J. L. BELL

HILBERT'S ¢e-OPERATOR AND CLASSICAL LOGIC

1. INTRODUCTION: THE ¢-AXIOM

In the course of his investigations into the foundations of mathemat-
ics, Hilbert came to regard the axiom of choice as an indispensable
principle' and enlisted its support in his defence of classical
mathematical reasoning against the attacks of the intuitionists. He
refrained, however, from introducing the axiom overtly into his logi-
cal calculus: its set-theoretical character prevented it, one supposes,
from possessing the formal transparency he demanded of a “logical”
principle. Instead he adopted a postulate — the logical e-axiom® —
which, while closely akin in content to the axiom of choice, appeared
both to possess a more evident formal simplicity and to reflect the
more faithfully his professed conviction that (classical) mathematical
practice requires the positing of what he termed ideal elements. To
formulate this postulate he introduced, for each predicate A(x) of his
logical calculus, a term exA or simply® ¢, which, intuitively, is
intended to name an (indeterminate) object satisfying 4(x). Writing
“A(1)" for the result of substituting ™" for each free occurrence of
“x" in A(x), the e-axiom then reads:

() A(x) - A(ey).
aln any of the usual logical systems this is equivalent to
IxA(x) « A(e,).

We may think of ¢, as naming an ideal object associated with 4: all
one knows about it is that, if anything satisfies A. it does.

Notice that since 4 may contain other free variables v,. y.. . . . .
the identity of the ideal object ¢, depends, in general, on the values
assigned to these variables. Thus ¢, may be regarded as the result of

Journal of Philosophical Logic 22: 1 —18. 1993.
O 1993 Kluwer Academic Publishers. Printed in the Netherlands.



2 J. L. BELL

having chosen, for each sequence of values of y,, y,, . . . . a value of
X so that A is satisfied. That is, €4 may be construed as a choice func-
tion, whose existence (in a set-theoretical framework) is justified by
the axiom of choice.

Hilbert’s chief purpose in formulating his e-axiom was to enable the
quantifiers to be defined in such a way as to avoid having to construe
them as signifying conjunctions or disjunctions of infinite sets of
propositions. Thus he defined* (assuming the g-axiom)

IxA(x) = A(e,)
VxA(x) = A(e,).

These definitions were used in turn to justify the logical principle he
regarded as the lynch-pin of classical reasoning in mathematics,
namely

Q) —VxA(x) » Ix A(x).

Now it is a trivial matter to derive (Q) if we define dxA(x) and
VxA(x) as above. However, while the definition of 3xA(x) seems per-
fectly acceptable, we may well ask: what justifies Hilbert’s definition
of VxA(x)? Clearly, it would be Justified if one could derive

(") Ae,) - A).

Let us see how we might set about deriving (*), assuming (e) as an
axiom. All we know about ¢_, is that’

1 A(x) > A ,)
whence
l,—:_I‘IA(a_,A) = T A(x).

Now if we were permitted to assume as an axiom, as of course we
may classically, the law of double negation, viz..

) TITA(X) > A(x),

then (*) would immediately follow.
Hilbert actually assumes® (T771) and so is justified in defining
V.xA(x) as he does. However, it was pointed out (in 1925) by
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Kolmogorov’ that (/) already entails (Q) in (intuitionistic) predi-
cate logic. That is, for the purpose of deriving (Q), which for Hilbert
was of prime importance, the assumption of (—1—1) renders the &-
axiom superfluous. It would seem natural, accordingly, to ask
whether (Q) is derivable from the e-axiom without assuming (——1),
that is, within an intuitionistic framework. We answer this question in
the negative in § 7.

2. SOME CONSEQUENCES OF THE e-AXIOM

To begin with, we note that, although we shall see that (Q) is not
derivable from () intuitionistically, () does imply the somewhat
weaker scheme known as Markov's principlé®, viz.

(Mar) Vx[A(x) - A(x)] -
- [VxA(x) = Ix1A4A(x)].

Markov’s principle asserts (Q) for decidable predicates A(x).
To derive (Mar) from (g) intuitionistically, we first employ the latter
to obtain

TAX) i D1 A(e- )

whence

TTA(eL4) [ T A).
Therefore

VX[ A(x) - AX)), A(e- ) = Ax)
whence

VX[ Ax) - AX)],  Aes,) |7 YxA(x)

X[ A(x) = A(x)] |+ A(em,) = VxA(x)
e VxA(x) - 14(e- )
- —VxA(x) = Ix A(x)

as required.
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Hilbert refers’ to (Q) as the law of excluded middle, but is is more
properly identified as a transfinite form of (one of) de Morgan’s laws,
viz.

M) (B AC)->"Bv~C.
(M) is not intuitionistically valid, but its dual form
—(Bv C)-> "B A C
is.
It is straightforward matter to show that (M) follows from (Q) in
any intuitionistic system / (in particular, Heyting arithmetic) which

satisfies the following modest ‘‘decidability” condition: there is a con-
stant a for which

D) HVYx(x =a v x # a).
For suppose (D) holds; define
*) Ax)=(x=a A B v (x#anC()
Then
HVxA(x) & B A C
and
lr3xAx) e Ix[(x =a A B) A 1(x # a A C)]
—Ixf(x =a—>—1B) A (x #a - C)
« B v C.

From this we see immediately that (Q) i+ (M).

More interestingly, we can obtain (M) directly from (g), assuming
that the intuitionistic system I in which derivation takes place satis-
fies, in addition to (D), the condition: there is a constant b for which
lra # b. Let us denote the conjunction of these conditions by (D).
Suppose I satisfies (D) and includes (g) as an axiom. Define 4(x) as
in (*) above. Then we have

tr A(a) «* B, H AMd) « C
**) HAXx) e [(x =a > 1B A (x # a - ()]
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Now

TA@) I 1Ae-,) TAb) A4,
sO

By T1A(e-,) TIC I MA(e,)
whence

T A(en,) |5 B 1 A(e-,) | G
It follows that
A(e-,) I 3B A G
so that, invoking the intuitionistically correct principle
B A CE(B A C),
we obtain
AL ,) (B A C).
Hence
(B A C) |y 11 A(e )
But it is intuitionistically correct that
-1 B« B,
so we get
(B A C) |5 MA(e-,).
Hence, substituting “‘c_, ,” for “x” in (**) we obtain
***) "B AC) (eny=2a—>7B) A
(-4 # a - ().
But, by (D),
es = ave,, #a,
and this, together with (***) gives
(B AC)ly 1B v 1C,

as required.
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3. THE PRINCIPLE OF EXTENSIONALITY AND THE LAW OF
EXCLUDED MIDDLE

We have seen that Markov’s principle and de Morgan’s law are deriv-
able from the e-axiom. As we shall show in § 7, however, (Q) is not so
derivable, and therefore neither is (=), nor the latter’s equivalent
the (genuine) law of excluded middle, viz.

(LEM) A(x) v —1A(x).

This prompts the question of whether a strengthened version of the
e-axiom suffices to yield (LEM) (and hence also (Q)). To put it
another way, would the provision of further information concerning
the behaviour of the ideal objects ¢, ensure the derivability of (LEM)
and classical logic? We shall presently answer this question in the
affirmative.

Since the ¢, have been introduced intensionally, that is, by the form
of the defining predicate 4, we do not yet possess a useful sufficient
identity condition for them. One such condition is suggested by Hil-
bert’s use of the ¢, to define the existential quantifier (see §1). The
meaning of IxA(x) is classically determined by the extension of A(x),
i.e., the class of objects satisfying A(x): 3xA4(x) may be construed as
meaning “the extension of A(x) is non-empty”. But, assuming the
¢-axiom, the meaning of 3xA(x) is determined by the identity of &,:
here 3xA(x) may be construed as meaning ‘¢, satisfies 4. Thus, in
determining the meaning of 3xA(x), the role of ¢, is to serve as a
surrogate for the extension of A(x). In that case, it would not be
unreasonable to suppose that the identity of ¢, is completely deter-
mined by the extension of A(x). That is, the extensional equivalence of
predicates should be sufficient to yield the coincidence of the associ-
ated ideal objects. (Thus, for example, the ideal man would coincide
with the ideal featherless biped.)

All this may be formulatd symbolically as the following extensional-
ity principle for ideal objects"

(Ext) Vx[A(x) & B(x)] — ¢, = &;5.

We are going to show that the addition of (Ext) to (¢) suffices to yield
(LEM). In fact, only substantially weakened versions of (¢) and (Ext)
are required for the argument to go through.
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Let T be an intuitionistic theory formulated in a first order
language £. We assume that £ contains constants 0, 1 and |+ 0 # 1.

LEMMA". Given a formula A(x) of ¥ define the formulas Bx, y),
C(x,y) by

Bx,y) =y =0 v A\x)
Cx,y) =y =1 v Ax).

Suppose that there are in ¥ terms sx, tx such that

n br B(x, sx) A C(x, tx)
2) A(X) by sx = 1x.
Then

br A(x) v T1A(x).
Proof. From (1)
brlsx =0 v AX)] A [tx = 1 v A(x)]
whence, by distributivity,
brlsx =0 A 1x = 1] v A(x)
so that
3) lrsx # tx v A(x).
But, from (2),
X # ix |y T1AX)
and the conclusion follows from (3). [ |

THEOREM. Suppose that to each formula B(x, y) of & such that
br 3yB(x, y) it is possible to assign a term egzx in such a way that

1) hr B(x, £5x)
(2) b Yy[B(x, y) & C(x, y)] = e5x = &cx.
Then for any formula A(x),
b A(x) v T1A(x).
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Proof. Defining B(x, y), C(x, y) as in the statement of the Lemma,
it is readily seen that by 3yB(x, y) and |r 3yC(x, y). Then taking sx, tx
as g5x, £cx respectively, (17) above yields (1) and (2') yields (2). The
conclusion now follows from the Lemma. [ |

Let us summarize. Call a predicate B(y) T-exampled if }y+ 3yB(y) and
call a term ¢ such that pr B(f) an exemplar for B. Call T extensionally
saturated if an exemplar can be assigned to any T-exampled predicate
in a manner that depends only on its extension. The Theorem then
asserts that the law of excluded middle holds in any extensionally
saturated theory. As an immediate consequence, (¢) and (Ext) together
yield (LEM).

If T is pure intuitionistic predicate calculus or Heyting arithmetic, it
is well known'? that any T-exampled predicate has an exemplar. Thus
it is not the mere availability of exemplars, but the stipulation that
they can be chosen extensionally, which yields the law of excluded
middle. In short, not existence, but extensional existence, yields classi-
cal logic.

4. THE PRINCIPLE OF EXTENSIONALITY VS. THE PRINCIPLE
OF BIVALENCE

It is instructive to contrast the derivation of the law of excluded
middle we have just presented with what may be regarded as the
orthodox one. Excluded middle is usually derived from the principle
of bivalence which asserts that any statement must be either true or
false. (Note that, although the principle of bivalence clearly implies
excluded middle, the converse fails.) Now since the (metalinguistic)
use of “either . . . or” in its formulation makes the principle of
bivalence essentially a strengthened version of excluded middle, deriv-
ing the latter from it is tantamount to a petitio principii. Nonetheless,
one may still ask whether the principle of bivalence is itself derivable
from more fundamental principles.

It is usually held that asserting the principle of bivalence is con-
stitutive of a realist or objective attitude toward the meaning of state-
ments. Thus, while it is recognized that, for instance, an epistemic
construal of statements leads to violations of the principle of
bivalence, it is (at least implicitly) held that the realist construal
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implies bivalence. However, if we are not prepared to accept this
assertion tout court, then it would seem that we are entitled to ask:
what is it about the structure of reality that warrants the claim that
statements, construed as referring to that reality, take just two truth
values (“‘true” and ‘‘false’”)? Is there an answer to this question that is
not circular? One might, for example, define, as Frege did, the objec-
tive reference of a statement to be one of two truth vlaues: but there
seems to be nothing in the concept of “objective” compelling one to
select the number *““two™ here. Another approach would be to argue
that the existence of just two truth values is the simplest (non-
degenerate) possibility. While this can scarcely be denied, it cannot
yield the required conclusion without the further assumption that
reality in fact possesses the appropriate simplicity. However, this
again begs the question unless one supplies both a deeper analysis of
the concept of simplicity, and a cogent argument that reality possesses
this attribute.

The point I wish to emphasize is that while, as far as [ am aware,
the principle of bivalence has (as yet) no convincing derivation from
realist principles, the Theorem above shows that, by contrast, its
cousin the law of excluded middle can be noncircularly derived from
ontological principles. For (g) is clearly ontological in nature, while
(Ext) acts as an adjunct supplying conditions for the existents pos-
tulated in (g). In addition, neither (¢) nor (Ext) contains explicit
occurrences of the logical operations (v, —) appearing in (LEM), so
the derivation of the latter from these principles may justly be called
non-circular.

A further point to be noted is that the extensionality principle does
not actually assert the existence of extensions'® of predicates, so in
positing it we are not introducing completed infinities (which of
course Hilbert himself was trying to avoid). It may be objected,
however, that the universal quantifier (Vx) on the left hand side of
the arrow in (Ext) already presupposes the existence of a domain
over which x varies and that such a domain is, in general, infinite.
Without denying the justice of this claim, we observe that the proof
of the Lemma shows that, in deriving (LEM), the full strength of
(Ext) is not required. In fact, we need only assume that the bound
variable ranges over the (finite) set {0, 1}, so merely necessitating the
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introduction of ideal elements of this set. To obtain excluded middle,
we need then just suppose that these ideal elements of {0, 1} can be
specified extensionally. This seems a modest assumption, which in
particular involves no deployment of completed infinities.

5. A MATHEMATICAL CONSEQUENCE OF THE
EXTENSIONALITY PRINCIPLE

It is a tenet of the intuitionistic school that all functions from reals to
reals are continuous'. We shall show how (Ext) and (e) can be used
to construct a discontinuous such function in an elegant way.

Let T be an intuitionistic first-order theory formalizing the elemen-
tary algebra of the real numbers, and consider the formulas

Ax, ) =y=0v (x=0Ary=1)

Bix,y) =y=1vix=0nany=0).
Clearly '

br3pA(x, y) A 3yB(x, y).

Assuming (g) is an axiom of 7, there are functions (i.e., terms) f, g
such that

br A(x, fx) A B(x, gx),

ie.,
. hfX=0Vv (x=0Afx=1)
© {hvgx=lv(x=0/\gx=0).

Observe that it was, strictly speaking, unnecessary to invoke (&)
merely to obtain f, g satisfying (*), for we could clearly have taken
fx = 0 and gx = 1 identically. But now suppose we insist that (Ext)
holds in T and that accordingly we may choose f and g so that they
depend extensionally on A and B, i.e.,

Vy[A(x, y) « B(x, )] It fx = gx.

In particular, we would then have

x =0 fx =gx
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**) R /(0) = g0).
From (*) it follows that
) Fr(fx=0Argx=1v x=0.
Now define # = 1 — (f — g)>. Then, by (**¥)
brhx =0 v x = 0,
whence
frx # 0> hx = 0.

But [+ 4(0) = 1 from (**). We conclude that 4 is a J-function, and
hence discontinuous.

The argument here may be paraphrased as follows, using set-theor-
etic notation. Suppose we have obtained two functions £, g such that

graph (f) < {(x, 0>:xe R} U {0, 1)}
graph (g) = {<x, 1):xe R} U {<0, 0>}.

The principle of extensionality applied to the definitions of fand g
implies (as above) that f and g coincide at 0. This in turn implies that
the graph of f or the graph of g has a “jump” at 0, although we do
not know which. However, this does not matter because the function
h =1~ (f — g?has a jump at 0 in either case.

We may summarize this by asserting that, in a world in which all
maps are continuous (e.g., the smooth topos), some existents must be
conceived as being given solely intensionally.

6. HILBERT'S :-OPERATOR

The e-operator was not the first device invented by Hilbert to justify
the use of classical reasoning in mathematics. For in 1923 he
introduced what amounts to a dual form of the e-operator, the
t-operator, which was governed by a principle he called the Transfinite
Axiom";

(Trans) A(z,) - A(x).
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That is, for each predicate A(x), T, is an object which, if it satisfies
A(x), then anything does. One surmises that Hilbert abandoned the
t-operator in favour of the e-operator because the latter (together
with its governing ¢-axiom) is more closely related to the axiom of
choice, and consequently, more easily justified.

The t-operator has the merit that it can be used to derive (Q). To
obtain (Q) from (Trans), note that from the latter we can derive

TVxA(x) = A1)
but
—1A(1,) - 3IxAX)

and (Q) follows. Thus in an existential sense the t-operator is
stronger than the e-operator (although (Trans) alone will not yield
(LEM): see §7).

It is interesting to examine a’specific case which the strength of the
z-operator is made evident. In § 5 of Kolmogorov’s 1925 paper he
considers some examples of mathematical propositions unprovable
without the use of the law of exluded middle. One such proposition is
the following: every point not belonging to a given closed set (in R) is
contained in an interval disjoint from the set. Let us see how this can
be derived from (Trans). Given a closed set C and a point p, let I be a
variable ranging over intervals containing p, and let ®(/) be the
formula

Ix(xe I A xeC).
Then since C is closed, we have
*) —Vio{d) - peC.
Now let I, be 14; then [, is an interval and
(1) —» VIO().
This together with (*) yields
o) »peC
whence

p ¢ C - 0L).
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So, if p ¢ C, I, is an interval containing p disjoint from C.
It is clear that the ¢-operator will not yield this result directly.

7. A MODEL THEORY FOR THE INTUITIONISTIC ¢-CALCULUS

Let & be a first-order language with equality which for simplicity we
will assume has just one unary predicate symbol P. The language 2,
has an additional symbol ¢ and an additional term forming scheme:

ex@ is a term whenever ¢ is a formula.

We assume the usual axioms and rules of inference for first-order
intuitionistic logic in %,, together with the axiom scheme:

@ 3Ixg - o(x/exq).

Z., together with these axioms and rules of inference, will be called
the intuitionistic e-calculus. We write ‘|- ¢ for “¢ is provable in this
calculus™.

Now let L = (L, <) be an inversely well-ordered set, i.e., such
that every non-empty subset X has a largest element which we shall
denote by V X. It follows that L has a largest element 1; we shall also
assume that L has a least element 0. It follows that every subset X of
L has a infimum A X. L can then be easily shown to be a complete
Heyting algebra, i.e., a complete lattice satisfying the distributive law

xA Vy = VxAy.

iel i€l

We can then define the operations =, <>, * on L by

x=>y = V{ziz A x < y}
xey = (x=y A (y=x
x* = x=0.

Let L be an inversely well-ordered set with least element, let M
be a non-empty set, and let e be a choice function for the power set
PM of M, that is, e is a map M — {@} — M such that e(X) e X
for all X # @ in #M. Define the map é: LY — M (where LY is the
set of all functions M — L) as follows: for each f e LY, the set f[M] =
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{f(m):me M} has a largest element | = Vf[M]. We put
of) = e(f ')
Notice that then
* fE) =1 = VfIM]
An ¥ -structure is a system of the form
M = (M, L,e, eqn, Pw>
where

M is a non-empty set

L is an inversely well-ordered set with 0

¢ is a choice function for ZM

Pg:M - L

eqm:M x M - L satisfies the equality laws:

eqg(m, m) = 1, eqm(m, 1) A eqm(n, p) < edm(m, p)
eqm(m, n) = eqm(n, m)

seqw(m, n) A Pg(m) < Pg(n).

Given an %,-structure M and a map « from the set Var of
variables of & to M (which we shall call a valuation in M) we define,
for each formula ¢ and each term ¢ of &, the value

[olnel [neM
of ¢ and ¢ under « in M recursively as follows:

Xl = o(x) for x € Var
[Pa = Pa(dw)

[t = ula = equUln, [ulw)
[o A ¥la = [ola A Win
[e v vla = lelw v Vin
o > vla = [oln=Wis
[o «vln = lola<= Wik
[Hela = (olw)*

Il
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[Bxele = v [els™
[Vxols = A Lela™,

where a(x/m) is the map which coincides with o except possibly at x,
where it assigns value m.
Finally,

[exol = é(h,),
where h,: M — L is defined by
h(m) = [o]a™.

A formula ¢ is said to be M-valid if [e]& = 1 for every valuation

a in M, and e-valid, written Eo, if @ is M-valid for all M. We can
now prove the

e-Soundness Theorem.

Fe=to
Sor any formula ¢.
Proof. The axioms and rules of inference for intuitionistic logic are
well known'® to be valid in any complete Heyting algebra valued
structure, in particular any &, -structure. So to prove the result we

need only verify that the g-axiom is valid in any %, -structure.
To do this, we observe that

VAIM] = V [olg"™ = [3xel

and
Vh(M] = h(eh,)) = h,(exoly)
- ﬂqoﬂgr/[c»vwlgn)
= [o(x/exp)]i.
Therefore

[B3xe o o(x/exe)]i
= [3xe]i < [o(x/exo)]
= 1,

as required. |
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We observe parenthetically that the converse of this result, which
would constitute a completeness theorem is, unfortunately, false. For
it is not hard to see that the sentence

ex(x = x) = ex(x # Xx)

is e-valid: but it is known' that this sentence is not deducible even in
the classical e-calculus. (The provision of a complete semantics for the
intuitionistic ¢-calculus is an open problem.)

COROLLARY. The following schemes are not provable in the
intuitionistic e-calculus:

(1) —Vxp — IxT¢@

(i1) @ v 7.

Proof. (i) By the Soundness Theorem, it suffices to find an
£, -structure M, a formula ¢ of &£, and a valuation « in M such that,
in L,

(A MS%""")" =V ([olx™™)* # 1.
meM meM

A necessary and sufficient condition for this is that
¢ (o, o ) £ v, Qoler
meM meM

First we speicfy L. L is to be the order topology on the set Neg of
negative integers. That is, L consists of @ together with all subsets of
Neg of the form

{xeNeg:x < —n} = (&, —n]

for n € w, ordered by inclusion. It is easy to check that L is an
inversely well-ordered set.
We further specify:

M = the set @ of natural numbers

eqw(m, n) = Negifm = n
=0ifm#n

Pg(n) = («, —n]
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e(X') = least element of X(< w)
ax,) =nfornew

where x, is the n™ variable of #.
Now let ¢ be Px. Then

[l = (e, —m]
QoI = (=, —m* = 0
A TOR™ = A (e —m] = 0

meM meM

v (el = 0
meM

(4 Tl ) = 0 = Neg
meM

Since Neg & 0, we see that (*) holds, completing the proof of (i). (ii)
follows from (i), since (Q) is a consequence of (LEM). [ ]

It is easy to extend the proof of the Corollary to show that neither (i)
nor (ii) is deducible in the intuitionistic e-calculus even when we add
as an axiom the assumption that 0 # 1 (or, indeed, principles (D) or
(D). Therefore the principle of extensionality is an indispensible
assumption in the derivation of (LEM), and also of (Q).

Finally, we remark that a similar model theory can be built for the
1-symbol and a soundness theorem proved, only using well-ordered
sets in place of inversely well-ordered sets. The independence of the
law of excluded middle (but not, as we have seen, of (Q)) in the
corresponding 7-calculus then follows.
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NOTES

' See, e.g. [7], where in §4.8 Hilbert is quoted as follows: *‘The essential idea on which
the axiom of choice is based constitutes a general logical principle which, even for the
first elements of mathematical inference, is indispensable”.

? See especially [3], [4].

3 My notation differs inessentially from Hilbert's.



18 J. L. BELL

4 See [4]. It should be emphasized that for the technical purposes of this paper the
quantifiers are regarded as being given in addition to the ¢-operator, and are not
regarded as being defined in terms of it.

S We write “l ¢” for “¢ is deducible from (¢) in the intuitionistic predicate calculus”.
¢ Hilbert explicitly assumes (T171) in [3] and [4].

7 Kolmogorov shows that (771) implies (Q) in §4 of [5]. He also questions Hilbert’s
adoption of (—): see footnote 4 of [5}.

8 Gee, e.g. [1], Ch. 111, § 1.

% In section IV of {4].

10 | am not sure who first formulated the extensionality principle, but it is usualy attri-
buted to Ackermann: see the introduction to [6].

' This lemma is a “stripped down” version of a result of Diaconescu in topos theory:
within a topos, the axiom of choice implies the law of excluded middle. (See Thm. 1.1
of Ch. VIII of [1].)

12 Gee, e.g. [2] or [8].

13 |t is worth pointing out here that postulating the existence of extensions of predi-
cates does not suffice to yield (LEM), for there exist perfectly respectable intuitionistic
versions of set theory in which (LEM) fails: see, e.g., [1]. In such set theories, the
“stripped down” version of Diaconescu’s theorem (see footnote 11) may be stated: if
the power set of {0, 1} has a choice function, then the law of excluded middle holds.

4 See, e.g., [1].

15 See §4.8 of [7).

 See, e.g., [8].

17 See §5 of Ch. I of [6].
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