Choice Principles in Intuitionistic Set Theory

John L. Bell

We work in intuitionistic Zermelo-Fraenkel set theory **IST** (for a presentation, see [3], where it is called **ZF'**₁). Let us begin by fixing some notation. For each set *A* we write P*A* for the power set of *A*, and Q*X* for the set of *inhabited* subsets of *A*, that is, of subsets *X* of *A* for which $\exists x \ (x \in A)$. The set of functions from *A* to *B* is denoted by *B*^{*A*}; the class of functions with domain *A* is denoted by Fun(*A*). The empty set is denoted by 0, {0} by 1, and {0, 1} by 2.

We tabulate the following *logical schemes*:

SLEM	$\alpha \lor \neg \alpha$ (α any sentence)
Lin	$(\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$ (α, β any sentences)
Stone	$\neg \alpha \lor \neg \neg \alpha$ (α any sentence)
Ex	$\exists x [\exists x \alpha(x) \rightarrow \alpha(x)]$ ($\alpha(x)$ any formula with at most x free)
Un	$\exists x[\alpha(x) \rightarrow \forall x\alpha(x)]$ ($\alpha(x)$ any formula with at most x free)
Dis	$\forall x[\alpha \lor \beta(x)] \rightarrow \alpha \lor \forall x\beta(x)$ (α any sentence, $\beta(x)$ any formula with at most x
	free)

Over intuitionistic logic, **Lin, Stone** and **Ex** are consequences of **SLEM**; and **Un** implies **Dis**. All of these schemes follow, of course, from the full law of excluded middle, that is **SLEM** for arbitrary formulas.

We formulate the following *choice principles*—here *X* is an arbitrary set and $\varphi(x,y)$ an arbitrary formula of the language of **IST** with at most the free variables *x*, *y*:

AC _X	$\forall x \in X \exists y \ \varphi(x, y) \rightarrow \exists f \in \operatorname{Fun}(X) \ \forall x \in X \ \varphi(x, fx)$
\mathbf{AC}_{X}^{*}	$\exists f \in \operatorname{Fun}(X) \ [\forall x \in X \exists y \ \varphi(x, y) \to \forall x \in X \ \varphi(x, fx)]$
DACX	$\forall f \in \operatorname{Fun}(X) \exists x \in X \varphi(x, fx) \to \exists x \in X \ \forall y \varphi(x, y)$
	$\exists f \in \operatorname{Fun}(X) \ [\exists x \in X \ \varphi(x, fx) \to \exists x \in X \ \forall y \ \varphi(x, y)]$

The first two of these are forms of the *axiom of choice* for X; while classically equivalent, in **IST AC**^{*}_X implies **AC**_X, but not conversely. The principles **DAC**_X and **DAC**^{*}_X are *dual* forms of the axiom of choice for X: classically they are both equivalent to \mathbf{AC}_X and \mathbf{AC}_X^* , but in **IST DAC**_X^* implies **DAC**_X, and not conversely.

We also formulate what we shall call the *weak extensional selection principle*, in which $\alpha(x)$ and $\beta(x)$ are any formulas with at most the variable x free:

WESP $\exists x \in 2\alpha(x) \land \exists x \in 2\beta(x) \to \exists x \in 2\exists y \in 2[\alpha(x) \land \beta(y) \land [\forall x \in 2[\alpha(x) \leftrightarrow \beta(x)] \to x = y]].$

This principle asserts that, for any pair of instantiated properties of members of 2, instances may be assigned to the properties in a manner that depends just on their extensions. **WESP** is a straightforward consequence of **AC**_{Q2}. For taking $\varphi(u, y)$ to be $y \in u$ in **AC**_{Q2} yields the existence of a function *f* with domain *Q*2 such that $fu \in u$ for every $u \in Q2$. Given formulas $\alpha(x)$, $\beta(x)$, and assuming the antecedent of **WESP**, the sets $U = \{x \in 2: \alpha(x)\}$ and $V = \{x \in 2: \beta(x)\}$ are members of *Q*2, so that $a = fU \in U$, and $b = fV \in V$, whence $\alpha(a)$ and $\beta(b)$. Also, if $\forall x \in 2[\alpha(x) \leftrightarrow \beta(x)]$, then U = V, whence a = b; it follows then that the consequent of **WESP** holds.

We are going to show that each of the logical principles tabulated above is equivalent (over **IST**) to a choice principle. Starting at the top of the list, we have first:

• **WESP** and **SLEM** are equivalent over **IST**.

Proof. Assume **WESP.** Let σ be any sentence and define

 $\alpha(x) \equiv x = 0 \lor \sigma \qquad \beta(x) \equiv x = 1 \lor \sigma.$

With these instances of α and β the antecedent of **WESP** is clearly satisfied, so that there exist members *a*, *b* of 2 for which (1) $\alpha(a) \wedge \beta(b)$ and (2) $\forall x [[\forall x \in 2[\alpha(x) \leftrightarrow \beta(x)] \rightarrow a = b]$. It follows from (1) that $\sigma \vee (a = 0 \wedge b = 1)$, whence (3) $\sigma \vee a \neq b$. And since clearly $\sigma \rightarrow \forall x \in 2[\alpha(x) \leftrightarrow \beta(x)]$ we deduce from (2) that $\sigma \rightarrow a = b$, whence $a \neq b \rightarrow \neg \sigma$. Putting this last together with (3) yields $\sigma \vee \neg \sigma$, and **SLEM** follows.

For the converse, we argue informally. Suppose that **SLEM** holds. Assuming the antecedent of **WESP**, choose $a \in 2$ for which $\alpha(a)$. Now (using **SLEM**) define an element $b \in 2$ as follows. If $\forall x \in 2[\alpha(x) \leftrightarrow \beta(x)]$ holds, let b = a; if not, choose b so that $\beta(b)$. It is now easy to see that a and b satisfy $\alpha(a) \land \beta(b) \land [\forall x \in 2[\alpha(x) \leftrightarrow \beta(x)] \rightarrow a = b]$. **WESP** follows.

Remark. The argument for **WESP** \rightarrow **SLEM** is another "stripped down" version of Diaconescu's theorem that, in a topos, the axiom of choice implies the law of excluded

middle. The result may be compared with that of [2] to the effect that the presence of extensional ε -terms renders intuitionistic logic classical.

Next, we observe that, while AC_1 is (trivially) provable in IST, by contrast

• \mathbf{AC}_{1}^{*} and \mathbf{Ex} are equivalent over **IST**.

Proof. Assuming \mathbf{AC}_1^* , take $\varphi(x,y) \equiv \alpha(y)$ in its antecedent. This yields an $f \in \text{Fun}(1)$ for which $\forall y \alpha(y) \rightarrow \alpha(f0)$, giving $\exists y [\exists y \alpha(y) \rightarrow \alpha(y)]$, i.e., **Ex.**

Conversely, define $\alpha(y) \equiv \varphi(0,y)$. Then, assuming **Ex**, there is *b* for which $\exists y\alpha(y) \rightarrow \alpha(b)$, whence $\forall x \in 1 \exists y \varphi(x,y) \rightarrow \forall x \in 1 \varphi(x,b)$. Defining $f \in \text{Fun}(1)$ by $f = \{\langle 0,b \rangle\}$ gives $\forall x \in 1 \exists y \varphi(x,y) \rightarrow \forall x \in 1 \varphi(x,fx)$, and **AC**^{*}₁ follows.

Further, while **DAC** $_1$ is easily seen to be provable in **IST**, we have

• **DAC**^{*} and **Un** are equivalent over **IST**.

Proof. Given α , Define $\varphi(x,y) \equiv \alpha(y)$. Then, for $f \in \text{Fun}(1)$, $\exists x \in 1\varphi(x,fx) \leftrightarrow \alpha(f0)$ and $\exists x \in 1 \forall y \varphi(x,y) \leftrightarrow \forall y \alpha(y)$. **DAC**^{*}₁ then gives

$$\exists f \in \operatorname{Fun}(1)[\alpha(f0) \to \forall y\alpha(y)],$$

from which **Un** follows easily.

Conversely, given φ , define $\alpha(y) \equiv \varphi(0, y)$. Then from **Un** we infer that there exists *b* for which $\alpha(b) \rightarrow \forall y \alpha(y)$, i.e. $\varphi(0, b) \rightarrow \forall y \varphi(0, y)$. Defining $f \in \text{Fun}(1)$ by $f = \{\langle 0, b \rangle\}$ then gives $\varphi(0, f0) \rightarrow \exists x \in 1 \forall y \varphi(x, y)$, whence $\exists x \in 1 \varphi(x, fx) \rightarrow \exists x \in 1 \forall y \varphi(x, y)$, and **Un** follows.

Next, while AC_2 is easily proved in IST, by contrast we have

• **DAC**₂ and **Dis** are equivalent over **IST**.

Proof. The antecedent of DAC_2 is equivalent to the assertion

$$\forall f \in \operatorname{Fun}(2)[\phi(0, f0) \lor \phi(1, f1)],$$

which, in view of the natural correlation between members of Fun (2) and ordered pairs, is equivalent to the assertion

$$\forall y \forall y [\phi(0, y) \lor \phi(1, y')].$$

The consequent of DAC_2 is equivalent to the assertion

$$\forall y \in Y \varphi(0,y) \lor \forall y' \in Y \varphi(1,y')$$

So **DAC**₂ itself is equivalent to

 $\forall y \forall y [\phi(0,y) \lor \phi(1,y')] \rightarrow \forall y \phi(0,y) \lor \forall y' \phi(1,y').$

But this is obviously equivalent to the scheme

$$\forall y \forall y [\alpha(y) \lor \beta(y')] \rightarrow \forall y \alpha(y) \lor \forall y' \beta(y'),$$

where *y* does not occur free in β , nor *y'* in α . And this last is easily seen to be equivalent to **Dis**.

Now consider \mathbf{DAC}_{2}^{*} . This is quickly seen to be equivalent to the assertion

$$\exists z \exists z' [\phi(0,z) \lor \phi(1,z') \rightarrow \forall y \phi(0,y) \lor \forall y' \phi(1,y'),$$

i.e. to the assertion, for arbitrary $\alpha(x)$, $\beta(x)$, that

$$\exists z \exists z' [\alpha(z) \lor \beta(z') \to \forall y \alpha(y) \lor \forall y' \beta(y')].$$

This is in turn equivalent to the assertion, for any sentence α ,

$$\exists y[\alpha \lor \beta(y) \to \alpha \lor \forall y\beta(y)] \tag{(*)}$$

Now (*) obviously entails **Un**. Conversely, given **Un**, there is *b* for which $\beta(b) \rightarrow \forall y \beta(y)$. Hence $\alpha \lor \beta(b) \rightarrow \alpha \lor \forall y \beta(y)$, whence (*). So we have shown that

• Over **IST**, DAC_2^* is equivalent to **Un**, and hence also to DAC_1^* .

In order to provide choice schemes equivalent to Lin and Stone we introduce

$$\mathbf{ac}_{X}^{*} \quad \exists f \in 2^{X} \left[\forall x \in X \exists y \in 2 \ \varphi(x, y) \rightarrow \forall x \in X \ \varphi(x, fx) \right]$$
$$\mathbf{wac}_{X}^{*} \quad \exists f \in 2^{X} \left[\forall x \in X \exists y \in 2 \ \varphi(x, y) \rightarrow \forall x \in X \ \varphi(x, fx) \right] \text{ provided } \vdash_{\mathbf{IST}} \forall x [\varphi(x, 0) \rightarrow \neg \varphi(x, 1)]$$

Clearly \mathbf{ac}_{X} is equivalent to

$$\exists f \in 2^X \left[\forall x \in X [\phi(x,0) \lor \phi(x,1)] \to \forall x \in X \phi(x,fx) \right]$$

and similarly for wac_x^* .

Then

• Over IST, \mathbf{ac}_1^* and \mathbf{wac}_1^* are equivalent, respectively, to Lin and Stone.

Proof. Let α and β be sentences, and define $\varphi(x,y) \equiv x = 0 \land [(y = 0 \land \alpha) \lor (y = 1 \land \beta)]$. Then $\alpha \leftrightarrow \varphi(0,0)$ and $\beta \leftrightarrow \varphi(0,1)$, and so $\forall x \in 1[\varphi(x,0) \lor \varphi(x,1)] \leftrightarrow \varphi(0,0) \lor \varphi(0,1) \leftrightarrow \alpha \lor \beta$. Therefore

$$\exists f \in 2^1 \ [\forall x \in 1[\phi(x,0) \lor \phi(x,1)] \to \forall x \in 1 \ \phi(x,fx)] \leftrightarrow \ \exists f \in 2^1[\alpha \lor \beta \to \phi(0,f0)] \\ \leftrightarrow \ [\alpha \lor \beta \to \phi(0,0)] \lor [\alpha \lor \beta \to \phi(0,1)] \\ \leftrightarrow \ [\alpha \lor \beta \to \alpha] \lor [\alpha \lor \beta \to \beta] \\ \leftrightarrow \ \beta \to \alpha \lor \alpha \to \beta.$$

This yields $\mathbf{ac}_1^* \to \mathbf{Lin}$. For the converse, define $\alpha \equiv \varphi(0,0)$ and $\beta \equiv \varphi(0,1)$ and reverse the argument.

To establish the second stated equivalence, notice that, when $\varphi(x,y)$ is defined as above, but with β replaced by $\neg \alpha$, it satisfies the provisions imposed in \mathbf{wac}_1^* . As above, that principle gives $\neg \alpha \rightarrow \alpha \lor \alpha \rightarrow \neg \alpha$, that is, $\neg \alpha \lor \neg \neg \alpha$. So **Stone** follows from \mathbf{wac}_1^* . Conversely, suppose that φ meets the condition imposed in \mathbf{wac}_1^* Then from $\varphi(0,0) \rightarrow \neg \varphi(0,1)$ we deduce $\neg \neg \varphi(0,0) \rightarrow \neg \varphi(0,1)$; now, assuming **Stone**, we have $\neg \varphi(0,0) \lor \neg \neg \varphi(0,0)$, whence $\neg \varphi(0,0) \lor \neg \varphi(0,1)$. Since $\neg \varphi(0,0) \rightarrow [\varphi(0,0) \rightarrow \varphi(0,1)]$ and $\neg \varphi(0,1) \rightarrow [\varphi(0,1) \rightarrow \varphi(0,0)]$ we deduce $[\varphi(0,0) \rightarrow \varphi(0,1)] \lor [\varphi(0,1) \rightarrow \varphi(0,0)]$. From the argument above it now follows that $\exists f \in 2^1 [\forall x \in 1[\varphi(x,0) \lor \varphi(x,1)] \rightarrow \forall x \in 1 \varphi(x,fx)]$. Accordingly \mathbf{wac}_1^* is a consequence of **Stone**.

Connections with term-forming operators.

The ε - and τ -*operators* are term-forming operators yielding, for formulas $\alpha(x)$, terms $\varepsilon_x \alpha$ and $\tau_x \alpha$ in which the variable *x* is no longer free; they are introduced in conjunction with the axioms—the ε - and τ -*schemes*:

$$\exists x\alpha(x) \to \alpha(\varepsilon_x \alpha) \qquad \alpha(\tau_x \alpha) \to \forall x\alpha(x).$$

It is an easy matter to derive **Un** from the τ -scheme when τ is merely allowed to act on formulas with at most one free variable. When τ 's action is extended to formulas with two free variables, the τ -scheme applied in **IST** yields the full dual axiom of choice $\forall X \mathbf{DAC}_{x}^{*}$. For under these conditions we have, for any formula $\varphi(x, y)$,

$$\forall x \in X[\phi(x, \tau_y \phi(x, y)) \to \forall y \phi(x, y)]$$
^(*)

Let $t \in \operatorname{Fun}(X)$ be the map $x \mapsto \tau_y \varphi(x, y)$. Assuming that $\forall f \in Y^X \exists x \in X \varphi(x, fx)$, let $a \in X$ satisfy $\varphi(a, ta)$. We deduce from (*) that $\forall y \in Y \varphi(a, y)$, whence $\exists x \in X \forall y \in Y \varphi(x, y)$. The dual axiom of choice follows.

In the case of the ε -operator, the number of free variables in the formulas on which the operator is allowed to act is an even more sensitive matter. If ε is allowed to act only on formulas with at most one free variable (so yielding only closed terms), the corresponding ε -scheme applied in **IST** is easily seen to yield both **Ex** and **ac**₁^{*}, and so also **Lin**. But it is (in essence) shown in [1] that, if only closed ε -terms are admitted, **SLEM** is not derivable, and so therefore neither is **WESP**. The situation changes dramatically when ε is permitted to operate on formulas with just *two* free variables. For then from the corresponding ε -scheme it is easy to derive **AC**_X for all sets X, and in particular **AC**_{Q2}, and hence also **SLEM**.

I have found three ways of strengthening, or modifying, the single-variable ε -scheme so as to enable it to yield **SLEM.** The first, presented originally in [], is to add to the ε -scheme Ackermann's Extensionality Principle, viz.

 $\forall x[\alpha(x) \leftrightarrow \beta(x)] \rightarrow \varepsilon_x \alpha = \varepsilon_x \beta .$

From these **WESP** is easily derived, and so, *a fortiori*, **SLEM**.

The second approach is to take the ε -axiom in the (classically equivalent) form

(*)
$$\alpha(\varepsilon_x \alpha) \vee \forall x \neg \alpha(x)$$

From this we can intuitionistically derive **SLEM** as follows:

Given a sentence β , define $\alpha(x)$ to be the formula

$$(x = 0 \land \beta) \lor (x = 1 \land \neg \beta).$$

Then from (*) we get

$$[(\varepsilon_{x\alpha} = 0 \land \beta) \lor ([(\varepsilon_{x\alpha} = 1 \land \neg \beta)] \lor \forall x \neg [(x = 0 \land \beta) \lor (x = 1 \land \neg \beta)],$$

which implies

$$[\beta \lor \neg \beta) \lor [\forall x \neg (x = 0 \land \beta) \land \forall x \neg (x = 1 \land \neg \beta)],$$

whence

$$[\beta \lor \neg \beta) \lor [\neg \beta \land \neg \neg \beta],$$

winding up with

6

 $\beta \lor \neg \beta$.

The third method is to allow ε to act on *pairs* of formulas, each with a *single* free variable. Here, for each pair of formulas $\alpha(x)$, $\beta(x)$ we introduce the "relativized" ε -term $\varepsilon_x \alpha/\beta$ and the "relativized" ε -axioms

(1)
$$\exists x \ \beta(x) \rightarrow \beta(\varepsilon_x \alpha/\beta)$$
 (2) $\exists x \ [\alpha(x) \land \beta(x)] \rightarrow \alpha(\varepsilon_x \alpha/\beta).$

Notice that the usual ε -term $\varepsilon_x \alpha$ is then $\varepsilon_x \alpha/x = x$. In the classical ε -calculus $\varepsilon_x \alpha/\beta$ may be defined by taking

$$\varepsilon_x \alpha / \beta = \varepsilon_y [[y = \varepsilon_x (\alpha \land \beta) \land \exists x (\alpha \land \beta)] \lor [y = \varepsilon_x \beta \land \neg \exists x (\alpha \land \beta)]].$$

But the relativized ε -scheme is not derivable in the intuitionistic ε -calculus since it can be shown to imply **SLEM**. To see this, given a formula γ define

$$\alpha(x) = x = 1 \qquad \beta(x) = x = 0 \lor \gamma.$$

Write a for $\varepsilon_x \alpha / \beta$. Then we certainly have $\exists x \beta(x)$, so (1) gives $\beta(a)$, i.e.

 $(3) a = 0 \vee \gamma$

Also $\exists x (\alpha \land \beta) \leftrightarrow \gamma$, so (2) gives $\gamma \rightarrow \alpha(a)$, i.e.

```
\gamma \rightarrow a = 1,
```

whence

 $a \neq 1 \rightarrow \neg \gamma$,

so that

 $a = 0 \rightarrow \neg \gamma$.

And the conjunction of this with (3) gives $\gamma \vee \neg \gamma$, as claimed.

References

[1] Bell, John L. *Hilbert's epsilon operator in intuitionistic type theories*, <u>Math. Logic</u> <u>Quarterly, 39</u>, 1993.

[2] Bell, John L. *Hilbert's epsilon-operator and classical logic*, <u>Journal of Philosophical</u> <u>Logic</u>, <u>22</u>, 1993. [3] Grayson, R. J. *Heyting-valued models for intuitionistic set theory.* In Fourman, M. P., Mulvey, C. J., and Scott, D. S. (eds.) (1979) *Applications of Sheaves. Proc. L.M.S. Durham Symposium* 1977. Springer Lecture Notes in Mathematics 753, pp. 402-414.