJB in clustered environments
	4.6.6.2 Three steps to clustering your OJB application
	4.6.6.2.1 First: Take care of the sequence manager
	4.6.6.2.1.1 Handling sequence names

	4.6.6.2.2 Second: Enable optimistic locking
	4.6.6.2.3 Do The Cache

	4.6.6.3 Notes

	4.6.7 HOWTO - Stored Procedure Support
	4.6.7.1 Introduction
	4.6.7.2 Repository entries
	4.6.7.3 Common attributes
	4.6.7.4 insert-procedure
	4.6.7.5 update-procedure
	4.6.7.6 delete-procedure
	4.6.7.7 Argument descriptors
	4.6.7.7.1 runtime-argument descriptors
	4.6.7.7.2 constant-argument descriptors

	4.6.7.8 A simple example
	4.6.7.8.1 The basic requirements
	4.6.7.8.2 The database objects
	4.6.7.8.3 The CUSTOMER table
	4.6.7.8.4 The sequence
	4.6.7.8.5 The insert and update triggers
	4.6.7.8.6 The package
	4.6.7.8.7 The implementation

	4.6.7.9 A complex example

	4.7 Testing
	4.7.1 Testing Summary
	4.7.1.1 Testing

	4.7.2 OJB JUnit Test Suite
	4.7.2.1 Introduction
	4.7.2.2 How to run the Test Suite
	4.7.2.3 What about known issues?
	4.7.2.4 Donate own tests for OJB Test Suite

	4.7.3 OJB - Write Tests
	4.7.3.1 Introduction
	4.7.3.2 How to write a new Test
	4.7.3.2.1 The Test Class
	4.7.3.2.2 Persistent Objects used by Test
	4.7.3.2.3 Test Class Metadata

	5 All

