
 1

Frege's Theorem in a Constructive Setting1 
John L. Bell 

 
 By Frege's Theorem is meant the result, implicit in Frege's Grundlagen, that, for 
any set E, if there exists a map ν from the power set of E to E satisfying the condition  

∀XY[ ν(X) = ν(Y)  ⇔ X ≈ Y] 2, 

then E has a subset which is the domain of a model of Peano's axioms for the natural 
numbers. (This result is proved explicitly, using classical reasoning, in section 3 of [1].)  
My purpose in this note is to strengthen this result in two directions: first, the premise 
will be weakened so as to require only that the map ν be defined on the family of 
(Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, 
i.e., will involve no use of the law of excluded middle. To be precise, we will prove, in 
constructive (or intuitionistic) set theory3, the following   
 
 Theorem. Let ν be a map with domain a family of subsets of a set E to E 
satisfying the following conditions:  
(i)  ∅ ∈ dom(ν) 
(ii) ∀U∈dom(ν) ∀x ∈ E–U  U ∪{x} ∈ dom(ν)    
(iii) ∀UV∈ dom(ν)  ν(U) =ν(V) ⇔ U  ≈ V.  

Then we can define a subset N of E which is the domain of a model of Peano's axioms. 
 
 Thus, for the system of natural numbers to be constuctively obtainable, it is 
enough that the domain of the "cardinality" map ν contain ∅ and be closed under union 
with (disjoint) singletons. This condition is satisfied, in particular, when dom(ν) is the 
family of Kuratowski finite subsets of the given set E, that is, the smallest family K of 
subsets of E containing the empty set and all singletons, and closed under unions of 
pairs of its members.   
 We now turn to the proof of the Theorem. This breaks down into a sequence of 
lemmas: we observe that in establishing these lemmas no use of the law of excluded 
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2We write X ≈ Y for there exists a bijection between X and Y, and, more generally, f: X ≈ Y for f 
is a bijection between X and Y. 

3The Theorem and its proof can also be formulated within the intuitionistic version of the first-
order system of [1]. 
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middle is made. 
 For X ∈ dom(ν) write X+ for X  ∪ {ν(X)}. Call a property Φ defined on the 
members of dom(ν) inductive if Φ(∅) and, for any X, if Φ(X) and ν(X)  ∉ X, then Φ(X+). 
Call a subfamily A of dom(ν) inductive if the property of being a member of A is 
inductive. Then dom(ν) is inductive, as is the intersection N of the collection of all 
inductive families. From the fact that N is the least inductive family we infer immediately 
the 
 
 Principle of Induction for N. For any property Φ defined on the members of N, if Φ 
is inductive, then every member of N has Φ. 
 
 Lemma 1. For any X ∈ N,   

X = ∅ or X = Y+ for some Y ∈ N such that ν(Y) ∉ Y. 
 Proof. Write Φ(X) for this assertion. To establish the claim it is enough, by the 
principle of induction, to show that Φ is inductive. Clearly Φ(∅). If Φ(X) and ν(X) ∉ X, 
then evidently Φ(X+). So Φ is inductive.  
 
 Lemma 2. For any X ∈ N and any x ∈ X, 

there is Y ∈ N such that Y  ⊆ X and x = ν(Y).  
 Proof. Writing Φ(X) for this assertion, it suffices to show that Φ is inductive. 
Clearly Φ(∅). Now assume Φ(X) and x ∈ X+. Then either x ∈ X, in which case, since 
Φ(X) has been assumed, there is Y ∈ N for which x = ν(Y) and Y ⊆ X, a fortiori Y ⊆ X+. 
Or x = ν(X), yielding the same conclusion with Y = X. So we obtain Φ(X+), Φ is inductive, 
and the Lemma follows.   
 
 Lemma 3. If X, Y ⊆  E, x ∈ E  – X, y ∈ E– Y, and X ∪ {x} ≈ Y ∪{y}, then X ≈ Y.  

 Proof. Assume  the  premises  and  let  f: X ∪ {x}  ≈ Y ∪ {y}.  We  produce  a   

map f': X ≈ Y. Let y' be the unique element of Y ∪ {y} for which <x,y'> ∈ f. Then either        

y' = y, in which case we take f' to be the restriction of f to X, or y'  ∈ Y, in which case the 
unique element x'  ∈ X  ∪ {x} for which <x',y> ∈ f satisfies x' ∈ X. (For if x' = x then 
<x,y>  ∈ f in which case y' = y ∉ Y.) So in this case we define 

f' = [f  ∩ (X × Y)] ∪ {<x',y'>}. 
In either case it is easily checked that f': X ≈ Y. This proves the Lemma.    
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Lemma 4.  For all X, Y in N,  

ν(X) = ν(Y) ⇒ X = Y. 
 Proof. Write Φ(X) for the assertion X  ∈ N and ∀Y ∈ N[ν(X) = ν(Y) ⇒ X = Y]. It 
suffices to show that Φ is inductive.Φ(∅) holds because ν(∅) = ν(Y) ⇒ Y ≈ ∅ ⇒ ∅ = Y. 

Now assume that Φ(X) and ν(X) ∉ X; we derive Φ(X+). Suppose that Y ∈ N and ν(X+) = 
ν(Y). Then X+ ≈ Y, and so in particular Y ≠ ∅.  By Lemma 1, there is Z ∈ N for which      

ν(Z) ∉ Z and Y = Z+, so that X+ ≈  Z+. We deduce, using Lemma 3, that X ≈ Z, so, since 

we have assumed Φ(X), X = Z. Hence X+ = Z+ = Y, and Φ(X+) follows. So Φ is inductive 
and the Lemma proved.   
 
 Lemma 5.  For any X ∈ N,  

ν(X) ∉ X. 
 Proof. It suffices to show that the property ν(X) ∉ X is inductive. Obviously ∅ has 
this property. Supposing that X ∈ N, ν(X) ∉ X but ν(X+) ∈ X+, we have either ν(X+) = 
ν(X) or v(X+) ∈ X. In the former case X = X+ by Lemma 4, so that ν(X) ∈ X, a 
contradiction. In the latter case, by Lemma 2, there is Y ∈ N such that Y ⊆ X and ν(X+) = 
ν(Y). Lemma 4 now applies to yield X+ = Y ⊆ X, so again ν(X)∈ X, a contradiction. 
Therefore ν(X) ∉ X ⇒      ν(X+) ∉ X+, and the Lemma follows.   
 
 Notice that it follows immediately from Lemma 5 that N is closed under +, that is,  
X ∈  N ⇒ X+ ∈ N. 
 Now define 0 = ν(∅), N =  {ν(X): X ∈ N}, and s: N → N by s(ν(X)) = ν(X+) for       
X ∈ N. Then s is well defined and injective on N. (For if ν(X) = ν(Y), then, by Lemma 4,     
X = Y, and so s(ν(X)) = ν(X+) = ν(Y+) = s(ν(Y)). Conversely, if s(ν(X)) = s(ν(Y)), then 
ν(X+) = ν(Y+), so that, by Lemma 4, X+ ≈ Y+. Lemmas 3 and 5 now imply X ≈ Y, whence       

ν(X) = ν(Y).) Clearly, also, 0 ≠ sn for any n ∈ N. The fact that the structure (N, s, 0) 
satisfies the principle of induction follows immediately from the principle of induction for 
N. Accordingly (N, s, 0) is a model of Peano's axioms, as required.  
 
 Remarks. 1. Since the arguments given here are constructive, they may be 
translated into the internal language of an arbitrary topos, so that the Theorem holds in 
arbitrary toposes also.  
 2. The Zermelo-Bourbaki Lemma (Lemma 2.1 of [1]) may also be used to give a 
nonconstructive proof of the Theorem. In its set-theoretic form, the Zermelo-Bourbaki 
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lemma states that, given a map p from a family of subsets of a set E to E such that p(X)  
∉ X for any X ∈ dom(p), there is a subset M of E and a well-ordering ≤ of M, such that, 

writing Sx for {y: y < x},  (i) ∀x∈M. Sx ∈ dom(p) and p(Sx) = x; (ii) M ∉ dom(p). If we 
assume the premises of the Theorem and apply the Zermelo-Bourbaki lemma to the set                     
{X  ∈ dom(ν): ν(X) ∉ X}, taking p to be the restriction of ν to this set, we get a well-
ordered subset M of E for which M ∉  dom(p), which means that either M ∉ dom(ν) or 
ν(M) ∈ M. In the latter case we may quickly argue as in the proof of 3.1 of [1] to 
conclude that M is Dedekind infinite, and so yields a model of the Peano axioms. In the 
former case, we deduce from the properties of dom(ν) that the well-ordered set M has 
no last element and is therefore infinite, again yielding a model of the Peano axioms. It 
should be noted, however, that the Zermelo-Bourbaki lemma, asserting as it does the 
existence of well-orderings, is irremediably nonconstructive, since, as is well-known, the 
existence of a well-ordering on even a two-element set implies the law of excluded 
middle.   
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