
Technical Report TR04-008

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Support for Distributed Pair Programming in the

Transparent Video Facetop

David Stotts, Jason McC. Smith, and Karl Gyllstrom

Department of Computer Science
 University of North Carolina
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

March 15, 2004

 1

mailto:stotts@cs.unc.edu

Support for Distributed Pair Programming
in the Transparent Video Facetop

David Stotts, Jason McC. Smith, and Karl Gyllstrom
Dept. of Computer Science

Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA

{stotts,smithja,gyllstro}@cs.unc.edu

Abstract
The Transparent Video Facetop is a novel user interface concept that
supports not only single-user interactions with a PC, but also close
pair collaborations, such as that found in collaborative Web
browsing, remote medicine, and in distributed pair programming.
We recently demonstrated the Vis-a-Vid Facetop prototype as a
single-user GUI for manipulating the elements of a traditional WIMP
desktop [16]. In this paper we discuss the use of the Facetop for
solving several problems reported to us by teams doing distributed
pair programming. Specifically, the Facetop allows a distributed
pair to recapture some the facial expressions and face-to-face
communications contact lost in earlier distributed sessions. It also
allows members of a distributed pair to point conveniently, quickly,
and naturally to their shared work, in the same manner (manually)
that they do when seated side-by-side. Our results enhance the
ability of organizations to do effective XP-style agile development
with distributed teams.

Distributed Pair Programming
Previous research [17,19] has indicated that pair programming is
better than individual programming in a co-located environment. Do
these results also apply to distributed pairs? It has been established
that distance matters [18]; face-to-face pair programmers will most
likely outperform distributed pair programmers in terms of sheer
productivity. However, the inevitability of distributed work in
industry and education calls for research in determining how to make
this type of work most effective. Additionally, Extreme
Programming (XP) [1,2] usually has co-located pairs working in
front of the same workstation, a limitation that ostensibly hinders use
of XP for distributed development of software.
We have been investigating a video-enhanced programming
environment for the past year for use in distributed Pair
Programming and distributed Extreme Programming (dPP/dXP)
[1,2]. Pair programming is a software engineering technique where
two programmers sit at one PC to develop code. One types
(“drives”) while the other reviews and assists (“navigates”); roles
swap frequently. The benefits of pair programming are well known
in co-located situations [3]; we have been exploring if they remain in
distributed contexts [6,7,15].
Video was one issue discussed at a workshop on distributed pair
programming at XP/AU 2002. This workshop was attended by over
30 people, many of whom had tried some form of distributed pair
programming and were working on tools to improve the
effectiveness of such activities. The consensus on video was that
“webcam” style, postage stamp video – small image and low frame
rate – was of little value in enhancing communications or sense of

presence in a distributed pairing. However, it was felt that video,
if large enough and real enough, was of potential value and worth
further research. We have been doing that research since that
time.

Figure 1: Facetop physical setup, with iBot video camera

Other Related Work
Aside from agile development and pair programming, our Facetop
work depends on technology from several research areas: from
collaboration theory and systems, from video analysis, and from
user interfaces. Since the emphasis in this paper is on Facetop use
in agile development and not on the user-interface technology per
se, we have moved the section on prior related work to the end of
the paper.

 1

In the remainder of this report, we first explain the basic concepts
and features of the Transparent Video Facetop. We then discuss a
two-person collaborative version of the Facetop that we have built to
support distributed pair programming. After that we present results
from our initial usability studies, and discuss issues in the use of the
Facetop. We conclude with a discussion of areas for further
research.

The Facetop Basics
Before discussing our pair programming application we present the
Transparent Video Facetop technology on which it is built.

The transparent video Facetop is a novel enhancement of the
traditional WIMP user interface, so nearly ubiquitous on today’s
computers. In the Facetop, the user sees him/her self as a “ghostly”
image apparently behind the desktop, looking back at the icons and
windows from the back. Instead of a traditional desktop, we see a
“face” top. This self-image is used for visual feedback and
communications both to the user as well as to collaborators; it is also
used for desktop/application control and manipulation via a
fingertip-driven “virtual mouse”.

Figure 2: Facetop finger tracking (low user transparency)

Figure 1 shows the physical setup for a computer with a Facetop
being displayed on a monitor. Note the video camera sitting on top

the LCD panel pointing back at the user; in our current work we
use a $100 Sony iBot, giving us an image that is 640 x 480 pixels
of 24-bit color, captured 30 frames per second. The Facetop video
window shows the PC user sitting at his/her workspace; we
reverse the image horizontally so that when the user moves a
hand, say, to the left, the image of the hand mirrors this movement
on the screen. In software, and using a high-performance 3D-
graphics video card, we make the video window semi-transparent
and composite it with the desktop image itself.

Once we have the full screen video with transparent image
compositing we get the illusion of the user watching the desktop
from behind. Mirroring means if the user physically points to an
icon on the desktop, the Facetop image points to the icon as well
(with proper spatial calibration of the camera and user locations).
Using image analysis techniques we then track the user’s fingertip
in the backing window, and optionally drive the mouse from this
tracker. Figure 2 shows this finger tracking (the desktop image is
more transparent and the user face more opaque to emphasize the
tracking). The user can then manipulate the desktop of a projected
computer, for example, from his seat while successfully
communicating the areas of interest on the screen to others
watching the projection. Figures 3, 4, and 5 show varying levels
of transparency, giving different levels of emphasis to the desktop
contents relative to the user image.

Transparency combined with user self-view
The Facetop combines and extends work from several different
domains of computing research. Gesture-based computer controls
have existed for a while, for example. The Facetop, however, is
unique among these for two reasons. The first is transparency: the
Facetop blends the traditional desktop with a video stream of the
user, mirrored and made semi-transparent. The second is the
video cues the user image gives: the user is in the desktop, as live
background wallpaper, rather than making detached gestures apart
from the image of the desktop. These video cues have proven
very effective at giving fine and intuitive control of the cursor to
the user in various tasks and applications we have experimented
with.
We allow the user to dynamically control the transparency level of
the Facetop window, altering it from fully opaque to fully
transparent during execution for varying useful effects. We can
completely mask the desktop by making the Facetop window fully
opaque, as in Figure 2. Note how the Facetop window even
covers and masks the title bar of the Mac desktop. A fully opaque
Facetop is purely a communication tool, and is especially useful in
the two-head version (see figure 6) for allowing collaborators to
speak face-to-face about a task without application window
clutter.
We can similarly set the Facetop window to full transparency; in
this form, the desktop under it shows through fully and little to no
user video is visible, giving a traditional desktop appearance.
Figure 3 shows a nearly transparent Facetop; the only difference
between this view and that of figure 2 is the transparency setting.
A Web browser is running and “displayed” in figure 2 as well, but
it is masked by the opaque Facetop setting. If you look closely the
video image of the user is very faintly visible along with the fully
visible Web browser window.

 2

Most uses for the Facetop will involve a semi-transparent Facetop
setting, giving a mix of user video image and desktop application
window content on the screen. Figure 4 shows the same desktop
configuration as in Figures 2 and 3, but with the Facetop set to
mid-transparency, making the user’s image a bit stronger. In this
mix, the user’s finger can clearly be seen pointing at various
hyperlinks in the browser page contents.

The Facetop as a concept works fine on a PC with any display
technology -- a monitor, a projector, an immersive device -- but its
unique aspects are most pronounced and most effective in a
projected environment. In fact, the concept of background user
video as visual cues for control and communication came about
when our research group was discussing other work using a
projected PC and trying to visually interpolating along the line
formed by a person’s pointing arm. Figures 6 and 7 show the
Facetop projected (the collaborative dual-head version, discussed
next).

Figure 3: High user transparency, mostly desktop showing
Two-head Collaborative Facetop

Though the previous presentation has been in the context of a
single-user PC interface, an equally interesting domain of
application for the Facetop is in collaborative systems –
specifically in systems for supporting synchronous paired tasks.
We have been investigating a two-head Facetop for the past year
for use in distributed Pair Programming and distributed Extreme
Programming This investigation is an extension of earlier studied
we conducted to see is distributed pairs could pair program
effectively communicating over the Internet [6,7,15].

In our previous dPP experiments, programmers worked as a pair
using COTS software, including pcAnywhere (Intuit) and Yahoo
messenger. The pcAnywhere application provides a shared
desktop, so that the two programmers are effectively working on a
single host computer, and each sees exactly the same desktop as
they would sitting side-by-side at the host PC. Yahoo messenger
provides voice communications, and occasional text exchange.

Our experiments found that programmers working in this
environment were as effective in the dPP setting as they were as
co-located pairs. In post-experimental interviews, teams
consistently told us 3 things:

Figure 4: Mid-transparency, mix of desktop and user

• They missed facial expressions and the sense of presence
• They wanted a way to point at the shared work they were

discussing via the audio channel.
• They wanted a whiteboard for drawing and design work

The Facetop provides potential solutions to each of these
problems, via its video capabilities. Video was provided to the
pairs in our previous dPP experiments; we gave each team “web
cams” that generate small images at low frame rates. Each team
turned off the video almost immediately, finding that the small,
nearly still, images gave no useful information, but did consume
considerable bandwidth. Maximal bandwidth was needed for fast
update of the pcAnywhere shared desktop.

The video capabilities in Facetop are very different, however. The
image is large, and frame rates run from 15 to 30 fps, showing
facial details and fine motor movements of the fingers and lips.
The video image is also tightly and seamlessly integrated with the
shared workspace via transparency, thereby eliminating the “dual”

Figure 5: High desktop transparency (user more opaque)

 3

nature of video teleconferencing solutions. Users do not have to
switch their attention from desktop, to video, back to desktop.

Figure 6: Dual-head Facetop for collaborative browsing

For the dual-user Facetop, we have built a setup that has both video
streams (each collaborator) superimposed on a shared desktop,
illustrated in a projected environment in Figure 6 and 7. Each user
sits slightly to the right so that the two heads are on different sides of
the frame when the two streams are composited. In this “knitted
together” joint image, we sit each user against a neutral background
to control the possible added visual confusion of the dual Facetop
image.

Collaborating users continue, as before, to communicate audibly
while using the Facetop via an Internet chat tool like Yahoo
messenger. We have not built audio services into the Facetop itself,
and see no need to do so given the external availability of these
capabilities in several forms.

The primary advantage the Facetop gives over other approaches is
the close coupling of communications capabilities with examination
of the content. Each user can see where the other points in the
shared workspace; they can also use the Facetop as a direct video
conferencing tool (by varying the transparency level to fade the
desktop image) without changing applications or interrupting the
work activities.

Chalk passing
Passing locus of control among collaborators in a shared application
is an important issue, called floor control, or chalk passing. The user
who has “the chalk” is the one who drives the mouse and click on
links when Web browsing.

Our tracker algorithm has a loss recovery mode that produces an
interesting chalk passing behavior in the dual-user Facetop. When
tracking, if the user moves the finger faster than the tracker can
track, we detect that it is “lost” by noticing no data for processing in
several consecutive frames. When this happens, the algorithm stops
tracking in a local neighborhood and does an entire image scan; this
is too computationally expensive to do each frame, but works well
for the occasional frame. In this full-frame search, the tracker
acquires and moves to the largest fingertip object it finds.

With two users, this means that chalk passing happens simply by the
user with the mouse hiding (dropping, moving off screen) the finger.

This “loses” the tracker and starts the full screen search algorithm.
The mouse pointer immediately jumps to the other user’s fingertip
and “parks” in a corner until there is one.

Figure 7: Varying levels of transparency in 2-head Facetop

 4

Multiple varying transparency levels
In the dual-head Facetop, each user has transparency level controls
that are independent of the settings chosen by the partner. A user
can set the level (from opaque to transparent) of each video image
separately (self and partner image), as well as the level of the
desktop. In this way, each user can get different communications
effects. If both users are set to highly visible, and the desktop low,
Facetop is a form of video conferencing system. Bring the desktop
up to visible, and the unique integration of user image with shared
work happens, allowing pointing and discussion. Some users may
with not to see themselves (and can still effectively point by finger
tracking and watching the mouse pointer) and have only the partner
image visible on the desktop.

Early User Evaluations
Controlled user evaluations are still ongoing, but we have some
usability results to report from our first experiments. To date we
have had 15 users try the basic Facetop to determine if live
background video is a viable, usable concept as an interface for
manipulating the PC environment. We set up the Facetop up in a
room with white walls so that there would not be a busy background
to add visual clutter to the screen image.
As might be expected, arm fatigue is a problem for continuous use of
the fingertip-based mouse feature. For browsing a hypertext, this is
not a major issue, as much time is spent reading vs. actually
manipulating the screen. Users drop their arm during these quiescent
periods, and then raise it to point when ready to navigate more. The
video image on-screen gives the visual cues needed for nearly instant
positioning of the mouse pointer directly where needed.
Another problem reported by several users is visual clutter. Most
users adapted quickly and comfortably to the moving image as
background “wallpaper”; transparency was set at different levels by
different users, and there did not seem to be a preferred level of
mixing of desktop with user-image other than to say that both were
visible. The human eye/brain is able to pay attention (or ignore) the
face or the desktop respectively, depending on the cognitive task –
depending on whether the user wants to read the screen contents or
to communicate (in the two-head version).
Users were queried specifically as to visual clutter or confusion. A
few objected, but most found the adjustability of transparency fine-
grained enough to get to a level where they were not distracted or
hindered in using the desktop.
We also created a networked tic-tac-toe game for usability trials of
the dual head version and had 11 pairs of users try it. The users were
a class of 8-grade students who came to the department for research
demonstrations. Five of the users took less that 5 minutes to become
facile with the interface, learning to move and click the mouse well
enough to Web browse. All users were able to successfully play the
game (which involves clicking on GUI buttons) in the 30 minute
time-frame of the trials.

dPP Trials
We had five of the pairs involved in past dPP experiments (with
audio and shared desktop only) try the Facetop environment for
small pair programming “shakedown” tasks. Since all had tried the
earlier environments, the trials were designed to see if the “video
made large” features in Facetop overcame the lack of pointing ability
and lack of facial expressions reported by these teams before (the

lack of whiteboard they reported is still being investigated, and is
discussed in the next section).

All teams were quite comfortable using the Facetop, and did not
consider visual complexity or clutter an issue. We suspect this is
due to concentration on programming focusing the attention on the
various text windows of the desktop. All dPP teams were able to
complete small programs with no problems.

They also reported setting varying levels of user image
transparency to suit personal taste. Given that the video images
can be completely faded out, leaving nothing but desktop, the
current Facetop is “no worse” than our previous audio-only
environments. However, no teams chose to completely fade out
the video and use audio only. All teams left the user images
visible to some extent and did use the video to point to code being
discussed.

In post-trial interviews, the overall impression was that Facetop
was an interesting improvement over the audio-only dPP
environment used before. Each team was asked “if you were to do
a longer dPP development, would you prefer to use Facetop or the
original audio-only environment?” All teams expressed a
preference for Facetop.

These simple usability trials do not reveal if the preference for
Facetop was emotional or qualitative only, or if the added video
and sense of presence increases programmer effectiveness. We
find these early usability trials compelling enough, though, to start
larger, controlled experiments to see if Facetop can have an
impact on quantitative aspects of software, such as design quality
or error counts.

More Issues in using Facetop
Facetop has several other issues, capabilities and features that
have some impact on its use for distributed pair programming.

Finger tracking on/off
One interesting feature in the Facetop is finger tracking. This
function can be turned on or off. The Facetop has great value as a
pure communication tool, especially in collaborative applications
like dPP, via finger pointing and facial expressions, even if no
finger tracking and mouse control is done. However, tracking and
mouse control does add some interesting and useful capabilities
for users that wish to use them.

 Figure 2 illustrates the tracking in a view of the Facetop when the
user is fully opaque, showing the user and none of the underlying
desktop or whiteboard. The highlighted box around the finger is
the region the tracker operates in, and in this view we show the
actual data bits being examined (a debugging mode that can be
toggled on and off). As the user moved the hand around in view
of the camera, the tracker constantly finds the center of mass off
the fingertip and reports an <x,y> coordinate location for each
frame.

In the Facetop, the user’s fingertip functions as a mouse driver, so
applications like browsers can be controlled with finger motions
rather than the mouse. The tracker provides the <x,y> location
information for moving the mouse; the more difficult problem is
designing and implementing gestures that can serve as mouse
clicks, drags, etc.

 5

The current Facetop implementation has several other useful
features, most activated by key presses that act as on/off toggles.
User image transparency, for example, is altered from faint to
opaque with the left and right arrow keys. The Facetop always
internally tracks the user fingertip, but moving the mouse pointer
during tracking can be toggled on and off. The search neighborhood
can be viewed as a box on the screen at the fingertip (see figure 1 for
example); this mode shows in the box the filtered bits that the tracker
actually works with, rather than showing the source image.

Fingertip mouse click activation
The Facetop tracker gives us mouse-pointer location and causes
mouse motion, but the harder issue is how to click the mouse. The
method we currently use is occlusion of the fingertip. When the
mouse pointer has been positioned, the user makes a pinching fist of
sorts, hiding the fingertip in the hand or between the other fingertips.
The tracker notes the loss of the tip, and begins a timer. If the tip
reappears (user raises the finger) in a ½ second, a single-click mouse
event is generated at the mouse pointer location. If the tip remains
hidden for between ½ and 1 second, a double-click event is
generated. User studies (discussed in a later section) have so far
shown that this motion is not hard to learn and even master. It is
sufficient to open/close windows, drag them, resize them, select links
in Web browsers, and even position the mouse between characters in
documents.

Figure 8: Visual clutter, mousing and clicking with fingertip gestures

Controlling visual clutter
Visual clutter seems an obvious problem (though our early
usability trials have not shown users to object to it), especially in
the two-head collaborative version of the Facetop interface. The
human brain is good at concentrating on the signal of interest (the
desktop, the face) and ignoring the other; however, we are also
developing technical methods for reducing visual confusion.

Another interaction method we have implemented is voice
commands. This is especially useful in rapidly altering the
transparency level of the various Facetop camera images, as well as
for hands-free mouse clicking where useful. Most Facetop-based applications will be enhanced, and the

potential visual confusion reduced, by the user sitting against a
neutral colored, plain background with neutral clothes, more like
the one in figure 8 than like the one in figure 2. We are
experimenting with different image rendering techniques as well
for reducing visual confusion in browsing. Instead of showing the
user in realistic video, for example, the same visual cues can be
given by showing a gray-scale, embossed image. We currently do
this via a delta computation, detecting which pixels have changed
more that a certain percentage from one frame to the next. This
approach is especially good at eliminating background issues, as
no background pixels change from frame to frame, and so get
rendered transparently. We switch back to realistic video when the
Facetop is made opaque for use as a communication tool (during
collaborative browsing, as in the next section).

Finger gestures for more application control
In addition to mouse movement and clicking via finger movements,
we have trained the Facetop with several mouse gestures for other
browser controls, using the Cocoa Gestures package for Safari
(Cocoa Gestures allows adding mouse gestures to any Mac
application written for the Cocoa API). For example, when a user
turns on finger tracking and wipes the finger to the left, this activates
the browser “back” function for the history list. Similarly a finger
wipe to the right activates the “forward” function on the history list.

These finger gestures are analogous to mouse gestures, in that they
are only in effect if the finger is wiped when the “mouse down”
event is in force and the “mouse up” event has not happened. This
mirrors the event chain when a mouse is clicked and held, then
dragged right or left, then released. The movements between mouse
down and mouse up are interpreted as the encoded action.

Another technique we use for managing visual clutter is to have
the Facetop tracker recognize when the fingertip enters the video
frame. When the fingertip enters, the user camera image is
composited in. When the tip leaves, the user fades and the
desktop remains. This is modal and can be turned on and off. It is
especially useful for doing presentations in Web browsers and
PowerPoint.

Fingertip gestures, in tools that allow them, can be used by either
programmer in a dPP pair.

 6

camera
user

FaceSpace projection

whiteboard

keyboard, etc.

projector

camera

marker

Figure 9: Schematic of dual-camera Facetop setup

Two cameras for whiteboard
One of the items noted earlier as wanted by dPP teams in past
experiments was access to a good whiteboard. Figure 9 shows a 2-
camera layout we are experimenting with for adding realistic
whiteboard capabilities to the Facetop.
To solve this problem, we have a version of Facetop that works with
two Firewire video cameras. One camera is situated ahead of the
user, in the vicinity of the traditional location for a monitor, and
looks back at the user giving the standard Facetop transparent image
on the desktop. The other camera is situated to the side of the user
and faces a wall where there is a whiteboard. For this discussion, we
will presume a right-handed user; the second camera is then on the
user’s right, and facing the right wall. The user sits near enough to
the wall to be able to comfortably reach out from the seat and draw
on the whiteboard (figure 9). Facetop takes both camera streams
(user face and whiteboard) and composites them into the video
stream that is laid semi-transparent on the desktop. As in the normal
Facetop, the user face stream is mirrored (reversed horizontally) so
that pointing is meaningful to the user. The whiteboard video image
is not mirrored, so that words written on the board remain readable
when composited into the Facetop video.

Since the whiteboard is neutral in appearance, compositing it into the
Facetop image doesn’t really alter the appearance over the traditional
Facetop. When words or drawings are written on the whiteboard,
they appear to “float” within the room/background of the user. By
varying transparency levels of each camera, users can see
whiteboard only, or whiteboard composited with their images (see
Figure 10 and 11). Key commands in Facetop allow instantly
swapping between whiteboard image and user image. User’s hands
show up as drawing is done, so each sees what the other is drawing.

Universal access for impaired programmers
We are investigating the use of the collaborative Facetop in
providing access to pair programming, and other synchronous paired
collaborations, for people with audio and visual impairments. For
programmers with audio impairments, we are experimenting with the
Facetop video being used for support of signing and lip reading
during pair programming. Programmers with audio impairments can
do side-by-side pair programming with current technology, but they

cannot participate in dPP using the audio-only environments we
first experimented with.

For programmers with visual impairments, we are developing
audio cues that will provide information about the state of a
collaboration. Currently individual programmers with visual
impairments use a screen reader like JAWS [20] for navigating a
PC screen. Our extensions will function similarly, but will have to
not only communicate screen information, but partner activity
information as well.

Figure 10: Facetop screen showing whiteboard on user image

Figure 11: User video faded, whiteboard emphasized

System Structure and Performance
Our single-user Facetop, shown in figures 1-5, is implemented on
a Macintosh platform. Our collaborative Facetop shown in figures
6 and 7, is also Mac-based but runs on a peer-to-peer gigabit
network between two machines, to get the very high bandwidth
we need for 30 fps video stream exchange. Current experimental
versions are built for best-effort use of the switched Internet give
about 18 frames a second… usable, but we need better.
The advantages of a Macintosh implementation are that the
desktop is rendered in OpenGL, making its image and contents not
private data structures of the OS, but rather available to all

 7

applications for manipulation or enhancement. We also use dual-
processor platforms, so that one processor can handle tracking issues
and other Facetop-specific loads, while leaving a processor free to
support the collaborative work, such as pair programming. Video
processing is handled mostly on the graphics card.
Though we have been speaking of the Facetop as giving the user an
illusion of being “behind” everything, the Facetop is actually the
topmost application window on the Mac desktop. It also is sized full
screen, so it effectively covers the entire desktop.

Our implementation is beautifully simple, and potentially ubiquitous
due to its modest equipment needs. Facetop uses a $100 Sony iBot
camera, and runs with excellent efficiency on an Apple Powerbook,
even when processing 30 video frames a second. No supplemental
electronics are needed for wearing on the hand or head for tracking
or gesture detection. Facetop is minimally invasive on the user’s
normal mode computer use.
The current prototype was generated with a Macintosh G4 with a
high-end graphics card to perform the image transparency. We
designed for the Apple Mac platform because it has better integration
and access to the OpenGL layer in which the desktop is rendered. It
is implemented on MacOS X 10.2 by taking advantage of the
standard Quartz Extreme rendering and composition engine. QE
renders every window as a traditional 2D bitmap, but then converts
these to OpenGL textures. By handing these textures to a standard
3D graphics card, it allows the highly optimized hardware in the 3D
pipeline to handle the compositing of the images with varying
transparency, resulting in extremely high frame rates for any type of
image data, including video blended with the user interface.
The video application, with tracking capabilities, is run in a standard
MacOS window, set to full screen size. Using OpenGL, setting the
alpha channel level of the window to something under 0.5 (near-
transparency) gives the faint user image we need.

Performance
Some of our experiments have been run with the two Power Mac’s
connected via peer-to-peer gigabit network. In this configuration,
we get a full 30 frames per second video data exchange in each
direction. This is possible due to the high network speeds, and due
to our passing only the 640 x 480 camera image. Image scaling to
screen size is handled locally on each machine after the 2 video
signals and the desktop are composited into one image.

Similar experiments have been done on the normal switched 100-
megabit Internet in the computer science department. In this mode
we get acceptable performance of 18 frames per second. This is
acceptable for pointing, but not for more complex communications
such as signing or lip reading for pair programming by people with
audio impairments.

Other Related Work
As mentioned earlier, Facetop uses technology from several research
areas other than hypermedia, specifically collaboration theory and
systems, video analysis, and user interfaces. We summarize some of
these projects here.

Pointing in Collaborative Applications

Several systems have dealt with the issue of two users needing to
provide focus (point) at different, or independent locations on a

shared screen. The common solution is to provide two mouse
pointers and let each user control his/her own independently. Use
of two mouse pointers is central to a dPP tool being developed by
Hanks [21]. This is fundamentally different from using a human
device (fingers) to point as in Facetop.

Transparency, UI, Video, and Gestures
Many prior research projects have experimented with aspects of
what we have unified in the Facetop. Several researchers have
made systems that have transparent tools, windows, pop-ups,
sliders, widgets that allow see-thru access to information below;
these are primarily used for program interface components
[8,11]. Many systems have some user embodiment and
representation in them (avatars), especially in distributed virtual
environments like [10], but these tend to be generated graphics
and not live video. Giving your PC “eyes” is a growing concept,
as is illustrated by this 2001 seminar at MIT [12]. A system
being developed in Japan [9] uses hand activities as signals to
programs; the system uses silhouettes to make recognition easier
and faster. Our ideas for fingertip gesture control in the Facetop
are related to the many efforts under way to recognize pen
gestures and other ink-based applications; the Tablet PC based on
Windows with ink is now commercially available from several
manufacturers. They are also related to efforts in the past to
recognize human facial features and motions.

Hand-based user input devices are available, like the P5 glove
from Essential Reality (see P5 features on the company website
at http://www.essentialreality.com/p5_glove.asp). A glove
user wears a sensor net on the hand and the input from the device
is used to determine hand motion and gesturing, allowing mouse
driving as well as other virtual environment control activities. In
the Facetop, we do the gestures from video analysis alone.

The work most closely related to our Facetop video analysis is
from the image-processing lab of Tony Lindberg in Sweden.
Researchers there have developed tracking algorithms for
capturing hand motions rapidly via camera input, and have
developed demonstrations of using tracked hand motions to
interact with a PC [13,14]. One application shows a user turning
on lights, changing TV channels, and opening a PC application
using various hand gestures while seated in front of a PC.
Another experiment shows careful tracking of a hand as it
display one, two, and three fingers, and scales larger and smaller.
A third experiment uses hand gestures in front of a camera to
drive the mouse cursor in a paint program.

The missing concept in Lindberg’s work (and in other hand-
gesture work), one that we are exploiting for Facetop, is the
immersion of the user into the PC environment. In Lindberg’s
work the user is still an object separate and apart from the PC
being interacted with. In the Facetop, the user is given the
illusion of being part of the environment being manipulated. We
think this immersion gives very useful and important visual cues
that are absent in earlier gesture experiments. These visual cues
give the feedback needed by a user to fine-grained control of the
desktop, and also give a more naturally learned and manipulated
interface. We are currently testing these hypotheses.

Collaborative systems, distributed workgroups
One major use for the Facetop is in collaborative systems. There
have been far too many systems built for graphical support of

 8

http://www.essentialreality.com/p5_glove.asp

 9

collaboration to list in this short paper. Most have concentrated on
synthetic, generated graphics. ClearBoard [4] is one system that is
especially applicable to our research. ClearBoard was a non-co-
located collaboration support system that allowed two users to
appear to sit face to face, and see the shared work between them.
The ClearBoard experiments showed that face-to-face visibility was
enhancing to collaboration effectiveness. However, the workstations
required were expensive and used custom-built hardware. One of
the advantageous points of the Facetop is its use of cheap and
ubiquitous equipment.

One last project we use results from is BellCore’s VideoWindow
project [5]. In this experiment, two rooms in different buildings at
BellCore (coffee lounges) were outfitted with video cameras and
wall-sized projections. In essence, an image of one lounge was sent
to the other and projected on the back wall, giving the illusion in
each room of a double-size coffee lounge. The researchers
discovered that many users found the setup to be very natural for
human communication, due to its size. Two people, one in each
room, would approach the wall to converse, standing a distance
from the wall that approximated the distance they would stand from
each other in face-to-face conversations. The conclusion:

Video, when made large, was an effective and
convincing communication tool.

We leveraged this finding in creating the dual-head Facetop that we
use for synchronous, collaborative Web browsing.

Acknowledgements This work was partially supported by a grant
from the U.S. Environmental Protection Agency, # R82-795901-3.

References
[1] Beck, K., Extreme Programming Explained, Addison-Wesley,
2000.
[2] Wells, J. D., “Extreme Programming: A Gentle Introduction,”
2001, available on-line at http://www.extremeprogramming.org/
[3] A. Cockburn and L. Williams, “The Costs and Benefits of Pair
Programming,” eXtreme Programming and Flexible Processes in
Software Engineering -- XP2000, Cagliari, Sardinia, Italy, 2000.
[4] H. Ishii, M. Kobayashi, and J. Grudin, “Integration of inter-
personal space and shared workspace: ClearBoard design and
experiments,” Proc. of ACM Conf. on Computer Supported
Cooperative Work, Toronto, 1992, pp. 33-42.
[5] R. S. Fish, R. E. Kraut, and B. L. Chalfonte, “The VideoWindow
System in Informal Communications,” Proc. of ACM Conf. on
Computer Supported Cooperative Work, Los Angeles, 1990, pp. 1-
11.
[6] P.Baheti, L.Williams, E.Gehringer, and D.Stotts, "Exploring the
Efficacy of Distributed Pair Programming," XP Universe 2002,
Chicago, August 4-7, 2002; Lecture Notes in Computer Science
2418 (Springer), pp. 208-220.
[7] P.Baheti, L.Williams, E.Gehringer, D.Stotts, "Exploring Pair
Programming in Distributed Object-Oriented Team Projects,"
Educator's Workshop, OOPSLA 2002, Seattle, Nov. 4-8, 2002,
accepted to appear.

[8] Eric A. Bier, Ken Fishkin, Ken Pier, Maureen C. Stone, “A
Taxonomy of See-Through Tools: The Video, Xerox PARC,
Proc. of CHI ’95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/videos/eab
1bdy.htm
[9] T. Nishi, Y. Sato, H. Koike, “SnapLink: Interactive Object
Registration and Recognition for Augmented Desk Interface,”
Proc. of IFIP Conf. on HCI (Interact 2001), pp. 240-246, July
2001.
[10] Steve Benford, John Bowers, Lennart E. Fahlén, Chris
Greenhalgh and Dave Snowdon, “User Embodiment in
Collaborative Virtual Environments,”, Proc. of CHI ’95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/sdb
_bdy.htm
[11] Beverly L. Harrison , Hiroshi Ishii, Kim J. Vicente, and
William A. S. Buxton,“Transparent Layered User Interfaces: An
Evaluation of a Display Design to Enhance Focused and Divided
Attention,” Proc. of CHI ’95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/blh
_bdy.htm
[12] Vision Interface Seminar, Fall 2001, MIT,
http://www.ai.mit.edu/~trevor/6.892/
[13] Bretzner, L., and T. Lindberg, “Use Your Hand as a 3-D
Mouse, or, Relative Orientation from Extended Sequences of
Sparse Point and Line Correspondences Using the Affine Trifocal
Tensor,” Proc. of the 5th European Conf. on Computer Vision, (H.
Burkhardt and B. Neumann, eds.), vol. 1406 of Lecture Notes in
Computer Science, (Freiburg, Germany), pp. 141--157, Springer
Verlag, Berlin, June 1998.
[14] Laptev, I., and T. Lindberg, “Tracking of multi-state hand
models using particle filtering and a hierarchy of multi-scale
image features,” Proc. of the IEEE Workshop on Scale-space and
Morphology, Vancouver, Canada, in Springer-Verlag LNCS 2106
(M. kerckhove, ed.), July 2001, pp. 63-74.
[15] Stotts, D., L. Wiliams, et al., "Virtual Teaming: Experiments
and Experiences with Distributed Pair Programming," TR03-003,
Dept. of Computer Science, Univ. of North Carolina at Chapel
Hill, March 1, 2003.
[16] Stotts, D., J. McC. Smith, and D. Jen, “The Vis-a-Vid
Transparent Video FaceTop,” UIST ’03, Vancouver, Nov. 3-6,
2004, pp. 57-58.
[17] Nosek, J.T., “The Case for Collaborative Programming,”
Communications of the ACM, March 1998, pp. 105-108.
[18] Olson, G.M., and J.S. Olson, “Distance Matters,” Human-
Computer Interaction, vol. 15, 2000, pp. 139-179.
[19] Williams, L., “The Collaborative Software Process,” Ph.D.
dissertation, Dept. of Computer Science, Univ. of Utah, Salt Lake
City, UT, 2000.
[20] JAWS, Windows screen reader, Freedom Scientific,
http://www.freedomscientific.com/
[21] Hanks, B.,”Virtual Pair Programming,” Doctoral Symposium
at the International Conference on Software Engineering (ICSE
2003), May 3 - 10, 2003, Portland, OR.

http://www.extremeprogramming.org/
http://www.acm.org/sigchi/chi95/Electronic/documnts/videos/eab1bdy.htm
http://www.acm.org/sigchi/chi95/Electronic/documnts/videos/eab1bdy.htm
http://www.ai.mit.edu/~trevor/6.892/
http://www.freedomscientific.com/

	stotts-xpau04.pdf
	Distributed Pair Programming
	Other Related Work
	Other Related Work
	As mentioned earlier, Facetop uses technology from several research areas other than hypermedia, specifically collaboration theory and systems, video analysis, and user interfaces. We summarize some of these projects here.
	Transparency, UI, Video, and Gestures
	References
	[10] Steve Benford, John Bowers, Lennart E. Fahl�
	[13] Bretzner, L., and T. Lindberg, “Use Your Han

