Causal Sets and Frame-Valued Set Theory

John L. Bell

In spacetime physics any set \mathcal{C} of events—a *causal set*—is taken to be partially ordered by the relation \leq of possible causation: for $p, q \in \mathcal{C}$, $p \leq q$ means that q is in p's future light cone. In her groundbreaking paper The internal description of a causal set: What the universe looks like from the inside, Fotini Markopoulou proposes that the causal structure of spacetime itself be represented by "sets evolving over \mathcal{C} " —that is, in essence, by the topos \mathscr{Gel} of presheaves on $\mathscr{C}^{\text{op.}}$ To enable what she has done to be the more easily expressed within the framework presented here, I will reverse the causal ordering, that is, \mathcal{C} will be replaced by \mathcal{C}^{op} , and the latter written as P-which will, moreover, be required to be no more than a *preordered* set. Specifically, then: P is a set of events preordered by the relation \leq , where $p \leq q$ is intended to mean that p is in q's future light cone—that q could be the cause of p, or, equally, that p could be an effect of q. In that case, for each event p, the set $p\downarrow$ = $\{q: q \leq p\}$ may be identified as the *causal future* of p, or the set of *potential* effects of p. In requiring that \leq be no more than a preordering—in dropping, that is, the antisymmetry of \leq —I am, in physical terms, allowing for the possibility that the universe is of Gödelian type, containing closed timelike lines.

Accordingly I fix a preordered set (P, \leq) , which I shall call the *universal causal set*. Markopoulou, in essence, suggests that viewing the universe "from the inside" amounts to placing oneself within the topos of presheaves $\mathscr{Rel}^{P^{op}}$. Here I am going to show how $\mathscr{Rel}^{P^{op}}$ may be effectively replaced by a certain model of intuitionistic set theory, with (I hope) illuminating results.

Let us suppose that we are given a relation \Vdash between events p and assertions φ : think of $p \Vdash \varphi$ as meaning that φ holds as a result of event p. Assume that the relation \Vdash is *persistent* in the sense that, if $p \Vdash \varphi$ and $q \leq p$, then $q \Vdash \varphi$: once an assertion holds, it continues to hold in the future. (The basic assertions we have in mind are of the form: "such and such is (or was) the case at such-and such a time (event)".)

Given an assertion φ , the set $[\![\varphi]\!] = \{p: p \Vdash \varphi\}$ "measures" the degree or extent to which φ holds: the larger $[\![\varphi]\!]$ is, the "truer" φ is. In particular, when $[\![\varphi]\!] = P$, φ is 'universally" or "absolutely" true, and when $[\![\varphi]\!] = \emptyset$, φ is "universally" or "absolutely" false. These $[\![\varphi]\!]$ may accordingly be thought of as "truth values", with *P* corresponding to "absolute truth" and \emptyset to absolute falsity.

Because of the persistence property, each $\llbracket \varphi \rrbracket$ has the property of being "closed under potential effects", or "causally closed", that is, satisfies $p \in \llbracket \varphi \rrbracket$ and $q \leq p \rightarrow q \in \llbracket \varphi \rrbracket$. A subset of *P* with this property is called a *sieve*. Sieves serve as generalized "truth values" measuring the degree to which assertions hold. The set \widehat{P} of all sieves, or truth values has a natural logico-algebraic structure —that of a *complete Heyting algebra*, or *frame*. This concept is defined in the following way.

A *lattice* is a partially ordered set *L* with partial ordering \leq in which each two-element subset $\{x, y\}$ has a supremum or *join*—denoted by $x \lor y$ —and an infimum or *meet*—denoted by $x \land y$. A lattice *L* is *complete* if every subset *X* (including \emptyset) has a supremum or *join*—denoted by $\forall X$ and an infimum or *meet*—denoted by $\land X$. Note that $\forall \emptyset = 0$, the least or *bottom* element of *L*, and $\land \emptyset = 1$, the largest or *top* element of *L*. A *Heyting algebra* is a lattice *L* with top and bottom elements such that, for any elements $x, y \in L$, there is an element—denoted by $x \Rightarrow y$ —of *L* such that, for any $z \in L$,

$$z \leq x \Rightarrow y$$
 iff $z \land x \leq y$.

Thus $x \Rightarrow y$ is the *largest* element z such that $z \land x \le y$. So in particular, if we write $\neg x$ for $x \Rightarrow 0$, then $\neg x$ is the largest element z such that $x \Rightarrow z$ = 0: it is called the *pseudocomplement* of x. A *Boolean algebra* is a Heyting algebra in which $\neg \neg x = x$ for all x, or equivalently, in which $x \lor \neg x = 1$ for all x.

If we think of the elements of a (complete) Heyting algebra as "truth values", then 0, 1, \land , \lor , \neg , \Rightarrow , \bigvee , \bigwedge represent "true", "false", "and", "or", "not" and "implies", "there exists" and "for all", respectively. The laws satisfied by these operations in a general Heyting algebra correspond to those of *intuitionistic logic*. In Boolean algebras the counterpart of the law of excluded middle also holds.

A basic fact about *complete* Heyting algebras is that the following identity holds in them:

(*)
$$x \wedge \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \wedge y_i)$$

And conversely, in any complete lattice satisfying (*), defining the operation \Rightarrow by $x \Rightarrow y = \bigvee \{z: z \land x \le y\}$ turns it into a Heyting algebra.

In view of this result a complete Heyting algebra is frequently defined to be a complete lattice satisfying (*). A complete Heyting algebra is briefly called a *frame*.

In the frame $\widehat{P} \leq \text{is } \subseteq$, joins and meets are just set-theoretic unions and intersections, and the operations \Rightarrow and \neg are given by

$$I \Rightarrow J = \{p : I \cap p \downarrow \subseteq J\} \qquad \neg I = \{p : I \cap p \downarrow = \emptyset\}.$$

Frames do duty as the "truth-value algebras" of the (current) *language* of mathematics, that is, set theory. To be precise, associated with each frame H is a structure $V^{(H)}$ —the universe of H-valued sets—with the following features.

- Each of the members of V^(H)—the *H*-sets—is a map from a subset of V^(H) to *H*.
- Corresponding to each sentence σ of the language of set theory (with names for all elements of V^(H)) is an element [[σ]] = [[σ]]^H ∈ H called its *truth value in V*^(H). These "truth values" satisfy the following conditions. For a, b ∈ V^(H),

$$\llbracket b \in a \rrbracket = \bigvee_{c \in dom(a)} \llbracket b = c \rrbracket \land a(c) \qquad \llbracket b = a \rrbracket = \bigvee_{c \in dom(a) \cup dom(b)} (\llbracket c \in b \rrbracket \Leftrightarrow \llbracket c \in a \rrbracket)$$
$$\llbracket \sigma \land \tau \rrbracket = \llbracket \sigma \rrbracket \land \llbracket \tau \rrbracket, \text{ etc.}$$
$$\llbracket \exists x \varphi(x) \rrbracket = \bigvee_{a \in V^{(H)}} \llbracket \varphi(a) \rrbracket$$
$$\llbracket \forall x \varphi(x) \rrbracket = \bigwedge_{a \in V^{(H)}} \llbracket \varphi(a) \rrbracket$$

A sentence σ is *valid*, or *holds*, in $V^{(H)}$, written $V^{(H)} \models \sigma$, if $[\sigma] = 1$, the top element of *H*.

- The axioms of intuitionistic Zermelo-Fraenkel set theory are valid in V^(H). In this sense V^(H) is an *H*-valued model of *IZF*. Accordingly the category *Sed*^(H) of sets constructed within V^(H) is a topos: in fact *Sed*^(H) can be shown to be equivalent to the topos of canonical sheaves on *H*.
- There is a canonical embedding x → x̂ of the usual universe V of sets into V^(H) satisfying

$$\llbracket u \in \hat{x} \rrbracket = \bigvee_{y \in x} \llbracket u = \hat{y} \rrbracket \text{ for } x \in V, u \in V^{(H)}$$
$$x \in y \leftrightarrow V^{(H)} \vDash \hat{x} \in \hat{y}, \quad x = y \leftrightarrow V^{(H)} \vDash \hat{x} = \hat{y} \text{ for } x, y \in V$$
$$\varphi(x_1, \dots, x_n) \leftrightarrow V^{(H)} \vDash \varphi(\hat{x}_1, \dots, \hat{x}_n) \text{ for } x_1, \dots, x_n \in V \text{ and restricted } \varphi$$

(Here a formula φ is *restricted* if all its quantifiers are restricted, i.e. can be put in the form $\forall x \in y$ or $\exists x \in y$.)

We observe that $V^{(2)}$ is essentially just the usual universe of sets.

It follows from the last of these assertions that the canonical representative \widehat{H} of H is a Heyting algebra in $V^{(H)}$. A particularly important H- set is the H-set Φ_H defined by

$$dom(\Phi_H) = \{a : a \in H\}, \quad \Phi_H(a) = a \text{ for } a \in H.$$

Then $V^{(H)} \models \Phi_H \subseteq \widehat{H}$. Also, for any $a \in H$ we have $[[\hat{a} \in \Phi_H]] = a$, and in particular, for any sentence σ , $[[\sigma]] = [[[\widehat{\sigma}]] \in \Phi_H]]$. Thus

$$V^{(H)} \vDash \sigma \leftrightarrow V^{(H)} \vDash \widehat{\llbracket \sigma \rrbracket} \in \Phi_{H};$$

in this sense Φ_H represents the "true" sentences in $V^{(H)}$. Φ_H is called the *canonical truth set* in $V^{(H)}$.

Now let us return to our causal set P. The topos $\mathscr{Ret}^{(\widehat{P})}$ of sets in $V^{(\widehat{P})}$ is, as I have observed, equivalent to the topos of canonical sheaves on \widehat{P} , which is itself, as is well known, equivalent to the topos $\mathscr{Ret}^{P^{op}}$ of presheaves on P. My proposal is then, that we work in $V^{(\widehat{P})}$ rather than, as did Markopoulou, within $\mathscr{Ret}^{P^{op}}$. That is, describing what the universe looks like "from the inside" will amount to reporting the view from $V^{(\widehat{P})}$. For simplicity let me write H for \widehat{P} .

The "truth value" $[\![\sigma]\!]$ of a sentence σ in $V^{(H)}$ is a sieve of events in P, and it is natural to think of the events in $[\![\sigma]\!]$ as those at which σ "holds". So one introduces the *forcing* relation \Vdash_P in $V^{(H)}$ between sentences and elements of P by

$$p \Vdash_{P} \sigma \leftrightarrow p \in \llbracket \sigma \rrbracket$$
.

This satisfies the standard so-called Kripke rules, viz.,

- $p \Vdash_P \phi \land \psi \leftrightarrow p \Vdash_P \phi \& p \Vdash_P \psi$
- $p \Vdash_P \phi \lor \psi \leftrightarrow p \Vdash_P \phi$ or $p \Vdash_P \psi$
- $p \Vdash_P \varphi \to \psi \leftrightarrow \forall q \leq p[q \Vdash_P \varphi \to q \Vdash_P \psi]$
- $p \Vdash_P \neg \phi \leftrightarrow \forall q \leq p q \nvDash_K \phi$
- $p \Vdash_P \forall x \phi \leftrightarrow p \Vdash_P \phi(a)$ for every $a \in V^{(\overline{P})}$
- $p \Vdash_P \exists x \phi \leftrightarrow p \Vdash_P \phi(a)$ for some $a \in V^{(\hat{P})}$.

Define the set $K \in V^{(H)}$ by dom $(K) = \{\hat{p} : p \in P\}$ and $K(\hat{p}) = p \downarrow$. Then, in $V^{(H)}$, K is a subset of \hat{P} and for $p \in P$, $[[\hat{p} \in K]] = p \downarrow$. K is the counterpart in $V^{(\bar{P})}$ of Markopoulou's evolving set *Past*. (\hat{P} , incidentally, is the $V^{(H)}$ - counterpart of the constant presheaf on P with value P—which Markopoulou calls *World*.) The fact that, for any $p, q \in P$ we have

$$(*) q \Vdash_P \stackrel{\frown}{p} \in K \iff q \leq p$$

may be construed as asserting that the events in the causal future of a given event are precisely those forcing (the canonical representative of) that event to be a member of K. Or, equally, the events in the causal past of a

given event are precisely those forced by that event to be a member of K. For this reason we shall call K the causal set in $V^{(H)}$.

If we identify each $p \in P$ with $p \downarrow \in H$, P may then be regarded as a subset of H so that, in $V^{(H)}$, \hat{P} is a subset of \hat{H} . It is not hard to show that $V^{(H)} \models K = \Phi_H \cap \hat{P}$. Moreover, it can be shown that, for any sentence σ , $[\sigma] = [\exists p \in K.p \leq \widehat{[\sigma]}]$, so that, with moderate abuse of notation,

$$V^{(H)} \vDash [\sigma \leftrightarrow \exists p \in K. \ p \Vdash \sigma].$$

That is, in $V^{(H)}$, a sentence holds precisely when it is forced to do so at some "causal past stage" in K. This establishes the centrality of K—and, correspondingly, that of the "evolving" set *Past*— in determining the truth of sentences "from the inside", that is, inside the universe $V^{(H)}$.

Markopoulou also considers the *complement* of *Past*—i.e., in the present setting, the $V^{(H)}$ -set $\neg K$ for which $[\hat{p} \in \neg K] = [p \notin K] = \neg p \downarrow = \{q : \forall r \leq q.r \nleq p.$ Markopoulou calls (*mutatis mutandis*) the events in $\neg p \downarrow$ those *beyond p's causal horizon*, in that no observer at *p* can ever receive "information" from any event in $\neg p \downarrow$. Since clearly we have

$$(\dagger) \qquad \qquad q\Vdash_P \hat{p}\in \neg K \iff q\in \neg p\downarrow,$$

it follows that the events beyond the causal horizon of an event p are precisely those forcing (the canonical representative of) p to be a member of $\neg K$. In this sense $\neg K$ reflects, or "measures" the causal structure of P.

In this connection it is natural to call $\neg \neg p \downarrow = \{q : \forall r \le q \exists s \le r.s \le p\}$ the *causal horizon* of *p*: it consists of those events *q* for which an observer placed at *p* could, in its future, receive information from any event in the future of an observer placed at *q*. Since

$$q \Vdash_P \hat{p} \in \neg \neg K \iff q \in \neg \neg p \downarrow,$$

it follows that the events within the causal horizon of an event are precisely those forcing (the canonical representative of) p to be a member of $\neg\neg K$.

It is easily shown that $\neg K$ is *empty* (i.e. $V^{(H)} \models \neg K = \emptyset$) if and only if P is *directed downwards*, i.e., for any $p, q \in P$ there is $r \in P$ for which $r \leq p$ and $r \leq q$. This holds in the case, considered by Markopoulou, of *discrete Newtonian time evolution*—in the present setting, the case in which P is the opposite \mathbb{N}^{op} of the totally ordered set \mathbb{N} of natural numbers. Here the corresponding complete Heyting algebra H is the family of all downward-closed sets of natural numbers. In this case the H-valued set K representing *Past is neither finite nor actually infinite in* $V^{(H)}$.

To see this, observe first that, for any natural number n, we have $\llbracket \neg (\hat{n} \in \neg K) \rrbracket = \mathbb{N}$. It follows that $V^{(H)} \models \neg \neg \forall n \in \widehat{\mathbb{N}}$. $n \in K$. But, working in $V^{(H)}$, if $\forall n \in .\widehat{\mathbb{N}}$ $n \in K$, then K is not finite, so if K is finite, then $\neg \forall n \in \widehat{\mathbb{N}}$. $n \in K$, and so $\neg \neg \forall n \in \widehat{\mathbb{N}}$. $n \in K$ implies the non-finiteness of K.

But, in $V^{(H)}$, *K* is not actually infinite. For (again working in $V^{(H)}$), if *K* were actually infinite (i.e., if there existed an injection of $\widehat{\mathbb{N}}$ into *K*), then the statement

$\forall x \in K \exists y \in K. \ x > y$

would also have to hold in $V^{(H)}$. But calculating that truth value gives:

$$\begin{split} \llbracket \forall x \in K \exists y \in K. x > y \rrbracket \\ &= \bigcap_{m \in \mathbb{N}^{op}} [m \downarrow \Rightarrow \bigcup_{n \in \mathbb{N}^{op}} n \downarrow \frown \llbracket \hat{m} > \hat{n} \rrbracket] \\ &= \bigcap_{m} [m \downarrow \Rightarrow \bigcup_{n < m} n \downarrow] \\ &= \bigcap_{m} [m \downarrow \Rightarrow (m + 1) \downarrow] \\ &= \bigcap_{m} (m + 1) \downarrow = \varnothing \end{split}$$

So $\forall x \in K \exists y \in K$. x > y is false in $V^{(H)}$ and therefore K is not actually infinite. In sum, the causal set K in is *potentially*, *but not actually infinite*.

In order to formulate an observable causal quantum theory Markopoulou considers the possibility of introducing a causally evolving algebra of observables. This amounts to specifying a presheaf \mathcal{A} of C*algebras on P, which, in the present framework, corresponds to specifying a set \mathcal{A} in $V^{(H)}$ satisfying

$V^{(H)} \vDash \mathscr{A}$ is a C*-algebra.

The "internal" C*-algebra \mathscr{A} is then subject to the intuitionistic internal logic of $V^{(H)}$: any theorem concerning C*-algebras—provided only that it be constructively proved—automatically applies to \mathscr{A} . Reasoning with \mathscr{A} is more direct and simpler than reasoning with \mathscr{A} .

This same procedure of "internalization" can be performed with any causally evolving object: each such object of type \mathscr{T} corresponds to a set *S* in *V*^(*H*) satisfying

$$V^{(H)} \vDash S$$
 is of type \mathcal{T} .

Internalization may also be applied in the case of the presheaves *Antichains* and *Graphs* considered by Markopoulou. Here, for each event *p*, *Antichains*(*p*) consists of all sets of causally unrelated events in *Past*(*p*), while *Graphs*(*p*) is the set of all graphs supported by elements of *Antichains*(*p*). In the present framework *Antichains* is represented by the $V^{(H)}$ -set *Anti* = { $X \subseteq \hat{P}$: *X* is an antichain} and *Graphs* by the $V^{(H)}$ -set *Grph*

= {*G*: $\exists X \in A . G is a graph supported by A$ }. Again, both *Anti* and *Grph* can be readily handled using the internal intuitionistic logic of $V^{(H)}$.

Cover schemes or Grothendieck topologies may be used to force certain conditions to prevail in the associated models. (This corresponds to the process of sheafification.) A cover scheme on P is a map **C** assigning to each $p \in P$ a family $\mathbf{C}(p)$ of subsets of $p \downarrow = \{q: q \leq p\}$, called (**C**-)covers of p, such that, if $q \leq p$, any cover of p can be sharpened to a cover of q, i.e.,

$$S \in \mathbf{C}(p) \& q \le p \to \exists T \in \mathbf{C}(q) [\forall t \in T \exists s \in S(t \le s)].$$

A cover S of an event p may be thought of as a "sampling" of the events in p's causal future, a "survey" of p's potential effects, in short, a survey of p. Using this language the condition immediately above becomes: for any survey S of a given event p, and any event q which is a potential effect of p, there is a survey of q each event in which is the potential effect of some event in S.

There are three naturally defined cover schemes on P we shall consider. First, each sieve A in P determines two cover schemes C_A and C^A defined by

$$S \in \mathbf{C}_{A}(p) \leftrightarrow p \in A \cup S$$
 $S \in \mathbf{C}^{\mathbf{A}}(p) \leftrightarrow p \downarrow \cap A \subseteq S$

If $p \in A$, any part of p's causal future thus counts as a \mathbf{C}_A -survey of p, and any part of p's causal future extending the common part of that future with A counts as a \mathbf{C}^A -survey of p. Notice that then $\emptyset \in \mathbf{C}_A(p) \leftrightarrow p$ $\in A$ and $\emptyset \in \mathbf{C}^A(p) \leftrightarrow p \downarrow \cap A = \emptyset$.

Next, we have the *dense cover scheme* **Den** given by:

$$S \in \mathbf{Den}(p) \leftrightarrow \forall q \leq p \exists s \in S \exists r \leq s (r \leq q):$$

That is, S is a dense survey of p provided that for every potential effect q of p there is an event in S with a potential effect in common with q.

Given a cover scheme **C** on *P*, a sieve *I* will be said to *encompass* an element $p \in P$ if *I* includes a **C**-cover of *p*. Thus a sieve *I* encompasses *p* if it contains all the events in some survey of *p*. Call *I* **C**-closed if it contains every element of *P* that it encompasses, i.e. if

$$\exists S \in \mathbf{C}(p) (S \subseteq I) \rightarrow p \in I$$
.

The set $\widehat{\mathbf{C}}$ of all \mathbf{C} -closed sieves in P, partially ordered by inclusion, can be shown to be a frame—the frame *induced* by \mathbf{C} —in which the operations of meet and \Rightarrow coincide with those of \widehat{P} . Passing from $V^{(\widehat{P})}$ to $V^{(\widehat{C})}$ is the process of *sheafification*: essentially, it amounts to replacing the forcing relation \Vdash_P in $V^{(\widehat{P})}$ by the new forcing relation $\Vdash_{\widehat{\mathbf{c}}}$ in $V^{(\widehat{C})}$. For atomic sentences σ these are related by

$$p \Vdash_{\widehat{\mathbf{C}}} \sigma \leftrightarrow \exists S \in \mathbf{C}(p) \forall s \in S. \ s \Vdash_{P} \sigma;$$

i.e., p **C**-forces the truth of a sentence just the truth of that sentence is *P*-forced by every event in some **C**-survey of *p*.

The frame induced by the dense cover scheme **Den** in *P* turns out to be a complete Boolean algebra *B*. For the corresponding causal set K_B in $V^{(B)}$ we find that

$$q \Vdash_B \widehat{p} \in K_B \leftrightarrow q \in \neg \neg p \downarrow$$

 \leftrightarrow q is in p's causal horizon.

Comparing this with (*) above, we see that moving to the universe $V^{(B)}$ — "Booleanizing" it, so to speak—*amounts to replacing causal futures by causal horizons.* When *P* is linearly ordered, as for example in the case of Newtonian time, the causal horizon of any event coincides with the whole of *P*, *B* is the two-element Boolean algebra **2**, and $V^{(B)}$ reduces to the universe *V* of "static" sets. In this case, then, the effect of "Booleanization" is to *render the universe timeless.*

The universes associated with the cover schemes \mathbf{C}^A and \mathbf{C}_A seem also to have a rather natural physical meaning. Consider, for instance, the case in which A is the sieve $p \downarrow$ —the causal future of p. In the associated universe $V^{(\widehat{\mathbf{C}^A})}$ the corresponding causal set K^A satisfies, for every event q

$$q \Vdash_{\widehat{\mathbf{c}^{\mathbf{A}}}} \widehat{p} \in K^A$$
.

Comparing this with (*), we see that in $V^{(\mathbf{c}^A)}$ that every event has been "forced" into *p*'s causal future: in short, that *p* now marks the "beginning" of the universe as viewed from inside $V^{(\mathbf{c}^A)}$.

Similarly, we find that the causal set K_A in the universe $V^{(\widehat{\mathbf{c}_A})}$ satisfies, for every event q,

$$q\Vdash_{\widehat{\mathbf{c}_{\mathbf{A}}}}\widehat{p}\in\neg K_{A};$$

a comparison with (†) above reveals that, in $V^{(\widehat{\mathbf{c}^A})}$, every event has been "forced" beyond *p*'s causal horizon. In effect, *p* has become a *singularity*.