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3.D.1

The Cobb-Douglas utility function

u(x) = 2fad ™

is homogeneous of degree one:

u(kx) = (k)™ (kag) ™
= kafklTxy
a, l-a

Walras’ law holds since u is locally nonsatiated. (The Cobb-Douglas
utility function is strictly increasing in its arguments, which is stronger than
local nonsatiation.)
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Because u is strictly concave, it has a unique maximum, which is clearly a

convex set. Concavity follows from x; > 0 and 25 > 0 (implied by limO%”—aE’f) =
r1—
sy du(x)
xl;goa—m = 00) and
r l—a
(@
Vu(x) = o ol >0
(- (2)
— 2 a
—Q 1—(1&2(1 a(l —a zla
DVu(x) = (1=o) 2 (1=0) ney
a(l-a) s —a(l-a)s
L 2 T

The Hessian is negative definite, since the principal minor is negative and
4 2a

IDVu)| = a? (1 - a)* (i) >0
12

3.G.8
If v is logarithmically homogeneous, then
v(p,aw) =Ina + v(p,w),
where
v(p,w) = Inv(p,w),
for some v(p, w) that is homogeneous of degree 1. (Thus v(p, aw) = In av(p, w) =

Ina+ v(p,w).)
We have
vp’ﬁ(pa w)
v(p, w)
V,o(p,w) = v(p,w)V,v(p,w).

vpv(p; U)) -

By Euler’s theorem,

~ Jv(p,
ip.w) = P21,

Using Roy’s identity,

_9v(p,w)
ow

*

vlﬁj(pa w) =
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Substituting,
- v(p,w)
V,o(p,w) = —%x
- (p,w) _,
v(p,w)VpU(p,w) = - ( w )X

Dividing through by v(p, w) and letting w = 1,

V,u(p, 1) = —x*.

3.G.15

(a) The function u(x) = 2,/x1+4,/7; is locally nonsatiated; therefore
Walras’ law holds. The utility maximization problem is:

max2+/x1 + 4\/xs

x1,T2
s.t. p1x1 + Patg = w
x1 20, 23 > 0.

Lagrangian formulation (ignoring the nonnegativity constraints, which will
hold at the optimum):

max 2\/331 -+ 4\/332 + A ('U} — P11 —pg.TQ) .

Z1,T2

First-order conditions:

ou(x*) _ Npr =0
O VT :
ou(x*) _ 2 Npy = 0
O V73 ’
Ou(x* . .
% = w— P12 — paxy = 0.
Solving for x*(p, w):
o . B—
' 4p3 + p1pa
* 4p1
Lo

— .
4p1p2 + p3

Nonnegativity of x1, x5 is met. The second derivatives are negative, indicat-
ing a maximum.
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(b) The expenditure minimization problem is:

minp; hy + paho

Z1,T2

s.t. 2\/ h1+4\/ hg Zﬂ
hy >0, hy > 0.
Since f(h) = p1hy + pahs is strictly increasing in u and u(h) = 2+/h; +4v/hs
is continuous, the utility threshold constraint must hold with equality. Ignore
the nonnegativity constraints for now. Lagrangian formulation:

max—p1h1 —p2h2 +)\ <2\/h_1+4\/h—2—ﬂ> .

1,22

First-order conditions:

af (h*) 1

—_ = —p;+ A=0
Ohy D1 \/h_T

of(h*) 2 ._
ohy = —p2+ h;)\ =0

% — oA — T — 0.

Solving for h*(p, %):
P2 ?
hy = (————u
' (8}91 + 2p; )

2
P _
hy = — 7
2 (4171 + D2 )

Nonnegativity of hy, he is met. The second derivatives are negative, indicat-
ing a maximum.

(c) The expenditure function is determined by:
e(p,u) = pihi + pahs.
Substituting and solving;:

pips +4Apine

e(p,7) = 64p? + 32p1ps + 4p§u '
We have:
8e(p,ﬂ) — p% EQ — h*
p 64p7 + 32p1p2 + 4p3 !
8€(p7ﬂ) — p% HQ — *.
Ops 16p3 + 8pip2 + P ?

4
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(d)
w) = 24/} + 4,/

The indirect utility function is determined by:

Substituting:

v(p,w) = w+4 —w I

\/ 4p? + pipa + P1p2 D2 Api+pa
_ 8p1 + 2po
VApip2 + pips

We have:

ov(p,w) 4dpi + po 1

ow /1Py + pip VO
ov(p,w) 4p1p3 + P

Ip1 (4p3p2 + p13) \/4pIp2 + P11}
dv(p, w) ~ 4p?ps + 16p3
Op2 (4p3p2 + p13) \/4pip2 + P11}
Thus:
ov(p,w)
8})1 — _ p2 w = _x*
Bulp.w) Apt + pip2 '
Ov(p,w)
O _ _Lw —
8v(a€u7w) 4pipa + p3 z
which confirms Roy’s identity, % = —x*.

5.0.2

Vw

w

To show: The profit function 7 is convex in the price vector p.
Proof. Consider the price vectors p and p’ with optimal production plans

y(p) and y(p’), and associated profits 7 (p) = p*

-y(p) and 7 (p)

— 1:)/T

y(p’). The profit associated with a convex combination p = ap + (1 — a) p’

of p and p’ (where a € [0, 1]) is

(@) = p -y(D)
= ap’-y(®)+(1—a)p”-y(p)
< ap’-y(p)+(1—a)p” -y
= ar(p)+ (1 —a)7(p).
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The inequality follows from the optimality of y(p) at p and of y(p’) at p’.
The last equation implies that 7 is convex. m

5.C.7

The intution behind the results is obvious: an increase in the output
price induces more production, and since the production function is strictly
concave, it is cost-minimizing to raise production by increasing all inputs.
Secondly, an increase in a factor price leads to less production, and strict
concavity of the production function implies that it is cost-minimizing to
reduce all inputs.

The profit maximization problem

maxpf(z) — w'z
has the first-order condition
pVf(z") =w.
Differentiate with respect to p (recalling that z* is a function of p):

Vf(z*)+pD,Vf(z*)D,z" = 0.

Denoting D,V f(z*) = H, the solution of the system of conditions is
H—l *
b HVf(E)
p

To show that D,z* > 0, we need H 'V f(z*) < 0. In the two-input case,

2%f __&f
022 021022
9 f 9% f

H_l . T 921022 82%
= 2
2f2f [ _9%f
82% 8z§ 021022
. . . 22f 9%f _ Pfef
Since f is strictly concave, a7 < 0, o < 0, and |H| = 577 57

2
( aZ 28];2> > 0. Since Vf(z*) > 0 (f is increasing) and afgm > 0 (given),

this implies
orf  orf L
022~ 021029 aa_zfl
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and
oy oy
62’% 6216225—;2'

It follows that

| [2Lor _ 0 or
HVIED = g [f Tt

8_7,?6_@ T 921029 8_21

°f Of *f of
] <o

and therefore D,z* > 0. The general case involves more tedious notation,
but the same argument applies.

Next, differentiate the first-order condition with respect to w (recalling
that z* is a function of w):

pD.Vf(z*)D,z"* =
pHD,z* = 1.
The solution of the system of conditions is

H'1
D,z* = .
p

To show that D,z* < 0, we need H'1 < 0. This amounts to negative row
sums of the adjoint matrix of H. In the two-input case, we need:

2f  _9f
2
[gg.zf 832%ZQ] < 0.

6_z% 821 8Z2

Since 24 < 0 and Zf < 0 by the concavity of f, and

Gz% 8_z§
assumption, the condition holds, and we have D,z* < 0.

9% f
021022

> 0 by

5.C.9
(a)

The firm’s problem is

maxpy/ 21 + 2o — W21 — Waka.

21,22
Since z; and 2y are perfect substitutes in the production function, the firm
uses only z; if wy < we, only 29 if wy > wsy, and an arbitrary ratio of z; and
29 if w1 = Wa.
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Case 1: wy < wy. Then z; = 0 and the problem reduces to maxp,/z; —
21

w 21. First-order condition:

b _
= Wq.
2¢/7]
Hence
P
L qw?
Therefore:
y = A+
R
211)1

T = DA+ —wiz] — wazy

4’LU1

Case 2: wy > wy. Then 27 = 0 and the problem reduces to maxp,/z —
22

w1 29. Symmetrically to Case 1, we have:Hence

z5 = R
2 43
and
y = P
2’LU1
I
411)2‘

Case 3: wy = wsy. Denote the amount of the generic input by z and the
generic factor price by w. Then the problem reduces to maxpv2z — 2wz.

First-order condition:

P

2V 2z*

=w

Hence

&
S
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where 2§ + 25 = 22* and w = w; + wy. There are infinitely many solutions
for the optimal input vector z*. However, profit is unique:

y = V2z*
_ P
2w’

T o= pV2Z* —2wz*
_ 7
4w’

(b)
The firm’s problem is

maxpy/min {2y, 2o} — w123 — wozs.

21,22
Since z; and zy are perfect complements, the firm optimizes by using z; and

)
. . * _ * : * * _ * *
2 in equal amounts, i.e. zf = z5 such that min {z}, 25} = 2z} = 25. Then the
problem reduces to maxp,/z; — (w; + wy) z;. First-order condition:
sl

P = w;+w
e 1 2
. p°
Rl = Ry =
4 (U)l + 'UJQ)
Therefore:
y = vmin{z], 2}
_ p
2 (wy + wq)’

(c)

Assume first that p < 1 and p # 0; these special cases are discussed later.
The firm’s problem is:

1
maxp (2] + z5)r — w121 — wazs.
21,22
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Observe that the CES production function is homogeneous of degree 1 (i.e.
it exhibits constant returns to scale):

((h21) + (n22)")7 = (< 40 25)5
This implies that, given a constant price vector (p,w;,ws), the firm either
produces nothing (hence demands z{ = z5 = 0) or produces an infinite
quantity (hence demands 2] = z5 = o0) or produces an arbitrary quantity,
employing the inputs in a fixed proportion. Which case obtains depends on
the relationship between p and the factor prices w; and ws.
Taking first-order conditions with respect to 2y,

1-p
* * —_—
(2" +2") 7
*1 =
—p
21
_P
2"+ (w1>1—P
e 1
21 p
P21 1
2

()7 )

and symmetrically with respect to 23,

1
N 1
4. (%)lp—l -
29 p

Solving for p in terms of w; and wy:
w1W2

1—p °

7% =\
—P -pP
(wl + wy )

P

* 1—p ;
If this condition holds, then any vector (21, 2) such that 2L = <ﬂ> -1

25 p
is optimal for the firm. Since the righthand term is constant, all linear scal-
ings of an optimal factor combination are optimal, i.e. there are infinitely

many solutions z*. Profit is, however, unique:
1

1

_ X0 P\, *
T = p("+ 25")r —wiz] —wazs
) 1
—+= p
Wy \ 1-°
—wy ((— — 1| 25— w2
p

o
wa \ 7P P
= —= -1z +2°
()7 ) )
1 o 1
wy\ P, wy \ 7 " .
= p(?) 22—w1<(;) —1) 2y — WaZy.

10

=
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Substituting for p and simplifying,

TS\ :
—p —p i,
— W1W2 Wy +w2 * wWa e * *
1—p 1—p P
(wl + Wy )

jers A
WiwWs (wl_” + w2_”)

1—p

_1
1-p
* * *
= %p P ﬁ z w1
wy "’ 4w,y

T 2 2 * W2 =e * *
_ -p -p —p . _
= w; "ws (wl + wy ) Zo — Wi | — Zy — WaZy

—p 1 —p 1

1— 1— * 1— 1— *
= (wg—i—wl Pwy ”) 2y — (wl Pwy ™" +w2) 25
= 0.

In the extreme cases, the firm either earns zero profit by producing noth-
ing if

%)

p <

o o\ 2
(o o ut)
or infinite profit by producing an infinite quantity if

w1W2
p >

— -
» °

B 1-p
s 5\ °
(wl + wy >

Now let p = 1. In this case the production function is linear, and the
threshold condition is easily seen to be p = min {w;,wy}. If this holds,
then the firm uses the cheaper input to produce an arbitrary quantity (or
if wy = wy, the firm employs the factors in an arbitrary ratio). Profit is
(p—w)z* = 0. If p > min{w;,ws}, the firm uses the cheaper input to
produce an infinite quantity (or if w; = wy, the firm employs the factors in
an arbitrary ratio); profit is infinite. Finally, if p < min {w;, w2}, then the
firm produces nothing and earns no profit.

Lastly, if p = 0,the CES production function is undefined, but it can be
shown that as p approaches zero, the CES function is the function /z1 2, in
the limit. Taking logs,

=

Inf = In(z]+25)
In (27 + 25)
p )

11
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we can apply L’Hopital’s rule to get

a%ln(zf—i—zg)

I f = g™
op
2y Inz1425 In 29
. 2P 428
= lim 12
p—0 1
Inz; + In 29
2
= 5 In (212’2) .

Raising both sides to base e,

f=vam.

In this case, the firm’s maximization problem is:

maxp/2129 — W12 — WaZ2.
21,22

Notice that the production function continues to be homogeneous of degree
1. The first-order conditions are:

*
Pz = wy
2V/2{ %5
*
Pz = w,

2\/2125
Solving these separately for the factor demand ratio:

2] 1
PTGy
p
z¥ wy\ 2
f ()
2 P
Then the "stable" condition is
w1 2 Wa 2
40— 4 = = 1
p b
p = 2\/'LU1’UJ2.

If this holds, the firm produces an arbitrary quantity of output, using the

. 2
factors in the ratio i—; =4 (%) . Since every linear scaling of an optimal

12
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demand vector is also optimal, there are infinitely many solutions. Profit is
Zero:

T = p\ZT2 —wiz] —wazy

2 2
w w

= py/4 (—2) 232 — w4 (—2) 25 — we2s
p p

= 2wqz; — w4 wozy

2
Wa o
-
2./ wiws
= 2w9z; — Wezy — W2,
= 0.

The remaining cases are p > 2,/wjws, in which case the firm produces
infinite output and earns infinite profit, and p < 2,/wiws, which gives zero
production and zero profit.

6.B.2

If U representing 7~ on £ has the expected utility form, then - satisfies
the independence axiom.
Proof. A preference relation 7~ on the set £ of simple lotteries satisfies the
independence axiom if and only if

Lol <~ al+(1—-a)l" mal'+(1—a)L"

forall L, L', " € £ and all « € (0,1) . Since this is an "if and only if" state-
ment, we have to show that if U has the expected utility form (equivalently,
U is linear), then (if)

al+(1—-a)l" mall+(1-a)L" =Lz L.
and (only if)
LzLl=aL+(1—-a)l"Zal'+(1—a)L"

(If) Suppose [aL + (1 — «) L"] 7z oL’ 4+ (1 — ) L"] . Since U represents
>, it follows that

U(L+(1—-a)L")>U(al'+(1—a)L").
Since U is linear, this implies

aU(L)+ (1 —a)U (L")
U (L)

AVARLY,
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But then L = L' as required.
(Only if) Suppose L 77 L'. Then U (L) > U (L') . Multiplying by « and
adding (1 — a) U (L") gives

aU(L)+(1—a)U (L") >aU(L')+(1—a)U (L"),
By linearity of U,
U(@L+(1—-a)L"Y>U(al/+(1—a)L"),
which implies

aL+(1—-a)L" Zal'+(1—a)L".

6.B./
(a)

It is given that A 77 D, hence if U represents -, we must have U (A) >
U (D). Since utility functions are unique up to monotone transformations,
we can assign arbitrary values to U (A) and U (D) such that U (A) > U (D).
Say U (A) =1 and U (D) = 0. Next, it is given that

B~pA+(1—-p)D
and
C~qB+(1—¢q)D.
These imply (using the linearity of U):

U(B) = pU(A)+(1-p)U(D)
UC) = qUu(B)+(1-qU(D).

Substituting U (A) =1 and U (D) = 0,

U(B) = p
UC) = pq.
A linear utility function that represents 7~ is U : £ — R such that
UA) =1
U(B) = p
U€C) = pq
U(D) = 0.

14
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(b)

The event that flooding occurs contains outcomes C' and D. The event
that no flooding occurs contains outcomes A and B. The conditional prob-
ability of an evacuation in the event of flooding is:

Pr(C) Pr(C)

Pr(CUD) Pr(C)+Pr(D)

(since C' N D = @). This implies:

L— PFErc(*Ci))
r(CU
Pr(CuD)

We know the probability of flooding:

Pr(CUD)="Pr(C)+Pr(D)=0.01.

Therefore,
1- pP{c(CE)
r(CU
Pr(D) = W(O.Ol—Pr (D))
Pr(CUD)
Pr(C) < Pr(C) >2
Pr(CUD) =\ Pr(CUD)
= 0.01 1)
Pr(CuUD)
If criterion 1 is used, rts; = 0.9. If criterion 2 is used, sk = 0.95.
Hence
Pr(D)" = 0.001
Pr(D)> = 0.0005
Pr(C)
and, since Pr (C) = Pr (D) 55—,
1_Pr(CuD)

Pr(C)' = 0.009
Pr(C)®> = 0.0095.

The conditional probability of an evacuation in the event of no flooding
is:
Pr(B) Pr (B)

Pr(AUuB) Pr(A)+Pr(B)

15
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(since AN B = &). This implies:

Pr(B)
Pr(AUB)
1 - Pr(AUB)

By an elementary property of probability,
Pr(A)+Pr(B)+Pr(C)+Pr(D)=1.

Substituting for Pr (B), we have

Pr(A) = (1 — Pr (C) — Pr (D)) (1 - %) .

If criterion 1 is used, = 0.1. If criterion 2 is used, = 0.05.

Pr(B)
(
Thus:

Pr(B)
Pr(AUB) (

Pr(AUB)
Pr(A)' = 0.891
Pr(A)? = 0.9405

and

Pr(B)' = 0.099
Pr(B)> = 0.0495.

In summary, the probability distributions are, for criterion 1,

Pr(A)' = 0.891
Pr(B)" = 0.099
Pr(C)' = 0.009
Pr(D)' = 0.001.
For criterion 2,
Pr(A)® = 0.9405
Pr(B)* = 0.0495
Pr(C)*> = 0.0095
Pr(D)*> = 0.0005.

Under the two criteria the agency has, respectively, utility

U'() = Pr(A)'U(A) +Pr(B)'U(B)+Pr(C)' U(C)+Pr(D) U(D)
= 0.891 + 0.099p + 0.009pq.

16
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and

U?(:) = Pr(A)PU(A)+Pr(B)?U(B)+Pr(C)*U(C)+Pr(D)*U (D)
= 0.9405 4 0.0495p + 0.0095pq.

Since p < 1,
U (1) = U?(-) = —0.0495 + 0.0495p — 0.0005pq < 0,
so criterion 2 is preferable.

6.C.1

Suppose, contrary to the claim, that when ¢ > 7 the individual insures
completely: o > D. Then o > 0 and the agent’s problem

max [1u (w — qa — (D —a)) + (1 — 7)) u (w — qa)]

a>0

has first order condition

(1= ) 7t (= g — (D = 0)) = g (1= 7) (w0 — )

(sufficient under strict concavity).
Moreover, o > D and strict concavity of u imply

0 0
- — _ _ < _
St (w—aa— (D —a)) < 5-u(w-—qa),
therefore
1-—gm > q(1—m)
T > q,

a contradiction.

6.C.9
(a)

The agent’s problem without uncertainty

max [u(w—2x)+v(x)

has first order condition

0 0
e (w —x0) = =—v (x0) .

ox
17
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The agent’s problem with uncertainty

max [u (w — x) + E[v (z + y)]]

T

has first order condition

9 w—a)—E [(%v (z* —i—y)] |

Suppose, contrary to the claim, that x* < xy. Then, by concavity of v,
o (2" )| = or ( )
E v(x” + E v (xo +
. Y| = - 0T Y|

and

E L%v (20 —|—y)] > (,%v (o)

implies
0 . 0
E {%U (" + y)] > 5.0 (x0) .

Using the first order conditions, this leads to

0

%u(w—x*)>—u(w—x0),

ox

where concavity of v implies z* > x(, a contradiction.

(b)

Let

38;3 U1 (951) 53—;3?12 (1’2)

o2 S T H2 )

2 V1 (z1) 923 V2 (72)

or equivalently,

2 2
_38?13%@1 (21) < _387,2@%“2 (22)
v (1) T g ghva ()
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where 74 (+) is the Arrow-Pratt coefficient of absolute risk aversion. Therefore

(@) 2 (2 ten)

(by proposition 6.C.2(iii)), where ¢ (x + y) denotes the certainty equivalent
of lottery x+y. We will derive the certainty equivalents of the risky prospects
xi +y and x5 +y (i.e. the optimal choices under v, and vy) and use

Eiv($+)>iv(x)
_axlloy 8x110

to show that, given the relationship of the certainty equivalents,

Eiv(a:+)>iv(x)
_ax220y 8@2 0)-

The respective first-order conditions for the problems in v; and v, are:

iu(w—yc’*) E iv (x] +y)
8371 ! _8371 ! L Y

and

(75 +y)

0

—U
al’g

E

(w —3)

—U
_8ZE2 2
Let

Ei ( + ) >i ( )
833101 ToTY &Blvl Zo

and denote by x; the level of saving such that

B | goovn o+ 9)| = g ().

8x1 a131
If we interpret 8%11)1 as a Bernoulli utility function, then z; is the certainty
equivalent of xg + y under v;. Concavity of v implies that 7; = z¢ — z for
some z > 0. Similarly, denote by z» the level of saving such that

E av(a:+) = av(i)

7, 2 Lo Yy)| = O%s 2 \T2) .
Again, 7, is the certainty equivalent of xg + y under vy. From our initial
argument, we have T; > T, which implies

Io—fg > z>0

To < x9— 2 < Xp.

19
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But then (by concavity of v5)

E i ( + ) >i (N)
_a$2U2 Zo Yy 81‘2U2 o) -

As demonstrated in part (a),

0 0
E _G_xv (zo +Z/)] > 9z (z0)

implies
" > 1.

Thus we have shown that, if the coefficient of absolute prudence is weakly
smaller for utility function v; than for vy, then 7 > xy only if x5 > z,. More
succinctly, 5 > 7 (the more "prudent" agent will save more).

(c)

Strict concavity must be assumed for parts (c) and (d). If %v (x) =
;—;%U (x) > 0 and (by strict concavity of v) 8‘9—;21 (z) = 220 (x) <0, the
function 8%1} (z) is strictly convex. Applying Jensen’s inequality,

B| 24| > So Bl + ),

Using E [y] = 0, hence E [z + y| = E [z] = «z,

9] 1.0
E _a—xv(:chy) >a—xv(:v).

(d)

From
; 930 (W) du(W) o2o(w) 2
ora(v(W)) 0 BZQ(V‘:,V) B PW oW _( W ) ~ 0
ow oW i) B (&;(W))Q ’
oW
we have
OBv (W) v (W) N v (W)\?
oW oW 02w
3v(W
T Ov (W) &P (W)
92v(W) oW 02W
W
93v(W) 92v(W)
_Pw . oW
92u(W) (W)
RW oW

20
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Since 82”2(‘?//) < 0 and ag%/) > 0 (by strict concavity), 82@%) > 0.
6.C.16

(a)

If the individual owns the lottery, the expected utility in case of no action
is

pu(w+ G)+ (1 —p)u(w+ B),

and the expected utility upon selling the lottery at price ¢ is
u(w+q).

Selling is rational if
u(w+q) >pu(w+G)+ (1 —p)u(w+ B)

(equality at the minimum acceptable price). Provided that u is bijective,
there exists an inverse mapping u ' and we can solve explicitly for g,

g=u"t(pu(w+G)+ (1 —p)u(w+ B)) —w.

(b)

If the individual does not own the lottery, the expected utility in case of
no action is

u(w),

and the expected utility upon buying the lottery at price r is
pu(w—1r+G)+(1—-p)u(w—7+ B).

Buying is rational if
pu(w—r+G)+ (1 =—plu(w—1+ B) > u(w)

(equality at the maximum acceptable price). For general functional forms of
u, this expression has no explicit solution for r. All that can be said is that
r is implicitly determined by

pu(w—r+G)+ 1 —-p)lu(w—r+B)=u(w).
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(c)

In general, ¢ (the minimum sale price of the lottery) and r (the maximum
purchase price of the lottery) are not equal. The reason is a wealth effect.
If the lottery is initially owned, the sale adds to the payoff that is not state
contingent; in the opposite case, the purchase subtracts from fixed wealth. In
case of risk aversion that is decreasing in wealth, the lottery has more value
to a seller (since the buyer’s wealth is reduced by paying the fixed price,
causing him to discount the lottery). On the other hand, if risk aversion
is increasing in wealth, the lottery becomes more valuable to a buyer. A
sufficient condition for the (minimum) selling and (maximum) buying price
to be the same is therefore that u has a constant absolute risk aversion form,
i.e. it belongs to the CARA class.

To see this, observe that at the minimum sale / maximum purchase prices,
the expected utility of owning the lottery equals the utility of the certainty
equivalent. Denote the certainty equivalent of the lottery in part (a) as ¢,
and the certainty equivalent of the lottery in part (b) as ¢, hence ¢, = w+ ¢
and ¢, = w. Now, ¢, (the seller’s certainty equivalent) reflects the addition of
risk L to fixed wealth w, whereas ¢, (the buyer’s certainty equivalent) reflects
the addition of the same risk to fixed wealth w — r.

By an analogous argument to that in proposition 6.C.3(iii), w — ¢, and
w — r — ¢, are constant in w and w — r (respectively) if (and only if) u has
the CARA property. We can also conclude that

W—Co=W—T — Cp.
(If w — ¢, = k and w — r — ¢, = [, then scaling fixed wealth from w to w —r
and k’s invariance to scaling imply w —r — ¢, = k, hence k = [.) Substituting

for ¢, and ¢, we have
qg=r.
(d)
If u=+/z and G =10, B=5, w = 10,

2
q= (V20 +(1-p)VI5) —10,
and r is determined by

V20 — 7+ (1 — p) V15 — r = V10.
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This expression can be transformed into a quadratic

2 2
2p—1 1 1—p\° V101 —
<p2 r—20+—8+(—p) 15) :(2—O—p) (15 —7)
p p

p p p

and solved for a function in p by straightforward but tedious calculations.
(From the solution to the quadratic formula, eliminate the negative price.)

6.C.20

The certainty equivalent ¢ (¢) is defined by
1 1
u(c(e)) = §u(x+5) + §u(az—z—:).
Differentiating with respect to e:

u' (c(e))d (e) = %u' (x4e¢)— %u’ (x —¢)

u(c(e))d (e) +u (c(e)) " (e) = %u” (x+e)+ %u” (x —e).

(where f’ is shorthand for %). As ¢ — 0, this converges to
u” (¢(0)) ¢ (0) + ' (¢ (0)) " (0) = " (x)

in the limit.
Solve the first derivative for ¢’ (¢) and evaluate at ¢ = 0:

u(z+e)—u(z—e¢)

2u/ (c (¢))

d(e) =
lim ¢ () = 0.

e—0

Moreover, observe that

lim c(e) = =z,

e—0

since there is no uncertainty at ¢ = 0.
Substituting for ¢’ (0) and ¢ (0) in the second derivative, we have

u' (z) ¢ (0) = " (2),

1.e.
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6.E.1

The expected regret function is

s
R(z,2') = th(max[@,x's—xs])
s=1

S
= é Z V/max [0, 2, — x,].
s=1

Define 77 by = 77 2’ if and only if R (x,2') < R (2/,x).
For z = (0,-2,1), 2’ = (0,2,—2), and 2" = (2,—3,—1), we can show:
x' 7~ x since

v

2 3
R(z,x'):§ \/?_:R(x'm),

x 77 x” since

R(z,2") =

" = ' since

V241 5+42V2 §_£_R(x,, )
3 9 9 3 o
But transitivity requires that x’ =~ x and = = 2" only if 2’ 77 2", so
x” = ' violates transitivity.

Vv

R (IE/, .”E”)

7.E.1
(a)

Player 1’s pure strategies specify: 1’s move at the first information set
(L, M, or R), I’s move at the third information set (z or y), given that M
was played initially, and 1’s move at the third information set (x or y), given
that R was played initially. Listing actions in that order, the pure strategies
are:

L7x7x L’x7y L’y7$ L7y7y
Alz M,l',.I’ M,.T,y M,y,l‘ nyay
Rz,x Rzy Ryz Ry

Player 1’s strategies are the mixed profiles 01 € X 4, [0, 1] such that ), _, ok =
1.
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Player 2’s pure strategies are:

={l,r}.

Player 2’s strategies are the mixed profiles o € [0,1] x [0, 1] such that o} +
oy = 1.

(b)

Suppose player 2 adopts mixed strategy oo € {7} x {1 — 7}, i.e. player
2 assigns some frequency 7 to action [ and frequency (1 — ) to action 7.
Let player 1’s behavioral strategy be as follows. At the first information set,
play L with probability u,, M with probability us, and R with probability
1 —wuy —us. At the information set reached by playing M initially, play x with
probability v and y with probability (1 — v). At the information set reached
by playing R initially, play = with probability w and y with probability
(1 —w). The set of player 1’s behavioral strategies consists of triple lists of
probabilities (one list for each information set):

By = {(uy,u2,1 —ug —ug), (v,1 —0), (w,1 —w) : ug,uz,v,w € [0,1]}.

Given a behavioral strategy for player 1, the probability that the game
reaches a given terminal node is:

Pr(Ty|s1 € B1) = w

Pr(T) | sy € By) = wugmv

Pr(Ty | sy € By) = wuem(1—0)

Pr(T5| sy € B) = (1—mv

Pr(Ty| sy € By) = (1—m)(1—v)
Pr(Ts|s1€ B1) = (1—u; —ug)mw

Pr(Ts |s1 € B1) = (1—u; —ug)mw(l—w)
Pr(T7 |s1€By) = (1—up—ug)(l—mw
Pr(Tg|s1€ B1) = (1—up—ug)(1—m)(1—w).

If player 1 instead plays a mixed strategy, the probability distribution over
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terminal nodes is:

Pr |51 € A) = ob™ + gfxy + glvr 4 GLwy
Pr(Ty|si€4y) = (o™ + O_i%a;y) T
Pr(Ty|si€ A1) = (o)™ + a{”yy> T
Pr(T3|si€ A) = (o7 + ai””““’) (1—m)
o 4 UJIVIyy) (1—m)

Pr(T | s € A,) = Pr(T | s, € By)

for all T', we obtain conditions on the mixed strategy profile for player 1 that
leads to the same distribution of realizations as a given behavioral strategy:

L L
Lxm+01xy+ayx+gyy = u

( MerJiny)W = UMV
( Myx+0.Myy)7T = um (1 —w)
(5 2 ol) (1) — i1
<Mya:_|_O_Myy>(]__7r) = uy(1—7m)(1—w)
(of + ol ) 7w =
(o + o) = (1w —w)m(1-w)
(RwJFORW) 1-7) = (
(

< y—I—URyy) (1—-m) =
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Simplifying and eliminating redundant conditions, we end up with

L L
Lxx+alxy+o_ yx+0 vy Uy
M.Z‘J: + 0'1 Mzy = UV
My:v —
+ol = uy(1—w)
R
Rm—l—o v (1 —uy — ug) w.

(The reduction to five conditions is straightforward; a bit of algebra shows
that one more can be eliminated since they are linearly dependent with
> kea, 0F = 1.) Any mixed strategy that satisfies this set of equations is
realization-equivalent to the behavioral strategy. Clearly, the set of solutions
is nonempty (in fact, it is infinite), hence there exist realization-equivalent
mixed strategies for every behavioral strategy.

(c)
Suppose player 1 adopts mixed strategy s; = o = (Jf” . -afiyy> A

realization-equivalent behavioral strategy s; = ((uy, ug, 1 —ug — ug), (v, 1 —v), (w, 1 —w))
must satisfy the conditions just derived in part (b). Solve the set of equations
for uq, us, v, and w:

u; = wa+ngy+0Lyz+U{3yy

uy = oM 4 oM oMV o)
O.Mxx+o.1 )

v = U{\/[zx_i_al xy_'_O_My:c_i_Ui\Jyy
Rx:v —|—O'

w =

Rm + OR:vy + URya: + Ulﬁyy

The solution is nonempty (and unique); hence there exists a realization-
equivalent behavioral strategy for every mixed strategy.

(d)

Intuitively, the game is no longer one of perfect recall because, at the
second information set, player 1 does not remember his initial move (M or
R). Formally, there exist now decision nodes x and 2z’ for player 1 where
H (z) = H (2'), and the only predecessor of z and 2’ (the initial node) has
an action leading to x but not to x’.

Player 1’s set of pure strategies has changed to

L,x L,y
A=< M,z M,y
Rz R,y
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since player 1 can no longer distinguish between the initial moves M and R
when choosing z or y. Player 2’s strategies are unaltered.

Suppose again that player 2 adopts mixed strategy oo € {7} x {1 —7}.
Player 1’s behavioral strategy is as follows. At the first information set,
play L with probability w,, M with probability us, and R with probability
1 — u; — ug. At the second information set, play x with probability ¢t and y
with probability (1 —¢). The set of behavioral strategies consists of pairs of
probability lists:

Bi = {(Ul,UQ,]_ — Up —Ug),(t,l —t) : Ul,UQ,t S [0,1]}

Given behavioral strategy ((ui,us, 1 —uy —u2),(t,1 —1)) for player 1, the
probability distribution over terminal nodes is:

Pr (7o | s1 € By) Uy

Pr (7T} | s1 € By) ugTt

Pr (73| s1 € By) ugm (1 —t)

Pr (T3 | s1 € By) uy (1 —m)t

Pr (7T, | s1 € By) ug (I —m) (1 —1t)

Pr (75 | s1 € By) (1 —uy —ug)mt

Pr (75 | s1 € By) (1 —wuy —uz)mw(1l—1)

Pr (77| s1 € By) (1 —up —ug) (1 —m)t

Pr (T3 | s; € By) (1—w —u)(1—m)(1—1¢).
If player 1 adopts a mixed strategy, the probability distribution over terminal
nodes is:

Pr (T | s1 € A) obe 4 ot

Pr (7T | s1 € A}) oMrr

Pr(Ty | s1 € A) o

Pr (T3 | 51 € A)) oM (1 — )

Pr(7Ty| s1 € A}) o (1— )

Pr (75| s; € A) ol

Pr(Ts | sy € A}) o

Pr (77| s1 € A}) ol (1 —7)

Pr (T3 | s; € A) a?y (1—m).
Setting

Pr(T|s, € A)) =Pr(T| s, € B))
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for all 7" and eliminating redundancies:

ol y ol =
O'i\/[x = Ugt
oMY = uy(1—1t)
ol = (1 —uy —ug)t.

There are infinitely many solutions for o1, hence there still exist realization-
equivalent mixed strategies for every behavioral strategy.

The converse fails in the presence of perfect recall. If we solve for uy, us,
and t, there are four linearly independent equations (and ., of = 1) in
three unknowns. Using the first three conditions,

L
w = o+ oY
M
uy = o) 40y
Mz
o
t = -

—_
oM 4+ oY

But the fourth condition is not generally compatible:

Rx

g
t = — v
1—U1—U2

Rz
_ %
— -
ol + oV

Mx
7 (i.e. unless the mixed strategy is such that the

oft
Unless g e Y
conditional probability of x given initial move M equals the conditional prob-
ability of = given initial move R), the solution is empty and there is no

realization-equivalent behavioral strategy.
8.B.1

A strictly dominant strategy yields the highest payoff among all available
strategies, regardless of other players’ actions. Formally, strategy s; € S; is
strictly dominant if w; (s;,5-;) > u; (s}, s_;) for all s, # s, and any s_; € S_;.
To show that a strictly dominant strategy exists, it is enough to demonstrate
that the strategy s; which maximizes i’s payoff does not depend on s_;, i.e.
in the context of the problem, the benefit-maximizing choice of effort h; does
not depend on other h_; (hence the optimal strategy s; is a constant effort
h; with respect to h_;).
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Supposing that the subsidy would be distributed equally among the I
firms in the industry (this assumption is merely for convenience; it does not
affect the validity of the argument), each firm’s payoff is:

o it BIL A,
1 v

Us (Si73—i) =

The first-order condition for payoff maximization is:

aui (81', S—i) o o+ 51_[71 hf@ _9 sz
oh, T Yo,

=0.

(If) For 8 = 0, the first-order condition reduces to ¢ —2w; 37 9wi — (). Clearly,
the optimal choice of h; does not depend on h_;; hence h} that satisfies the
first-order condition is a strictly dominant strategy.

(Only if) For 5 # 0, h} that satisfies first-order condition is a function of
h_;, so there is no strictly dominant strategy.

8.B.4

The set of strategies surviving iterated deletion of strictly dominated
strategies is invariant to the order of deletion.
Proof. Let I" be an arbitrary game with initial strategy set Sy. Suppose
iterated deletion of strictly dominated strategies, in some order, maximally
reduces the strategy set to S. Now consider another order of deletion that
maximally reduces 5’0 =95y to S. The claim is that S = S. So we need to
prove two inclusions: S C S and S CS.

First we dispose of the trivial case that there are no strictly dominated
strategies in Sy. Then S = Sy = Sy = S' and we are done. Now suppose So
does contain strictly dominated strategies, so S C Sy and Sy C S.

For S C S, the argument is by induction. Let {S } be a sequence of

=0
n

strategy sets associated with a sequence of games {f‘z} such that SZ+1
=0 _

S, \ 8i, where s; is a strictly dominated strategy in game I';, and S, = S.
The inductive hypothesis is that S C S;. The inductive hypothesis holds
for i = 0, since Sy = Sy and S C Sy. Generalizing, say that the inductive
hypothesis holds for i, and consider i+ 1. Given that S C S; (by assumption)
and Siy1 = Si \ s (by deﬁmtlon) S C S, if and only if s; & S.

We know that there exists s, € S; that dominates s; in T;. (Write this as
s; < s, )BecauseSCSZ, s; < s in T; implies s; < s, in I'. So if s} € S|
then s; ¢ S, since it is dominated. If s, ¢ S, then there exists sg’ €S
that transitively dominates s, and also s;. To make this explicit, define the
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transitive closure of the strict domination relation < as follows: s, << s/ if
there exists a sequence s/, ..., s/ such that every element strictly dominates
the element preceding it. Notice that s; << s/ implies s; < s!. Because
s, ¢ S only if there exists s/ € S such that s, << s, and since s; < s}, we
can construct such a sequence from s; to s/, and as s/ € S, it is necessary
that s; is strictly dominated in S. From this, we have s; ¢ S and consequently
S C S;.1 for all 4, which proves inductively that S C S.

For the reverse inclusion, it suffices to observe that S was chosen arbi-
trarily, so S C S also implies S C S (we could just rename the sets, and the
proof would be identical). Hence S = S, which confirms the claim that any
order of deletion leads to the same set of strategies. (It suffices to consider
pure strategies, since a mixed strategy is dominated if and only if all pure

strategies in its support are dominated.) =

8.0/
(a)

Suppose player 2 assigns probability p to action U (and 1 —p to D), and
player 3 assigns probability ¢ to action [ (and 1 — g to r). Then player 1’s
expected utility from pure strategies L, M, and R is:

E[U(L)] = q(m+4e)+ (1 —q)(m —4e)
= 7+ (2¢—1)4e

BUM) = (pa+(1-p)(1-0)(x=n)+@1-g+1-p)a)(r+3)
= 7T+(3p—6pq+3q—2)g

E[U(R)] = q(r—4e)+ (1 —q)(r+4e)

T+ (1 —2q)4e

If ¢ < %, player 1’s payoff is increasing in p, since 8%—5\4} = (3—6q) % >0.
So it suffices to show that E[M] is not a best response if p = 1. In this case,

E[U(M)]:77+(1—3q)g.
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Since 1 < 4e,

E[UR)]=7n+(1-2¢9)4e> 7+ (1—2q9)n

R S L€t

2 2
>  E[U(WM)].

If ¢ > 3, player 1’s payoff is increasing in p, since 8%5\4] =(3—6q) % <0.

It suffices to show that E[M] is not a best response if p = 0. In this case,

E[U(M)]zw+(3q—2)g.
Since n < 4e,
EUL)]=n+2¢—1)4e> w4+ (29—1)n
= W+(3q—2)g+%

> E[U(M).

We have shown that, for any randomization that players 2 and 3 may
adopt, there is a pure strategy for player 1 that outperforms M, so M is
never a best response.

(b)

If player 1 assigns probability z to action L (and 1 — z to R), we show
that there always exists a randomization for players 2 and 3 such that M has
a higher expected payoff than {(L,z),(R,1—z)}.

Suppose z > % Then if p=1 and ¢ = 0,

E[U(M)]:erg
and
E[U{(L,2),(R.1-2)})] = zE[U(L)]+(1—-2)E[U(R)]
= z(mr—4de)+ (1 — 2) (7 + 4e)
= 7m+4e — 8z
< 7
< E[U(M)].

Alternatively, suppose z < 3. Then if p = 0 and ¢ = 1,

E[U(M)]:ﬂJrg
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and

BE[U{(L,2),(R,1=-2)})] = 2E[U(L)]+(1-2)E[U(R)
= z(r+4e)+ (1 —2) (7 — 4e)

= 7 —4e+ 8z
< T
< E[U(M)].

(c)

If players 2 and 3 assign equal frequencies to {U,r} and {D, [}, then

B[U M) =7+
and
BIU({(L.2), (R1-2)})] = 7 (z(m—42) + (1 2) (7 + 4))
+%(z(7r+46)+(1—z)(7r—45))
- 7ET)[U(M)]

Hence there exists a randomization for players 2 and 3 over correlated
strategies such that M is outperforms any randomization for player 1 over L

and R.

8.D.9

(a)

Without any other information, it seems reasonable for player 2 to choose
M, which gives a certain payoff of 0. Player 1’s action is not predictable, since
there is no dominant strategy. The slight potential gains from other actions
player 2 may take are offset by possibilities of significant loss.

(b)

There are two Nash equilibria in pure strategies: {U, LL} and {D, R}.
In a mixed-strategy equilibrium, let player 1 assign probability p to action
U and 1 — p to action D. Player 2 can mix in several different ways, but
only a best response to {(U,p),(D,1 —p)} constitutes a Nash equilibrium.
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The optimal probabilities are determined by the condition that the expected
payoff for player i must be the same for all actions in the support of i’s
equilibrium mixed strategy.
Some observations on the support of player 2’s equilibrium mixed strat-
egy:
e LI must be one of the actions over which player 2 randomizes; other-
wise D is strictly dominant for player 1, and then R is the unique best
response for player 2.

e Player 2 can only randomize over LL and one of L or M or R. For if
player 2 randomizes over LL and L, then p = % from

2p—100(1 —p)=p—49(1 —p).

But if player 2 randomizes over LL and M, then p = g—(l) from
2p —100(1 —p) =0.

And if player 2 randomizes over LL and R, then p = % from
2p —100(1 —p) = —100p +2 (1 — p).

Since the three conditions for p are incompatible, no two actions of L,
M, and R could be simultaneously in the support of an equilibrium
mixed strategy.

e Since player 2 has a pure strategy that delivers a certain payoff of zero
(M), a mixed strategy that has negative expected payoff can never be
optimal. But if p = %, the expected payoffs to player 2 of LL and R are
clearly negative, hence the expected payoff of randomizing over LI and
R is negative. Therefore {(LL,q),(R,1 — q)} is not a best response to

{(U, %) , (D, 1— %)} for any gq.

o If p= g—(l), player 2 has a pure strategy that delivers a positive expected

payoft:

(1 (62). (0 2) V) <r - Lo

On the other hand,

a (e (v) (o)) = e (ed(ea) (7))

p—t 07

so randomizing over LL and M has zero expected payoff. But then
{(LL,q),(M,1 —q)} is not a best response to {(U,p),(D,1—p)}.
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The only Nash equilibrium in pure strategies is one where player 2 ran-
domizes over LL and L. We have already seen that p = % Similarly, ¢ = %
follows from

100g — 100 (1 — ¢) = —100¢q + 100 (1 — q) .
The expected payoffs are
Ur(-) = p(100g —100 (1 —g)) + (1 — p) (=100g + 100 (1 — ¢))
=0
and

Us(-) = q(2p—100(1—p))+(1—q)(p—49(1—p))
1

%7
so the mixed strategies are really best responses. The Nash equilibrium in
pure strategies is completely described by

UEw) (Pa)y i) (-3l

(c)

The pure strategy chosen in (a), namely M, is not part of any Nash
equilibrium profile. But it is rationalizable: e.g. if player 1 randomizes
between U and D with p = %, then M is the best response.

(d)

With pre-play communication, any of the three Nash equilibria is im-
plementable. Since the pure strategy equilibria Pareto-dominate the mixed
strategy equilibrium, it may be expected that either {U, LL} or {D, R} is
played.

9.C.2

As in MWG, example 9.C.3, any belief such that (1, p15) € {([0,2),1 — 1)}
causes the incumbent to accommodate with probability 1, in which case the
entrant plays In; with probability 1 and the belief is inconsistent. Hence, in
any weak PBE, u; > %
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In case j; > 2, the incumbent will certainly fight, since
M1 3

E[Ur(F)] = -1
> =2+ (1= ) =E[Ur (4)].

This makes it optimal for the entrant to stay out because, with v € (—1,0),

E[Ue(0)] = 0
> 7=E[Ug(2)]

A set of weak PBE is therefore characterized by (0¢,01,02) = (1,0,0),
(or,04) = (1,0), and unique beliefs (1, p,) € {((3,1],1—py)}. Here
the incumbent’s beliefs need not be consistent with the entrant’s strategy,
since the incumbent’s information set is never reached.

If u, = %, the incumbent is indifferent between fighting and accomodat-
ing:

E[U(F)] = -1
= =2+ (1— ) =E[Ur (4)].

Therefore, any randomization is a best response for the incumbent. But
the particulars of the incumbent’s randomization determine the entrant’s
willingness to randomize. Observe from E [Ug (0)] =0, E[Ug (1)] = —oF +
3(1—op),and E[Ug (2)] =vor+2(1 —op):

E[Ug (0)] = E[Us (1)] <= op = %

(E[Ur(0)] > E[Ug (1)] <= op > § and E[Ug (0)] < E[Up (1)] <= op <

NS
~—

2—9
(E[Ur (0)] 2 E[Ur (2)] <= o > 5% and B [Ug (0)] < E[UE (2)] <= op <
%), and
1
Bl (D] =EUr (@] = or =
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The entrant randomizes over all three actions onlyif E[Ug (0)] = E[Ug (1 )]
3 2

E[Ug(2)], ie. if op = § = 5 = v+2 This is only possible if ~

—%. Note that, since the incumbent’s information set is reached with posi-
tive probability, beliefs must be consistent in equilibrium. In other words,
the entrant must play 1 and 2 with probabilities % and % at the informa-
tion set (play 1 twice as often as 2). This leads to another set of weak
PBE equilibria in the event that v = —2, characterized by {(09,01,02)} =
{(z,2(1-2),s(1—2))}, (op,04) = (3,3), and (py,115) = (2,3), where

€ (0,1).

Next, consider equilibria where the entrant randomizes over two actions.
Since the incumbent’s beliefs must be consistent with the entrant’s actions,
we can rule out randomizations over 0 and 1 and over 0 and 2 (which would
assign probability zero to either 1 or 2). Randomization over 1 and 2 requires
E[Ur(1)] =E[Ug(2)] and E[Ug (1)] > E[Ug (0)], i.e. op = ﬁ and op <
%, or vy > —%. Therefore, in the event that v > —%, there is another weak
PBE, characterized by (0g,01,02) = (O, g, %) (op,04) = (%, %) , and
(1, o) = (3, 5)-

Finally, the entrant plays 0 with certainty (pure strategies 1 and 2 are
ruled out by the consistency condition) if E [Ug (0)] > E [Ug (1)] and E [Ug (O)]

E[Ug (2)], ie. ap>iandap>% orJF>maX 2,2 Iy > —
then % > —; if v < —%, then % . Hence, in the event that ~ >

—2 there is a set of weak PBE Characterlzed by (09,01,02) = (1,0,0),

3
{(ocr,04)} € {([%, 1} 1-— O'F)} and (py, 115) = (2, %) . In the event that
v < —2, there is a set of weak PBE characterized by (09, 01,02) = (1,0,0),
1
3

{(UF70A)} € {([371] 71 UF)} and ,u17,u2) (% )
In summary, the weak PBE of the game are:

e For v € ( ) 00701702) (17070)’ (UFﬂoA) = (1’())7 {(ﬂh/@)} €

(
{(G1].1=m)}.
e For v € [—% O): (00,01,092) = (0,%,%) (0p,04) = <$,;%>,
(. p12) = (3.3) and (00,1, 0) = (1,0,0)  {(or,00)} € { (|55 1] .1 = or) .
(115 12) = (3, 3)

o For v = —2: {(00,01,02)} = {(z,2(1—2),5(1—2))}, (o, 04) =
(27 4) (1115 o) = (2 l) , where z € (0,1).

e Forvy € (O, —% : (00,01,09) = (1,0,0), {(op,04)} € {([%,1} 1 — ap)},
(11, 12) = (3. 5)
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13.B.2

A competitive equilibrium with unobservable types is characterized by

e = {0:r0) <w'}
w* = E[f|0e07,

where ©* is the set of types that accept employment at the wage w* offered
by firms. In a Pareto optimal allocation of labor, workers accept employment
if @ > r (0) and decline employment if § < r () . By assumption, there exists
0 e [0,6] such that 6 > r(6) if 0 >0 and 0 < r(0) if O < 6. Hence, Pareto
optimality involves that workers accept employment if 0 > 6 and decline
employment if <.

This implies ©* = {9 1 (0) < @} , 80 in a Pareto optimal competitive

A

equilibrium we must have w* = . But since f () has full support, there
exist workers with 6 strictly below 6 in O = [Q, 9] . Then

~

E[0]0€ 6] <f=uw,

which is inconsistent with competitive equilibrium. It follows that the Pareto
optimal allocation is not feasible in a competitive equilibrium in this case.

13.B.4

The no-trade theorem requires the additional assumptions that prior be-
liefs and the distribution of signals are, respectively, the same for both agents
and common knowledge. Since both agents care only about the expected
value of the asset, they value it equally before signals are observed.

The valuation of the asset is a random variable V' (w) on a state space 2
that includes the actual state w. Given that w occurs, 1 receives a random
signal 0, and updates E [V (w)] to E [V (w) | 01 (@)], whereas 2 receives a ran-
dom signal #; and updates E [V (w)] to E [V (w) | 02 ()] . If trade took place,
it would become common knowledge that signals have been observed which
cause both sides to wish to trade. Thus, it would be common knowledge that
@ belongs to the event

S={w:E[V () [0 ()] <p,E[V () |02 (w)] > p}.
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With common priors, the implication is that p(w | 01 (©)) = p(w | 02 (@)),
S0

BV (@) |6 @) = év<w>ﬂ<w\el<w>>dw

_ /SV(w)u(WIez(w))dsz[V(w)|€2(W)]~

Therefore, S is in fact empty; there is no state in which the mutual willingness
to trade could be common knowledge.

Intuitively, the fact that 2 is willing to buy at some price p informs 1 that
2 has received a more favorable signal about the likely value of the asset, so 1
updates her expectation and rejects p. Similarly, the fact that 1 is willing to
sell at p informs 2 that 1 has received a less favorable signal about the likely
value of the asset, so 2 updates her expectation and rejects p. If offers can
be renegotiated, expectations are updated until both value the asset equally,
so (by assumption) they will never trade.

The key step is clearly the equality of the posteriors when readiness to
trade is common knowledge. This is the "agreeing to disagree" result. Sup-
pose that, after receiving private signals at w, 1 knows that w € P; (0, (@)),
and 2 knows that @ € P, (03 (©)), where P, P, C 22 are sets of possible
states. Moreover, 1 holds belief p (w | 61 (@)) on P; (01 (w)), and 2 holds be-
lief 1 (w | O3 (w)) on Py (A2 (w)), and this is commonly known. Precisely, the
event

e fosn(813) = (510) =)

is common knowledge. The signals 6; with the property u (E | 6, (w)) =iy

(i.e., from the perspective of 2, who observes fi; but not ¢;, the candidate
signals that could have lead 1 to conclude fi; ) induce a partition of F' into sets

P (91 (w)) of states where 1 believes ji;. An analogous statement holds for
2. This implies p (E | 6, (F)) = [, and p (E | 0, (F)) — Jiy. But 6, (F) =

05 (F), by the partitional nature of information, so fi; = fi,. Since F was
chosen arbitrarily, the posterior beliefs indeed agree.

13.B.5
(a)

Let E[0] > r > 0 and E[f |0 € @] = 0. To see that w = E[A] and
6= [Q,m is a competitive equilibrium, notice that, since w > r (6) for all 0,

©={0:r() <w}=1[0,0]
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(i.e. all workers accept employment), and then
w=E[0]0ec[0,0]] =E[0].

To see that w = # and © = & is a competitive equilibrium, observe that,
since w < r () for all 0,

O={0:r(0) <w}=9
(i.e. all workers decline employment), and then (by assumption)
w=E[(]0¢ca]=0.

There are no other competitive equilibria. If © is a strict, nonempty sub-
set of [Q,ﬂ , there exists 0 e (Q, 5) such that workers with § < @ decline
employment. Then E[f |0 € ©] > E[f] = r, and so w* > r, implying
O ={0:r0) <w}= [Q,?] #+ 0.

Let > r. To see that w = E[f] and © = [6,6] is a competitive
equilibrium, notice that, since E [0] > 0, we have w > r () for all 0, so

©={0:r() <w}=10,0]
(i.e. all workers accept employment), and then
w=E[0]0ec[0,0]] =E[0].

There are no other competitive equilibria. If © is a strict, nonempty subset of
[0,6] , the argument is as above. If © = @, then w* =E[§ |0 € @] =0 > r
(by assumption), so ©* = {0 : r () < w} = [0,0] # ©.

Let r(0) > E[0] for all , and E[0 | 0 € @] = §. To see that w = ¢ and
© = O is a competitive equilibrium, observe that, by E[f] > 6, we have
r > 60 =w for all 6, so

O={0:r(0)<uw)=2
(i.e. all workers decline employment), and then
w=E[0]0€[0,0] =]
by assumption. But contrary to the claim, the equilibrium may be nonunique,
since w* = E[f | § € ©] > E[§] if workers with § > 6 (for some 6 € (6,0))

accept employment. Depending on r and the distribution of 6, it is possible

that w* > rand ©* ={0:7(0) <w} = [9,5} + .
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(b)

Since the firms’ profit is always zero in competitive equilibrium, Pareto
dominance can be discussed only with reference to workers. In the no-
employment equilibrium, all workers earn the reservation payoff r. In the
full-employment equilibrium, workers earn E [6]. Clearly, if E[0] > r, the
full-employment equilibrium Pareto dominates.

(c)

For E [0] > r, the claims follow directly from MWG proposition 13.B.1(i).
If E[#] = r, the two competitive equilibria from part (a), i.e. w = EIf],
0 = [Q,m and w = 0, © = @, are SPNE by MWG proposition 13.B.1(ii).
(E[#] = r implies that, in the full-employment as in the no-employment
competitive equilibrium, all workers earn r, the payoff of the high-wage com-
petitive equilibrium.) If E[0] < r, there are many SPNE, in all of which
firms offer w < r, and no worker accepts employment.

(d)

As in (b), we may discuss the Pareto dominance of competitive equilib-
ria without reference to firms, since they necessarily earn zero profit. The
highest-wage competitive equilibrium is therefore trivially a Pareto optimum,
given the information constraints (i.e. given that 6 is not directly observed).
The constraint strictly binds whenever some worker with type 6 > r declines
employment, or some worker with type # < r accepts employment. This is
typically the case with unobservable types, where every worker is paid the
same equilibrium wage E [0 | § € ©].

15.C.4

In a separating PBE, firms and workers play best responses, and beliefs
of firms about workers’ types are correct. After observing their types 6 €
[0,0], workers pick an education level e that maximizes u (/) = w (e (6)) —
c(e(f) | 0). Since the type distribution is continuous (and has positive prob-
ability everywhere), the payoff function is everywhere differentiable, so work-
ers’ first-order condition can be derived by differentiating u with respect to
e:

ow (e*(0))  Oc(e*(0)]6)  2e* (9)

Oe Oe 0
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A firm’s optimal wage offer is w* (e (0)) = E[f|e(0)] = 6 in a sepa-

rating equilibrium. Differentiating both sides with respect to 6, we have
ow*(e(0)) Oe(0)

De a6 — 1, 80
ow(e(0)) 1
e ~ 9e(0)
20

Ow* (e(
0

By equating the expressions for » 0)), the condition for joint optimization

can be written as:

2e* (0) 8%6@ = 0.

Rearranging this to 2e* (0) 0e* = 000, integration with respect to 0 is straight-
forward and gives

92
6* ((9)2 = E + k‘,

where k is the constant of integration. From e* (0) = %2 + k =0, it follows
that k£ = —%2, SO

. 0% — 6
e’ (0) = B

Solving this expression for # and using the condition for a separating
equilibrium, w* (e) = 6,

w* (e) = \/2e:? + 02

The education choice function e* (f), the wage offer function w* (e), and a
consistent system of beliefs  (e) , which assigns to every signal e a probability
distribution over O, constitute the PBE. In a separating equilibrium, the
wages are conditioned on the signal such that workers have an incentive to
reveal their type in choosing an education level. Therefore p (e) is consistent
if firms associate education levels correctly with types, i.e. pu(e) assigns
probability 1 to 6 and probability to 0 to 8 # 6, for all e.

13.D.1

The zero-profit trait of SPNE means, in the full-information case, that
firms pay wages equal to a type’s product:

wy =w (0g) =05 (14 ptyy)
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and
wrp =w(0r) =0p (1 + pty”).

Workers choose effort levels that maximize their respective objectives,
ug =wy —c(ty,0g) =0y (1 + uty) —c(ty,0n)

and
ur, =wy, —c(tr,0p) =0 (1 + ptr) —c(tp,0r).

The first-order conditions show that ¢j; and ¢;* are determined by

80( *H*79H> _
and
80( *L*;QL)
9L ) _ g,
ot, nor

Since ¢ (-) is strictly convex in ¢, the full-information equilibrium is unique
for given p, 0, and functional form for ¢ (-).

If types are unobservable, the full-information optimal wages are not fea-
sible strategies for the firms. In principle, there could be pooling and sep-
arating equilibria, i.e. either equal wages for all types or wages that vary
with type and provide an incentive to "reveal" types. However, this model
does not admit pooling equilibria, since it is profitable for firms to deviate
from uniform wage offers and design contracts that screen out low types. In
a separating equilibrium, low types must be paid their full-information wage,
w (t5*) = 0 (14 pty*) . Clearly, w(t1) £ 01 (14 utr) in equilibrium, since
every worker has at least this level of productivity, so firms always find it
profitable to attract a worker who is paid less by offering a slightly higher
wage. The zero-profit condition also implies w (t1,) % 0 (1 + ptr), because
else we must have w (tg) < 0p (1 + pty), so that firms just break even.
But then there exists a profitable contract for a rival firm that screens out
low types and attracts all high types; thus w () > 61 (1 + pty) would re-
sult in negative expected profit for the firm that offers the contract.The low
types choose the efficient level of effort ¢5* (as in the full-information case)
in response to this wage function.

The equilibrium offer to the high type, (w (¢%;),t};), must be incentive
compatible, so that

ur, (tg) = w (ty) —c(ty, 00) <w (ty) —c(ty,01) = ur (t77)

43



Christian Roessler (U Melbourne)

holds, inducing ¢7* from the low type. Equilibrium contracts must satisfy the
additional condition that the high type prefers (w (t3;),t};) to any contract
that offers w (t3;) < Ee [0 (1 4 ut* (0))]. Otherwise, firms have a positive-
profit incentive to deviate to a pooling contract. Since Eg [0 (1 + ut* (9))]
decreases in the ratio of low types to high types in the economy, the set
of SPNE increases in this ratio. One separating equilibrium corresponds to
the full-information equilibrium: w (t3;) = 0x (1 + utj;), and the high type
optimally chooses t}; that fulfills the first-order condition.

13.D.2

(a)

With an insurance policy (M, R), wealth is W — M in case of no loss
(where W is initial wealth), and W — M + R— L (where L is the magnitude of
the loss). Given W, the policy therefore determines state-contingent wealth.

(b)

The argument given here is heuristic; for more detail, refer to the graphi-
cal derivation and compare with the monopolistic insurance model. A SPNE
is a separating equilibrium with zero profits and truthful "reporting" of types,
i.e. incentive compatibility. The high-risk type must be fully insured at the
actuarially fair price, r (t5). Firms are willing to provide full insurance that
is actuarially fair to high-risk types, since there are no types with higher
P, so firms always profit by attracting those who pay more than r (t5) by
offering slightly cheaper insurance. Given that actuarially fair insurance is
available, high-risk types accept it in equilibrium. The zero-profit condi-
tion also implies that insurance for high-risk types cannot sell for less than
the actuarially fair price; else insurance for low-risk types must exceed the
actuarially fair price, r(¢1), so that firms break even. But then there ex-
ists a profitable contract for a rival insurer that screens out high risks and
attracts all low risks; hence the firm that insures high risks would earn nega-
tive expected profit. This argument shows that in any SPNE actuarially fair
insurance is offered to high-risk types, and purchased.

The equilibrium offer of insurance to the low-risk type must be incentive
compatible, so that

E[um (tu)] > E [ug ()]

holds, inducing ty from the high-risk type. Since insurance is valuable to
the low risks and (at fair odds) costless to the principals, low risks bid for
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the maximum coverage they can get within this constraint. Thus, incentive
compatibility for high risks must bind. But the constraint does not allow
low risks to insure fully, for such a policy would have to be cheaper than the
high risk policy (given that low risks value insurance less) and thus attract
the high risks.

Since equilibrium insurance for the high-risk type is actuarially fair, it is
linear in py, and therefore induces a unique SPNE, if any. For a SPNE to
exist, low-risk types must prefer low-risk insurance to any pooling contract.
This implies that existence of the SPNE depends on having a high enough
ratio of high-risk to low-risk types in the economy.

14.C.2
If the state of the world is publically observed, then the principal solves:

w;rﬁixzo A (7 (eq) —wn) + (1= X) (7 (er) — wi)]

s.t. Ao (wg —g(eg | 0m))+ (1 =N v(w, —gl(en|0r)) > a.

Denote the optimal mechanism that satisfies the first-order conditions,
w; = v~ (@) + g (e | 6:)

and

or (e;) _ Og (e | 6s)

Gei 861‘ ’

by (w;*,e*). The principal’s expected payoff is

= Aw(ey) —wy) + (L= A) (7 (ef") —wr’)
= A () =g (e | 0m) + (1= X) (m () —g (e [ 02)) — v ().

If, on the other hand, the state of the world is privately observed by the
agent, then the principal solves:

wglf}féo (A (en) —wn) + (1= A) (7 (er) — wr)]

s.t. M (wyg —geg | 0g))+ (1 —=Nv(wy,—g(er |0L)) >a
wy — g ey | ) > wr —g(er | On)
wy, —g(er | 0r) > wg —g(en | 0r).
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We are to show that, when the agent is risk-neutral, she accepts a wage
w* (m) = m — a which gives the principal

T = Aw(ey) —wpy) + (1= A) (m(e) — wr)

= Oé:ﬁ-**,

or in other words, the agent is willing to "rent the firm" at the price o = 7™,
(This is intuitively quite obvious, since a risk-neutral agent does not value
insurance, so she requires no premium for incurring all the risk and provide
optimal effort under perfectly aligned incentives.)

It is straightforward to show that the agent’s participation and incentive
constraints are satisfied if o = 7**, by subsitution of

A~ kK

wy = w(ey)—7
= m(ey) = A (exy) —glerr [ 0m) — (L= A) (m(ef) —g (e | 02)) —v™" (1)
= (1=Nm(ex) +Ag (e | 0m) — (L =N 7 () + 1= A)g (e | 0r) +v " (a)

A kk

wp, = mw(ey)—7
() = A (el) — g (exf [ 0m)) — (L= A) (w () — g (e1" [ ) — v (a)
= —Am(ef) +Ag (el [ 0n) + Am () + (L= N) g (ef" | 0r) + v (a).

into each constraint. E.g., by the linearity of v, the participation constraint
may be rewritten as follows:

v(A(wa —g(en | 0n)) + (1= A) (wr—gle|0L)) =
= Mwg —g(em | 0m)) + (1= A) (wp —g(er | 0r)) —v™" (@) 20
— dwyg +(1—=Nwp—Ag(em | 0g) — (1 =N g(er|0;)—v "' (a)>0.

Substituting
Mg + (1= XN wp =Ag(ej | 0u) +(1—X) g (el | 9L)+v_1 (a),

we find that the participation constraint holds with equality.
To verify the incentive constraints, note simply that the agent’s optimiza-
tion problem (given the proposed contract),

max A(w(m(e)) = g(en | 0u)) + (1 = A) (w(m(e)) — g (e [ 0r))]

ec{em,er}
s.t. M (wg —g(eg | 0n))+ (1 =N v(wy, —g(er|0L)) >a
wy —g(em | 0n) > wr —g(er | On)
wy, —g(er | 0r) > wng —g(en | 0r),
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reduces to the full-information problem of the principal, since
w(m(e)) —gle | 0;) =n(e) —a+v ' (a) —w

and —a+v~! (1) is constant, so does not enter decision making. This implies
that the agent chooses e;* in each state.

The revelation mechanism which implements the full-information out-
come in the limited-information case is the pair (w;,e;) = (7 (e;) — o, €f*),
with e = 7™, which - as we just argued - induces the agent to "disclose" the
true state of the world 7.

14.C.9
(a)

The full-information optimal insurance contract solves:

max /[ei (W—L—d)+1—0)(W—&)] f(6)di

c1,c2 i

s.t. 6'u (022) + (1 — Hi) u (czl) > u; for all i.

There is a unique participation constraint for every i because the contract
must be acceptable to the agent whatever his type (the type is assumed to
be observed by the agent before deciding on the contract). The participa-
tion constraint holds with equality, since the insurer is a monopolist and
extracts all surplus. First-order conditions are, for every i, u* = m and
1
pto= ﬁ (where ' is the Lagrange multiplier of type ¢’s participation
2
constraint), hence v’ (ci**) = v’ (c&*) and ¢** = ¢ = ¢ (the risk-averse
agent is fully insured, given his type). Then the participation constraint
reduces to

0'u(c)+(1-0)u (&) =u(d) =1,
soc =u"t(u).
The agent’s reservation utility is the expected wealth if uninsured:

u=0u(W—-L)+(1-0)u(W).

k% UKk

Therefore, the optimal insurance contract specifies (¢}**, ¢5™) for all i, where
& = ut ((u(W —L)+ (1—60)u(W))

& = uwH(@uW—-L)+ (1-60)u(W)).
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(b)

In case of accident, the insurer receives the liability W — L — ¢, and the
agent has wealth cy; if there is no accident, the insurer receives a premium
W — ¢, and the agent has wealth ¢;. The principal solves:

MO (W —L—ck)+(1—06r) (W-cl))

max,

+(1 =X (g (W—L—=cf)+(1—0g)(W—cl))
s.t. (PL) QLU (CQ) —|— 1—8[, (CIL) >UL
(PH) QHU (02 ) —l— 1 —HH (C{i) >UH

(IL) 0Lu(02) (1—9L)u(L) >6Lu(c§) (1—9L) ( )

The reservation utilities derive from the uninsured scenario:

Uy, = QLU<W—L)+(1—9L)U(W)

Substituting:

W—c = W—u"(u(ec))
W—L—-c, = W—L—-u"'(u(cz))),

and assuming, subject to verification, that (PH) and (IL) are redundant, and
(PL) and (IH) bind, the principal’s reduces to:

AW — 6, (L +u- u(c2)8 (1= 60)uu (b))
+ (1 =X (W =0y (L+utu(d)) - (1—0H)u1u(c{[))
st. (PL) QLu(cz) (l—QL) (L):TLL

To make the problem tractable, think of the principal as choosing utility
levels for the agents that maximize expected profit. Call the Lagrange mut-
lipliers for the constraints pp; and p;y. First-order conditions with respect

to (i) u(cf), (i) w (cf), (iii) u (cff), and (iv) u (cf) are:

(i) —A(1—=0r)( ( (C ) +tpp (L= 0r) = pirg (1= 0w) =0
(11) —)\QL (U( ),)_’_MPLHL /L[HQH—O
SR (0 () + e (1= 011) = 0
iv) — (=X 0u () (u(cq)) + b =0.

Rearrange (iii) and (iv) for pu;y:

(i) g = (1= ) () (u (ef1)
() o = (1= N () (u ()
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Equating, we find that profit maximization implies full insurance for type H:

H _ H_ H
c =c =c

Moreover, notice that, since w is strictly concave (because the agent is risk-
averse), u~! is strictly convex. In particular, (u‘l)/(-) > 0. This implies,
from either (iii) or (iv), that p;; > 0, i.e. the IH constraint binds. Next,
sum (i) through (iv) and cancel out the p;, terms:

—A(1—-0z) (Uil)/ (U (Cf)) +ppr (1 —01) — pppr (1= 0pr)
o \J (u_l)/ (u (CQL)) + pprOr — prgfu
_(1_/\)(1_0H)( _l)l(u( H))"‘MIH(l_QH)
— (=00 (™) (u () + mubn

= A =0) () (uler)) +ppe 1—9L) Mz (u™) (u(c5)) + pprfe
(=N A=) () (u (&) = (=) 0 (w7 (u(c5)))

= 0.

Solving for pp;, we find
e = A= 00) () (u(eh)) + 205 ()’ (o ()
+(1 =X (1-0p) (u_l)/ (u (c{{)) +(1—=X) 0y (u_l)l (u (cf))
> 0.

Therefore, the PL and IH constraints indeed bind, as projected. Simplify the

constraints as follows (using u (cf) — u (¢f) = v" and ff = ff = 7):

(PL) 01 (u (cz)—u(cl)) (C)EHU +u(cf) =ay
(IH) u(c) =0g (u(c) —u(ch)) +u(c) =0pvt +u (k).
Also, use PL to write:
u; = HLu(cz) +(1-6p) u(cf)
= Opu(cy) +u(ch) —u(ch)+(1—0r)u(c)
= u(e) = (1 =6) (u(e) —u(er))
= U(2)_(1_0L)

Substitute u (¢5) = 4y + (1 — 6,) v" and u (¢}') = @y, — 60" into the prin-

cipal’s objective to get a problem in v%:

A (W — 05 (L + ut (l_I,L + (1 — 9L) ’UL)) — (1 — (9L) ut (’aL — GL’UL))

A +(1=X) (W =0y L= utu(c))
st.  (PL) Or (ar + (1 —0)v") + (1 —0r) (g — 00") =1y
(IH) u( ):(9 (UL+(1—9L)UL)+(1—9H) (ﬂL—HLvL).
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Think of the principal now as choosing the utility difference for type L
between the two states in a profit-maximizing contract. (It will be zero if
and only if L is fully insured.) Maximizing the Lagrangian with respect to

vl
A (1—0p) (™) (ap —0r0%) = Ny (1—05) (w™t) (@ + (1 - 0,)v")
—(1=A)y
Hppp 00 (1= 01) — (1 —01) 0.
g (1= 0m) 0 — 0 (1 - 01)]

= 0,

where
v = (u’l)/ (u (™)) (") >0,

since u~! is strictly convex, u is strictly concave. The up; term cancels

out, and gy = (1—\) (u™!) (u(c*)) from above. Dividing through by
My, (1 —0p), and rearranging:

(u’l)/ (ﬂL — HLUL) — (u’l), (ﬂL +(1—-10p) UL)
- 3 : 0, (11— 6,) ((CH)/ (V") + (0 = 01) — (ch)> |

The righthand side is strictly positive, since (c7)’ (v*) > 0; ¢ must increase
in insurance for type L because the incentive compatibility constraint for H
binds. Hence

(u’l)/ (ﬂL — HLUL) > (uil)/ (EL +(1—-10r) UL) ,

which implies —0pv* > (1 — 07)v%, or
vl < 0.

Recall that v¥ = u (c§) — u (cl'). This means that
of > ¢

in other words, L is not fully insured.
We should check that the two ignored constraints are really satisfied. If
ck > ck, then 0y > 07, implies

Oru(cy) +(1=0r)u(cf) > Oru(cp) + (1= u (cf),
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which is the IL constraint. PH is not so easy to verify - given that the other
constraints hold, PH may fail when the parameters of the problem are such
that no equilibrium exists. We can use

i, = Opu(W — L)+ (1—05)u(W)

> Opu(W — L)+ (1 — 0y) u(W)
and PL to show that

u, = Opu(cy) + (1 —01)u(cr)

= 01 (u(e) —u(er)) +u(er)
< O (u () —u(c)) +u(e)
= HHu( ) ( )—HHu(c{{)

(cf

Hence PH holds if u ) is not too large relative to u (cl); an obvious
statement (saying that the price of insurance for H should not be too high).
This condition could be characterized more meaningfully, but a full discussion
would lead too far afield into existence conditions for an equilibrium.

Generally, the low type is underinsured and would like to purchase more
insurance at better-than-fair odds (from the perspective of the insurer). This
is obvious from the fact that L is risk-averse and therefore values insurance,
whereas the principal is risk-neutral and can provide fair insurance at no
cost. But increasing the L type’s coverage, while maintaining incentive com-
patibility for the H type (remember that IH binds), would require that the
insurer decrease the coverage or cost of insurance for high types. This makes
the provision of additional insurance to L costly to the principal, and in
equilibrium the L type does not value insurance enough to compensate the
principal fully.

(c)

Both in 14.C.9 (monopolist principal) and 13.D.2 (competitive princi-
pal), high risks are fully insured, and low risks are partially insured. The
differences are (i) that the competitive insurer earns zero profit, whereas the
monopolist insurer generally earns positive profit, and (ii) that the L type
can have a surplus in the competitive case (participation constraint does not
bind), but not in the monopolist case (participation constraint binds). More-
over, a monopolist principal is more likely not to offer insurance to low risks
at all, if the ratio of H to L types in the economy is small. In this case,
the cost of designing the low-risk contract so that it avoids pooling is high,
particularly if the principal is able to extract monopoly rents from high risks.
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15.B.1
(a)
Nonsatiation implies Walras’ law, so

P12 + P2lo; = Wi

= P1wi; + Pawa;

for all 1.
Adding the equations for consumer 1 and 2, and rearranging,

D111 + P2To1 + P1%12 + Paoz = P1wWil + Pawor + P1wiz + Pawar

2 2 2 2
D1 Z$1i+p22$2i = DN Zwli+p2zw2i
i=1 i=1 i=1 i=1
2 2
D1 (Z 1 — wl) + D2 (Z Toi — wz) = 0,

(b)

If the market for good 1 clears, then ) . x1; —w; = 0. This implies, from

(a),
D2 (Z Toi — wz) =0,

ie. ). @9 —wy = 0 (the market for good 2 clears).

15.B.6

The equilibrium is determined by the agent’s objectives,

Uy (51711,3?21) =

U2 ($127 $22)

the agent’s budget constraints,

P1%11 + P2¥o1 = PiWil + PaWor = P1

P1T12 + P2To2 = P1wiz + PaWaz = Pa,
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and the market clearing condition,
Ty +ry, = 1.

(The second market will clear if the first market clears.)

The objective functions are strictly increasing in x; and s, so that Wal-
ras’ law holds. The first-order conditions of the first agent’s maximization
problem,

max u; + Ay (p1 — P11 — PaTai)

r11-T21
<$11 2+ (ﬁ) Loy 2) Ty ’o= A1D1
3 -3 3
. 12 . 12 . .
(xn 2+ <3_7> To1 2) <§) To1 b= 1P2-

Second-order conditions for a maximum hold for all x*.
Thus:

* P 7% 12 - *
T = —_— - xXr .
11 p2 37 21

Using 9 = g—; (1 — 211) from the budget constraint,
1

12 B

#(8) "+

p1
P2

()7 () +1

The first-order conditions of the second agent’s maximization problem,

are:

* —
Ty =

Wl

* —_
Tor =

max Uy + A2 (P2 — 1212 — Pataa),
T12.T22

_3
12\* . o\ S\t .
((ﬁ) I122+$222> <§) x123 = 1P1
12\°® E
((ﬁ) xI;2+a:§;2) ' = Apa

are:
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Thus:

* y4i _% 12 *
Ty, = | — — | 5.
12 s 37 ) Y22
Using x99 =1 — i—;xlg from the budget constraint,
-1
P1
(%)
()" (z) "+
37 D2
1
— =z
12
HORE

Now market clearing requires that

* —
T2 =

wln

* —
Log =

ytr = 1
1 ()
_ + p2 , _ 1
12 3 12\ 1 3
#8) @7 ()
Simplifying:
p ' 3T (m\ P 37 (p)
35 0) 56 e
P2 12 \ p2 12 \ p2
1
After a change of variables, taking y = (Z—;) ® | this is a cubic equation in
y:
37 37
3 2
2y —1=0,
R TEIRE T

Clearly, y; = 1 is a solution. The polynomial can be factored as

25
—D(y*—=y+1)=0
(y )<y Ti ) ,

and the remaing roots are found by solving the quadratic equation 3% — f—gy—k
1=0for y, = % and y3 = %. Reversing the change of variables, i—; =y~ and
the three solutions are:

P
b2

po_ 64
p2_27
p1_27
p2_64'
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The three Walrasian equilibria are:

P

1
D2

. 37 12\ /12 37

* T 49719 )\ 19" 19

m 64

pg o 27

. 148 64 27 111
= 175175 ) "\ 175" 175
b

b2 - 64

. 111 27 64 148
= 175°175 ) '\ 175" 175 ) |-
15.B.7

For strongly montone, continuous, and convex preference relations, the
Pareto set in the Edgeworth box is connected.
Proof. The result follows from an application of the maximum theorem,
which states that the solution to a parameterized family of optimization
problems is continuous in the parameter, if the objective function is con-
tinuous and the constraint set is continuous and compact. The trick is to
formulate the problem so that it fits the conditions of the maximum theorem.

To that end, define the Pareto set as the set of allocations x* (i) =
(x7 (u2) , x5 (ug)) , where x7 (us) is the solution to

x] (We) =  argmaxu; (X1)
X1
s.t. U9 (w — Xl) Z ﬂg,
and
X5 (U2) = w — x] (Uz) .

In other words, we consider a family of problems in which 2 is given a minimal
utility e € [ug (0),us (w)], and 1’s utility is maximized subject to this
constraint. It is easy to see that P = {x* (Ug) : Uz € [uz (0),us (w)]} is indeed
the Pareto set. Since wus (x) is necessarily in the interval for all allocations,
and x7 (U2) maximizes u; (X;|uz = Us) in any Pareto-optimal allocation, P
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contains the Pareto set. On the other hand, the Pareto set contains P because
any allocation where x7} (T2) maximizes uy (x1|us = uy) and usy (x) is optimal
given xj (it is, due to monotonicity) is Pareto-optimal.

We have: (i) a family of optimization problems valued by x* € R?, pa-
rameterized by s, with a continuous objective function uy; (ii) a constraint
set C'(U2) = {x1:uy(w —x1) > Uy} that is continuous (by continuity of
u2) and compact (closed and bounded). Under these conditions, the maxi-
mum theorem guarantees that the solution correspondence x* (i) is upper-
hemicontinuous. Since preferences are convex, x* (uy) is in fact a function
(there is a unique optimal allocation for every s), and therefore continuous.

What we have shown is that the Pareto set is the continuous image of
the interval I = [us (0), us (w)] under the function

x1€C(u2)

F () = (1) 5 (1) = (a1 () w0 =i (7))

constructed above. Every interval is a connected set, and every continuous
image of a connected set is connected. To see this, consider a nonempty
open set of allocations A C f(I) with a nonempty open complement A° in
I. (L.e. suppose f(I) is not connected.) Since [ is connected, there exists
(by the definition of connectedness) no partition of I into nonempty open
sets. By continuity of f, the inverse images of A and A° (i.e. the sets
YA ={u eI:x*(uy) € A} and f~1(A°) = {uy € [ : x* (Uy) € A°}) are
disjoint and open. Therefore, one of f~!'(A) or f~1(A¢) must be empty,
implying that either A or A€ is empty - a contradiction. Hence we argue that
the Pareto set is connected, as it is the continuous image of a connected set.
]

Now suppose that the preferences are also homothetic. Then the points
of tangency lie on a ray from the origin. But the allocations where the
indifference curves are tangent contain the Pareto set. Since the Pareto set
is connected, Pareto-optimal allocations lie on both sides of the 45 degree
line only if there exists a Pareto-optimal allocation on the 45 degree line.
But then all Pareto-optimal allocations must lie on the 45 degree line, since
it is a ray from the origin. Therefore, in the case of homothetic preferences,
the Pareto set lies weakly on one side of the 45 degree line.

15.C.2
The equilibrium (p, x) = <%,x1,x2> is determined by:

(1) Consumer’s objective function: u(zy, x2) = Inzy + Inwy
(2) Consumer’s budget constraint:  pre <w (L —x1) + 7
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(3) Firm’s objective function: P2 —wz
(4) Clearing condition for the goods market: 2* =}
(5) Clearing condition for the factor market: 2*=L—x}=1-x].

The consumer solves

maxInz; +Inxe + A (w (L — 1) + 7 — pxa) .
x1,T2
(Since the objective function is concave, the budget constraint holds with
equality and first-order conditions are sufficient for a maximum.) Note that
7 i8 a function of z, but not of z; or x,. From first-order conditions:
W T
pay
The firm solves
max py/z — wz.
z

First-order condition:

w 1

E B 2/
(Again the firm’s objective function is concave, and the first-order condition
is sufficient for a maximum.)

Impose the goods market clearing condition to rewrite the firm’s first-
order condition as

w 1

p 23

Solve the first-order conditions for x5 in terms of z7:

it
=1\ 5
The factor market clearing condition (with z* replaced from the good market

condition) gives:

* . *

* _ *2
*
— 1.4
2
2
* —
$1 g,

o7



Christian Roessler (U Melbourne)

SO
1

$2 - —=.

V3

It remains to find the equilibrium relative price:

w_l
p 2
V3

Substituting into the profit function:
T = pVzt—wz*
pyv1—af—w(l—a7)
1
2v3"
15.D.8

After substituting zo; = Z; — 211 and 299 = Z5 — 221, the objective is:

2 1 1,
max f (Z) = 211212 T (51 - 221)3 (22 — 222) .
211,212

Wi

Because factor markets clear in a competitive economy, costs are constant
and do not affect the optimal allocation of inputs to technologies. We must,
however, keep nonnegativity constraints in mind:

21 =2 0
zn1 < 7y
z12 =2 0
zZi2 < Za.

Suppose the solution is interior. Then the nonnegativity constraints do not
bind and the first-order conditions are:

P 2 .11 1 N 2
52{1 ~ 3°m P20y — 3 (Z1—211) 2 (22— 212)° =0
o 12 .2 2 1 * \—%
022 - §Z131212 - 3 (71— 211)% (22 — 25,) 2 =0.
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These imply, respectively,

o TR DERT
2211 P2y = (Z1—211) 3 (B2 — 212)3
_ 2

2y Z1 — 25

1o og (_ 11

212 29 — 212

and

2 3 51— )} (5 — 25y
211712 = 2(Z1—211)? (2 — 24,) ®

1

o \/5(51—2’11)2

21 Zo— o)

Equating the righthand expressions, we obtain:
Zy— 2y 2

Alternatively, the first-order conditions can be transformed into

* = *
V8V z1a  Za— 219

1 2 —
(211> Rl — 21
* - = *

Equating the lefthand expressions,

and

*
211 —9

*
212

Now we can solve for the interior solution in terms of endowments:

o= 71— 3 (Z2 — 212)
_ 1/ z¥
- 53 (m-7)
. 4 2
z = —=Z1— =%
11 3 1 3 2
o A2 1
R12 = 5 321 322
* — * 2— ]‘—
. _ e 42
Rog = R2 7 Ri9g = 522 — ng.
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In specialized solutions, either z;; = 219 = 0 or 231 = 299 = 0 (since no
output can be produced by either technology if one of the inputs is zero, any

other corner allocation would be wasteful). In the first case, %{1 < 0 and
of

3o; < 0. In the second case, the inequalities are reversed. Therefore, the
first condition for a specialized solution (with z9; = 299 = 0) is:

El — 2z 1 31 1

e

Z9 — 2192 2 Z9 2
The input vectors is then z’ = (211, 212, 201, 222) = (0,0, Z1,Z2) . The second
condition for specialized solution (with z1; = Z1, 210 = Z2) is:

zy Z1
L2502

with input vector z” = (211, 212, 221, 222) = (Z1, 22, 0,0) . Hence, the interior
solution occurs if and only if

1 z

S<d<a

2 Z9

In a competitive economy, input prices equal the marginal value products
(which are constant under the constant returns assumption). Thus:

. _ plaf (z") _9f(z")

o= 0z, 07
. 0f(z) 0f(z")
W2 = T a T T T s,
Since
f(Z") = 2725 +(Z1—211)% (22 — 2)°

(A2
372 37!

Il
N
[GSRIEN
I}
=
|
Wl Do
|
[N}
~_
wln
VR
Wl Do
|
iy
|
W | —
|
[N}
+
VRS
| DO
N
no
|
W
|
=
~_
w

(2 L \(2 L §+2% 2 1\ /2. 1_
- 3°1 7372 ) |\ 3717 3% 32737 ) 3727 3%
9 1 9 1
— 23 <§zl—§zg)+2§ (522—521
H B
= 3(21-1—22),
we have
.. 23
Wy = Wy = 3
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2 1
in the interior solution. In the specialized solutions, f(z') = Z{Z5 and

12
f(2") =z} Z3, respectively, so:

. 0f@) afE) 2 (m)’
R T A
o 0fE) _of@) _1(m)
2 P25 0%, 3\z,/)
and
oo 0@ (@) 1 ()
LT T T T e T 3\,
. Of(z) af(2) 2 (m\*
2 = P 079 B 0% 3 Z9 ’

In summary, the complete solution is as follows. If

optimal inputs allocation is:

. 4 2
2 1
ZTQ = —21 — —22
3 3
. 2_ 1_
291 = 522 — 521
4 2
Z;Q = 522 — 521,

and equilibrium input prices are:

* *
Wy = Wy =

If g—l < %, then the optimal inputs allocation is:
2

A
21 = 0
/
212 - 0
/ =
’ —
“22 T A2

and equilibrium input prices are:

61
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S
i
I
W N
VR
Nll |
— [\
N~
[

If % > 2, then the optimal inputs allocation is:

/

! _ —
/ —

Ro1 =
, —_

29 = 0,

and equilibrium input prices are:

3 Z1

2 77\ 3
no_ = é
wf = 3(2) |

15.D.9

Wi

Heckscher-Ohlin theorem: In a 2x2 model (tradable goods 1 and 2, non-
tradable factors A and B), where two economies have identical CRS tech-
nologies, identical increasing, concave, and homogeneous utility functions,
and good 1 is intensive in factor A, the economy that is relatively abundant
in factor A exports good 1.

Proof. Free trade implies uniform goods prices across trading economies.
Therefore, if two economies have identical homogeneous preferences, i.e.
identical and budget-invariant marginal rates of substitution, each economy
in a 2x2 model exports the good of which it produces relatively more than
the other economy. Hence it is sufficient to prove that an economy which
is relatively abundant in a factor will produce relatively more of the good
which is intensive in that factor. Denoting the economy’s ouput vector by
(y1,y2) and the economy’s input vector by (Z4,Zp), we should establish that

gy
22 50

ZA

2B

62



Christian Roessler (U Melbourne)

if 24 > 224 at all factor prices —4 e 4 (Recall that a4 is the optimal quantity
of 1nput A in the production of one unit of good 1.)
The clearing conditions for the factor markets are:

ZA = Q1AY1 T+ Q24Y2
Zp = a1BY1 + G2BYs.
Solving for y; and s,

A2BZA — U2AZB

nh =
Q1402 — A2A01B
_ G1A4ZB — Q1BZA
Yo = .
1402 — Q24018
Thus,
Y1 GaBZA — Q24ZB
Yo A1AZB — A1BZA
ZA
2B3, — asA
— =
Q14 — alBg_B
ZA _ Aa24A
. a2B zZB aspB
o aia ZA
1B a1B ZB
Differentiating:
Y1 1A _ ZA 4 ZA __ 24
Y2 QQB a1p ZB ZB a2B
Za 2
ag_g a1B alA _ ZA
a1B ZB
aiaA _ a24
a2B  aip a2p

B ( a4 _ Za )2'
a1B 2B

Clearly, if (‘;1—“3‘ > Z;—g, then 0L / 8?—“‘ is indeed positive. As we have argued
at the outset, this completes the proof of the theorem. To see why, suppose
two economies coexist in autarky in a 2x2 world. Good 1 is intensive in input
A, and one economy is relatively abundant in input A. As was just shown,
this economy will produce relatively more of good 1 (and of course relatively
less of good 2). If preferences are identical and scale-invariant, the price of
good 1 (in terms of good 2) must be lower in the economy that produces
relatively more of good 1. If we allow the economies to trade, the relatively
cheaper good will be exported and the relatively more expensive good will
be imported. m
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