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Smooth infinitesimal analysis, SIA, is a theory formulated within higher-order 

intuitionistic logic and based on (at least) the following axioms: 

 

Axioms for the continuum, or smooth real line R. These include the usual 

axioms for a commutative ring with unit expressed in terms of two operations + and i , 

and two distinguished elements 0 ≠ 1.  In addition we stipulate that R is a local ring, 

i.e., the following axiom: 

 

∃y  x i y = 1 ∨ ∃y (1 – x) i y = 1. 

 

Axioms for the strict order relation < on R. These are: 

1. a < b and b < c implies a < c. 

2. ¬(a < a) 

3. a < b implies a + c < b + c for any c. 

4. a < b and 0 < c implies a c b c≤i i  

5. either 0 < a or a < 1. 

6. a ≠ b1 implies a < b or b < a. 

7. x ≠ 0 implies ∃y x i  y = 1. 

8. 0 < x  implies ∃y  x = y2. 

 

 Arithmetical Axioms 
These govern the set N of Archimedean (or smooth) natural numbers, and read as 

follows: 

1. N is a cofinal or Archimedean subset of R, i.e. N  ⊆  R and                          

∀x ∈ R ∃n ∈ N x < n. 

2. Peano axioms:  0 ∈ N       

                                                           
1 Here a ≠ b stands for ¬a =b. It should be pointed out that axiom 6 is omitted in some presentations of SIA, 
e.g. those in [3] and [4]. 
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                              ∀x ∈ R(x ∈ N → x + 1 ∈ N)    

                               ∀x ∈ R(x ∈ N → x + 1 ≠ 0) 

3. Geometric Induction scheme. For every formula α(x) involving just =, ∧, ∨, , 

⊥, ∃ 2    

  

α(0) ∧ ∀x∈N(α(x) → α(x + 1)) → ∀xα(x).  

  

 Using geometric induction it follows that  

 

• N has decidable equality, i.e. ∀x∈N∀y∈N( = ∨ ≠x y x y ) 

• N is linearly ordered, i.e. ∀x∈N∀y∈N( < ∨ = ∨ <x y x y y x ) 

• N satisfies decidable induction: for any (not necessarily geometric formula 

α(x), 

 

∀x∈N(α(x) ∨ ¬α(x)) → [α(0) ∧ ∀x∈N(α(x) → α(x + 1)) → ∀xα(x)].  

 

The relation ≤ on R is defined by a ≤ b ⇔ ¬b < a. The open interval (a, b) and 

closed interval [a, b] are defined as usual, viz. (a, b) =  {x: a < x < b} and [a, b] =            

{x: a ≤ x ≤ b}; similarly for half-open, half-closed, and unbounded intervals.         

 Write ∆ for the subset {x: x5 = 0} of R; we use the letter ε as a variable ranging 

over ∆. Elements of ∆ are called (nilsquare) infinitesimals or microquantities. Since, 

clearly, 0 ∈ ∆, ∆ may be regarded as an infinitesimal neighbourhood of  0. ∆ is subject to 

the 

         

Microaffineness Principle. For any map g: ∆ → R there exist unique a, b ∈  R 

such that, for all ε, we have 

g(ε) = a + b.ε. 

            

 Remark. The monoid ∆∆ of self-maps of ∆ may be regarded as acting on ∆ by 

evaluation: for f ∈ ∆∆ , ( )f f⋅ ε = ε . The submonoid R0 of ∆∆ consisting of maps vanishing 

at 0 may then be thought of as the space of ratios of infinitesimals. Now it follows from 

                                                           
2 Such formulas are called geometric: they are preserved under [the inverse image parts) of arbitrary geometric 
morphisms between toposes.  
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the microaffineness principle that R0 is isomorphic to R, so that R may itself be thought 

as the space of ratios of infinitesimals. This was essentially the view of Euler, who 

regarded (real) numbers as representing the possible results of calculating the ratio 

0/0. For this reason F. W. Lawvere has proposed calling R the space of Euler reals. 

 

 From these axioms it follows that the continuum in SIA differs in certain key 

respects from its counterpart in constructive analysis CA, which is furnished with an 

elegant axiomatization in [2].  

 To begin with, the third basic property of the strict ordering relation < in CA, 

given as axiom R2(3) on p.102 of [2], and which may be written 

 

(*)                                   ¬(x < y ∨ y < x) → x = y 

 

is incompatible with the axioms of SIA. For (*) implies 

  

(**)                                 ∀x¬( x < 0 ∨ 0 < x) → x = 0. 

 

But in SIA we have by Exercise 1.6 and Thm. 1.1 (i) of [1], 

 

∀x∈∆¬( x < 0 ∨ 0 < x) ∧ ∆ ≠ {0}, 

 

which clearly contradicts (**). 

 Thus in CA the set ∆ of infinitesimals would be degenerate (i.e., identical with 

{0}), while the nondegeneracy of ∆ in SIA is one of its characteristic features. 

 Next, call a binary relation S on R stable if it satisfies 

 

∀x∀y (¬¬xRy → xRy). 

  

 In CA, the equality relation is stable, a fact which again follows from principle 

R2(3) referred to above. But in SIA it is not stable, for, as shown in Thm. 1.1(ii) of [1], 

there we have ∀x∈∆¬¬x = 0. If = were stable, it would follow that ∀x∈∆ x = 0, in other 

words, that ∆ is degenerate, which is not the case in SIA.  
 Axiom 6 of SIA, together with the transitivity and irreflexivity of <,  implies that 

< is stable. This may be seen as follows. Suppose ¬¬a < b. Then certainly a ≠ b, since a 

= b → ¬a < b by irreflexivity. Therefore a < b or b < a. The second disjunct together with  

¬¬a < b and transitivity gives ¬¬a < a, which contradicts ¬a < a. Accordingly we are left 
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with a < b. As can be deduced from assertion 8 on p. 103 of [2], the stability of < implies 

Markov’s principle, which is not affirmed in CA.3 

A subspace A ⊆ R is indecomposable if it admits only trivial partitionings, that 

is, if A = U ∪ V and U ∩ V = ∅ (under these conditions U and V are called detachable 

subsets of A), then U = ∅ or V = ∅. Clearly A is indecomposable iff any map f: A → 2 = 

{0, 1} is constant.  

 In SIA one also assumes the 

 

 Constancy Principle. If A ⊆ R is any closed interval on R, or R itself, and f: A → 

R satisfies f(a + ε) = f(a) for all a ∈ A and ε ∈ ∆, then f is constant.    

  

It follows in SIA from the Constancy Principle that R itself and each of its closed 

intervals is indecomposable. From this we can deduce that in SIA all intervals in R are 

indecomposable. From the indecomposability of R  it follows that the logical principle 

¬α ∨ ¬¬α is not affirmable in SIA (take α to be the predicate x = 0). 

 The set Q of (smooth) rational numbers is defined as usual to be the set of all 

fractions of the form m/n with m, n ∈ N, n ≠ 0. The fact that N is cofinal in R ensures 

that Q is dense in R.  

 Since R is a local ring, the set Θ of noninvertible elements of R (which of course 

includes all the nilpotent elements, and in particular all the microquantities) is a 

maximal ideal in R. It follows from axiom 7 that  

 

Θ = {x∈R: ¬x ≠ 0}, 

  

and it is not hard to show that also 

 

Θ = {x ∈ R:  ∀n∈N   –1/(n + 1) < x  < 1/(n + 1)}. 

 

Θ may be regarded as the space of noninvertible infinitesimals.  

 A Dedekind real is a pair (U, V) ∈ PQ × PQ  satisfying the conditions: 

 

∃x ∃y (x ∈ U ∧ y ∈ V) 

U ∩ V  = ∅  

∀x (x ∈ U ↔ ∃y∈U. x < y) 

                                                           
3 In versions of SIA that omit axiom 6 neither the stability of <, nor  Markov’s principle, can be derived.  



 5

∀x (x ∈ V ↔ ∃y∈V. y < x 

∀x∀y(x < y → x ∈ U ∨ y ∈ V). 

 

Peter Johnstone shows in his book how to turn the set Rd of Dedekind reals into an 

ordered ring. (In the topos Shv(X) of sheaves over a topological space X, Rd  is the sheaf 

of continuous real-valued functions on open subsets of X.) As shown by Peter Schuster, 

this ring is always constructively complete, that is, satisfies the condition: Let A be an 

inhabited subset of Rd that is bounded above. Then sup A exists if and only if for all x, y 

∈ Rd with x < y, either y is an upper bound for A or there exists a ∈ A with x < a. (A real 

number b is called a supremum, or least upper bound, of A if it is an upper bound for A 

and if for each ε > 0 there exists x ∈ A with x > b – ε.) 

 Although Rd is constructively complete, it is not conditionally complete in the 

classical sense because of the failure of ¬α ∨ ¬¬α (since, as originally shown by 

Johnstone, conditional completeness of Rd is actually equivalent to this logical law: in 

Shv(X), ¬α ∨ ¬¬α holds iff X is extremally disconnected, that is, the closure of every 

open set is open.) But Rd shares some features of the constructive reals not possessed 

by R, e.g. 

 

¬¬x = y → x = y 

x ≤ y ∧ y ≤ x → x = y. 

xn  = 0 → x = 0.  

 

 There is a natural order preserving homomorphism ϕ: R → Rd given by 

 

ϕ(r) = ({q ∈ Q: q < r}, {q ∈ Q: q > r}) 

 

This is injective on Q, and embeds Q as the rational numbers in Rd. Moreover, ker ϕ = 

Θ, so ϕ induces an embedding of the quotient ring R/Θ into Rd. R/Θ is R shorn of its 

nilpotent infinitesimals: it is both a field of fractions and an integral domain, that is, 

satisfies 

 

∀x(x ≠ 0 → x is invertible)               ∀x∀y(x i y = 0 → x = 0 → y = 0). 

 

It can be shown that ϕ is surjective—so that R/Θ ≅ Rd—precisely when R is 

constructively complete in the sense above. In that event Rd is both a field of fractions 
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and an integral domain, properties that the ring of Dedekind reals in a topos fails in 

general to possess.  

 In any topos with an object of natural numbers (in particular, in any model of 

SIA) the usual open interval topology can be defined on Rd. Stout has shown that with 

this topology Rd is always connected in the sense that it cannot be partitioned into two 

disjoint inhabited open subsets. In SIA Rd actually inherits a stronger indecomposability 

property from R. In fact, if A is a detachable subset of Rd, then ϕ[R] ⊆ A or A ∩ ϕ[R] = ∅. 

For suppose A detachable and let f: Rd → 2 be its characteristic function. Then f  ϕ:     

R → 2 must be constant since R is indecomposable. If f  ϕ is constantly 1, then ϕ[R] ⊆ 

A; if constantly 0, then A ∩ ϕ[R] = ∅. It follows that if ϕ is surjective then Rd is itself 

indecomposable.  

 Mention should be made here of Rc,  the set of Cauchy reals. This is defined to 

be the set of sequences  q = (qn)n∈N of rationals satisfying 

 

∀m∀n[0 < m ≤ n → 
1
m

−
1

m nq q
m

< − < ] 

 

factored by the equivalence relation 

 

2 2[ 0 n nn n q q
n n

′∀ > → − ≤ − ≤ ]. 

 

In his book Topos Theory Johnstone shows how to turn Rc into a commutative ring. (In 

the category of sheaves over a locally connected space X, Rc is the sheaf of locally 

constant real-valued functions on open subsets of X.). There is a natural injection       

Rc →m  Rd given by 

 

    = ∃ < − ∃ > +        

1 1(( )) : ( ) , : ( )n n nm q q n q q q n q q
n n

. 

 

In general, this injection is not onto, as shown by the example of sheaves on a locally 

connected space.  

Finally, we describe how certain aspects of nonstandard analysis can be 

reproduced in SIA.  
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First, we define the set  of standard natural numbers to be the intersection of 

all inductive subsets of N, i.e., 

 

 = {n ∈ N: ∀X∈PN [0 ∈ X ∧ ∀m∈N(m ∈ X → m + 1 ∈ X)  → n ∈ X]}. 

 

 of course satisfies full induction: 

 

∀X∈P  [0 ∈ X ∧ ∀m∈ (m ∈ X → m + 1 ∈ X)  → X = ]. 

 

From the fact that N satisfies decidable induction it follows that 

 

•  is a detachable subset of N iff  = N. 

 

The full induction scheme for  may be used to show that N is an end-extension of  , 

i.e., 

∀x∈N∀n∈ (x < n → x ∈ ). 

 

We define the space of infinitesimals to be  

  

{ : ( 1/( 1) 1( 1))}.x n n x nΓ = ∈ ∀ ∈ − + < < +R `  

 

This contains the space Θ of noninvertible infinitesimals as well as the space of 

invertible or Robinsonian infinitesimals 

 

I = {x ∈ R: x is invertible}.  

 

Notice that noninvertible infinitesimals are strictly “smaller” than Robinsonian ones in 

that  

 

∀x∀y[x ∈ Θ ∧ y ∈ I ∧ y  > 0  → x < y]. 
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To assert the existence of Robinsonian infinitesimals is to assert that I is inhabited: this 

is equivalent to asserting that the set N –  of nonstandard integers is inhabited, or 

equivalently, that the following holds: 

 

(*)                                        ∃n∈N∀m∈  m < n. 

 

When (*) is satisfied, as it is in certain models of SIA, we shall say that nonstandard 

integers, or invertible infinitesimals, are present. Notice that while it is perfectly 

consistent to assert the presence of invertible infinitesimals, i.e., that I be inhabited,  it 

is inconsistent to assert the “presence” of nonzero noninvertible infinitesimals, i.e. that 

Θ – {0} be inhabited. 

One can also postulate the condition  

 

∀n∈N[∀x∈N–  (x > n) → n ∈ ], 

 

i.e. “a natural number which is smaller than all nonstandard natural numbers must be 

standard”. This is in fact equivalent to the condition that  be a ¬¬-stable subset of N, 

i.e. N – (N – )  = . Assuming that nonstandard integers exist, this latter may be 

understood as asserting that as many such exist as is possible. 

 When nonstandard integers are present, one can establish an overspill principle 

for N in the following form: for any geometric formula α(x), 

 

∀m∈ ∃n∈ (m < n ∧ α(n)) → ¬∀n[α(n) → n ∈ ]. 

 

In the presence of invertible infinitesimals Rd is a nonstandard model of the reals 

without nilpotent elements. The passage via ϕ from R to Rd eliminates the nilpotent 

elements, but preserves invertible infinitesimals. When ϕ is onto, Rd is then an 

indecomposable nonstandard model of the reals. 

Within R we have the subring of accessible reals 

 

Racc = {x∈R: ∃n∈ (–n < x < n)}, 
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in which I is an ideal. Since each open interval in R is indecomposable, Racc satisfies 

the condition of being an inhabited set which includes, for each pair x, y of its 

members, an indecomposable subset I for which {x, y} ⊆ I. It follows from this that Racc  

is indecomposable.    

Within Rd we have the subring of finite reals 

 

Rfin = {x∈Rd: ∃n∈ (–n < x < n)}. 

 

Clearly ϕ carries Racc into Rfin. Since Racc is indecomposable, Rfin inherits an 

indecomposability property analogous to that established for Rd, namely, if A is a 

detachable subset of Rfin, then ϕ[Racc] ⊆ A or  A ∩ ϕ[Racc] = ∅.   

 Finally, we observe that Rfin can only be a detachable subset of Rd when N = , 

or equivalently, when Racc and R coincide, or to put it another way, there are no 

invertible infinitesimals. For if Rfin is detachable in Rd, then either ϕ[R] ⊆ Rfin, or Rfin ∩ 

ϕ[R] = ∅.  The latter being obviously false, it follows that ϕ[R] ⊆ Rfin. But then ϕ[N] ⊆   

Rfin ∩ ϕ[N] = ϕ[ ], whence N ⊆ . Thus, in the presence of invertible infinitesimals, the 

property of being a finite Dedekind real is undecidable. 
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