NVISIBLE COMPUTING

Design Patterns
for Ubiquitous

Gomputing

James A. Landay, University of California, Berkeley
Gaetano Borriello, University of Washington

esign is about finding solu-

tions. Unfortunately, not

knowing how others previ-

ously applied a solution or

why they did things a certain
way makes it difficult to reuse prior
design knowledge. Consequently,
designers—whether they are software
engineers, architects, or Web design-
ers—often end up having to reinvent
the wheel.

Because they are neither too general
nor too specific, design patterns offer
a solution to the difficult problem of
reusing prior design knowledge. They
are written to be flexible enough for
reuse in many situations, and design-
ers can use them to identify and pro-
pose solutions to recurring problems.
We propose that such patterns also
offer an effective way to communicate
solutions to ubiquitous computing
design problems.

EVOLUTION OF DESIGN PATTERNS
Design patterns emerged from the
field of architecture in the 1970s with
the work of Christopher Alexander and
his colleagues at the University of
California, Berkeley. In the still widely
read classic A Pattern Language:
Towns, Building, Construction (Oxford
Univ. Press, 1977), they proposed a set
of 253 formal patterns not only as a
tool for architects, but as a way for all
stakeholders in the design process,

including the client, to communicate
about a given project.

Sample architectural
design pattern

The Beer Hall pattern provides one
example of Alexander’s distinctive
approach to design. This pattern
addresses the following problem:

Where can people sing and drink,
and shout and drink, and let go of
their sorrows?

The solution is:

Somewhere in the community at
least one big place where a few hun-
dred people can gather, with beer
and wine, music, and perhaps a half-
dozen activities, so that people are
continuously crisscrossing from one
to another.

Figure 1 shows an abstract sketch of
this solution. To accommodate such a

large gathering of people, a beer hall
should have tables in the middle and
activities around the circumference to
encourage movement throughout the
room.

The description of a pattern is typi-
cally three to five pages long and
discusses forces, or tradeoffs, that
designers must consider to successfully
apply the pattern. For example, in
designing a beer hall: What should be
the focus of attention? How will peo-
ple mingle? How will they feel they are
in a place of their own?

Design patterns range in scale from a
city to a room and, together, form a pat-
tern language that designers can adapt

By communicating solutions
to common problems, design
patterns make it easier to
focus efforts on unique
issues.

to a project’s particular level of com-
plexity or detail. For example, in design-
ing a beer hall, you could select Alcoves,
a subpattern that states that any com-
mon room should have small spaces at
the edge “large enough for two people

Figure 1. Beer Hall design pattern. A beer
hall should have tables in the middle and
activities around the circumference.

August 2003

Invisible Computing

Figure 2. Context-Sensitive I/0 design pat-
tern. A cell phone should detect whether
the owner is driving or at a meeting and
accordingly either ring or vibrate.

to sit, chat, or play and sometimes large
enough to contain a desk or a table.”
Likewise, Beer Hall could be an integral
pattern in Night Life, a higher-order
pattern that recommends knitting
together “shops, amusements, and ser-
vices which are open at night, along
with hotels, bars, and all-night diners to
form centers of night life.”

Software design

Alexander’s ideas have caught on in
disciplines other than architecture. Since
the mid-1990s, design patterns have
been one of the most influential ideas in
software engineering, first popularized
by the “gang of four”—FErich Gamma,
Richard Helm, Ralph Johnson, and
John Vlissides—in their book, Design
Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley,
1995). For example, the Listener pat-
tern offers a solution to the problem of
how to notify one part of a program of
an event that has occurred elsewhere in
the program. Software design patterns
gave concrete names to abstract con-
cepts that many developers had “dis-

Computer

covered” themselves, making such con-
cepts easy to share.

Ul design

More recently, design patterns have
sparked interest in user interface design,
a field that shares the customer focus of
architecture. Jenifer Tidwell’s pattern
language, the first for UI design, offers
many interaction patterns for GUIs
(http://time-tripper.com/uipatterns/).

Web site design

A new book co-authored by Douglas
K. van Duyne, James A. Landay, and
Jason 1. Hong, The Design of Sites:
Patterns, Principles, and Processes for
Crafting a Customer-Centered Web
Experience (Addison-Wesley, 2003),
offers 90 patterns targeted at Web site
design (www.designofsites.com). For
example, Quickflow Checkout explains
how to let customers easily purchase
items in their Shopping Cart without
being delayed by unnecessary distrac-
tions such as Cross-Selling and Up-
Selling.

UBICOMP DESIGN PATTERNS

The next step in the evolution of
design patterns is to apply them in a
more formative field such as ubiquitous
computing by documenting lessons
already learned in this new field or that
can be carried over from previous
design knowledge. Some of the ubi-
comp patterns we have brainstormed
include Context-Sensitive I/O, Physical-
Virtual Associations, Global Data,
Proxies for Devices, Follow-Me Dis-
play, Appropriate Levels of Attention,
and Anticipation. Some of these pat-
terns focus on user interface aspects,
some on systems aspects, and some on

both.

Context-Sensitive 1/0

One design pattern we have devel-
oped that hints at what an eventual
ubicomp pattern language might be
like addresses the following problem:

Ubicomp devices will be used in a
variety of locations and situations,

but the device interfaces must not
interrupt or distract the user from
performing a primary task or annoy
a nearby group of people.

Because certain input and output
modalities are more appropriate in dif-
ferent circumstances, applying the
design-pattern concept to this problem
might yield the following solution:

Input and output modalities should
adapt to the user’s current context.

For example, relying on speech or
audio output is not a good idea when
the user is participating in a meeting,
attending a lecture, or in a movie the-
ater. As Figure 2 shows, a context-sen-
sitive cell phone should know when its
owner is in a meeting and switch auto-
matically to a vibration alert rather
than require the owner to turn off the
audible ringer.

On the other hand, direct manipu-
lation input to a handheld device may
be inferior to speech or pushing a few
physical buttons when the user is dri-
ving a car. Likewise, when the driver
places or receives a call, the car stereo
volume should lower automatically.

Physical-Virtual Associations

Another ubicomp design pattern we
have developed addresses the follow-
ing problem:

When people get together to collab-
orate in some way, they should not
have to spend lots of time configur-
ing their devices.

For example, at a meeting, the appro-
priate files, including biographies and
contact information, should appear
automatically on each person’s laptop
or PDA. The following solution would
apply to this problem:

When users are near one another,
make it easy for their devices to con-
nect and create an association that
lets them share information over the
life of a session.

A Context-Sensitive I/O device pro-
vides the appropriate output for mak-
ing a Physical-Virtual Association.
Some associations can occur automat-
ically when two known devices come
into physical proximity—for example,
auser’s PDA and PC could synchronize
automatically. As Figure 3 shows, cre-
ating other associations might require
direct user action—for example, letting
others in the same meeting see docu-
ments on a PDA might require the
owner’s approval.

In other circumstances, users can
connect their devices to create an asso-
ciation that allows them to share infor-
mation over the life of a session. For
example, the Hummingbird estab-
lishes a virtual connection between
nearby users skiing at the same resort,
enabling them to track one another’s
location on the slopes and thereby
communicate more easily.

uitous computing raises several
interesting research questions.
For example, how do you validate

A pplying design patterns to ubig-

SCHOLA
MONEY

STUDEN]
MEMBER

such patterns, given the time and
expense required to test each one?
Also, how do you evaluate the process
of using patterns? Conducting con-
trolled studies is difficult because of the
creativity and skill involved in the act
of design.

The process of developing design
patterns is still fairly ad hoc, but we fol-
low one simple rule: Find patterns that
have been used successfully in real
products or systems. Ideally, we prefer
to find three good examples of a pat-
tern being used in practice before we
declare it to be a design pattern. We
invite readers to submit their own
ideas at http://guir.berkeley.edu/wiki/
ubicomp.

James A. Landay is an associate pro-
fessor of computer science in the
Department of Electrical Engineering
and Computer Sciences at the Univer-
sity of California, Berkeley. He is also
on the faculty of the university’s Group
for User Interface Research and
cofounder of the Berkeley Institute of
Design. Contact him at landay@cs.
berkeley.edu.

Lance Stafford Larson Student Scholarship

best paper contest

*

Upsilon Pi Epsilon/IEEE Computer Society Award
for Academic Excellence

Each carries a $500 cash award.
Application deadline: 31 October

n:m:

COMPUTER
SOCIETY

Investing in Students

computer.org/students/

Figure 3. Physical-Virtual Associations
design pattern. Devices should create asso-
ciations, either automatically or via direct
user input, when users are near each other.

Gaetano Borriello is a professor in the
Department of Computer Science and
Engineering at the University of Wash-
ington and laboratory director of Intel
Research Seattle. Contact him at gae-
tano@cs.washington.edu.

Editor: Bill N. Schilit, Intel Research
Seattle; bill.schilit@intel.com.

area of expertise? IEEE Computer Society

Technical Committees explore a variety
of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

I ooking for a community targeted to your

Join @ community tha fargets your discipline.

In our Technical Committees, you're in good companu.
computer.org/TCsignup/

