
Notes on Logic  
 

John L. Bell 
 

I. Set Theory 
 
 

SETS 
 
 Logic has a close relationship with set theory. We begin by describing 
some of its basic concepts which will prove useful in our further development 
of logic. 
 
 We are all familiar with the idea of a set, also called a class or collection. 
As examples, we may consider the set of all coins in one's pocket, the set of all 
human beings, the set of all planets in the solar system, etc. These are all 
concrete sets in the sense that the objects constituting them—their elements or 
members—are material things. In mathematics and logic we wish also to 
consider abstract sets whose members are not necessarily material things, but 
abstract entities such as numbers, lines, ideas, names, etc. We shall use the 
term set to cover concrete and abstract sets, as well as sets which contain a 
mixture of material and abstract elements. 
 
 If S is a set, and a is an element of S, we say that a belongs to S, and 
write 
 

a ∈ S. 
 
If b does not belong to S, we write b ∉ S.  
 
 In a given context, there will be a set to which all the objects we wish to 
consider belong: this set is called the universal set or universe for that context 
and will be denoted by U. It is important to remember that the universal set 
will not always be the same but will vary with the context: it can, in fact, be 
any set whatsoever. For example, if we are discussing the properties of the 
natural number system, U will be the set of all natural numbers. If we are 
discussing people, we shall want U to be the set of all human beings.  
 Once a universal set has been specified, we can consider predicates and 
relations defined on it. Suppose, for instance, that the universal set U is the set 
of all people. Then examples of predicates defined on U are the expressions  



 2 
 

 
x is female     x is male     x is Canadian 

 
and examples of relations on U are the expressions 
 

x is taller than y    x is married to y. 
 
Here x and y are being used as variables which are understood to range over U. 
This means that, when the variables in each expression are replaced by names 
of elements of U (in the case at hand, names of human beings), a statement 
having a definite truth value is obtained. (If the resulting statement is true, the 
elements are said to satisfy the predicate or relation in question.) For example, 
if in the expression x is Chinese we replace "x" by "Arnold Schwarzenegger" we 
obtain the false statement 
 

Arnold Schwarzenegger is Chinese, 
 
while if in the expression x is taller than y we make the same substitution for x 
and replace "y" by "Danny de Vito" we obtain the true statement 
 

Arnold Schwarzenegger is taller than Danny de Vito. 
 
 The most direct way of specifying a set is to list its elements explicitly. 
Thus, for example, 
 

{2, 3, Romeo,Juliet} 
 
denotes the set whose elements are the numbers 2, 3 and the persons Romeo 
and Juliet. And  
 

{Juliet} 
 
denotes the set whose sole member is Juliet. This notation is, however, of no 
use when the number of members of the set we are trying to specify is infinite, 
or finite but excessively large. To specify such sets we must instead state the 
characteristic property that an object must have to be a member of the set. 
Predicates are used for this purpose. For example, 
 

{x: x is Canadian} 
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denotes the set of all people who are Canadian, with the understanding that 
the variable x ranges over the universal set of all people. Similarly,  

 
{x: ∃y(x = y2)}  

 
denotes the set of all natural numbers which are perfect squares, provided that 
it is understood that the variables  x and y range over the universal set of all 
natural numbers. In general, if P(x) is a predicate defined on a universal set U, 
we write  
 

{x: P(x)} 
 
to denote the set of all elements of U satisfying the predicate P(x). This set is 
called the set determined by P.  
 
 It is also convenient to have a notation for the empty set, that is, the set 
which has no members. We use the symbol ∅ to denote this set. Thus, for 
example, if x ranges over the the natural numbers, {x: x2 = 2} is identical with 
∅. This is the case because there is no natural number whose square is 2. 

 
 Two sets A, B are said to be equal, and (as usual) we write A = B if they 
have the same members, that is, if 

 
∀x(x ∈ A ⇔  x ∈ B). 

 
If the sets A and B are determined by predicates P and Q defined over a 
common universal set U, that is, if A is {x: P(x)} and B is {x: Q(x)}, then 
 

A = B  ⇔  ∀x[P(x) ⇔ Q(x)]. 
 
That is, two sets are equal exactly when their determining predicates are 
equivalent. This observation is constantly employed in establishing the equality 
of sets. 
 
 If A and B are sets, we say that A is a subset of B, or that A is included or 
contained in B and write 
 

A  ⊆ B 
 
if every member of A is a member of B, that is, if 
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 ∀x(x ∈ A ⇒  x ∈ B). 
 
For example, 
 

A = {1, 2, 3}  ⊆  {0, 1, 2, 3} = B. 
 
Notice that this is not the same as A ∈ B, since the elements of B are 0, 1, 2, 3 
and A is not one of these. 
 
Exercise. Prove that the empty set is a subset of every set. 
 
 Clearly 
 

A = B  ⇔  (A ⊆ B & B ⊆ A). 
 
  
If A and B are determined by predicates P and Q defined on a universal set U, 
then 
 

A  ⊆ B  ⇔  ∀x[P(x) ⇒ Q(x)]. 
 
 Each predicate P defined on a universal set U determines a subset of U, 
namely {x: P(x)}. And conversely, each subset A of U determines a predicate 
defined on U, namely the predicate x ∈ A.  In view of this predicates defined on 
a universal set and subsets of that set "amount to the same thing". 
 
 As is the case for propositional logic, it is often convenient to depict 
relationships between sets by means of Venn diagrams. For example, the 
diagram below depicts the relation A ⊆ B. The universal set U is represented by  
the square and the sets A and B by the regions within the square. 
 
  
 
 
 

If A is a set, considered as a subset of a universal set U, its complement  
CA is defined by  
 

 CA = {x: x ∉ A}. 
 

U 

B 

A 
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In the diagram below,  A is represented by the circle. It can be seen from this 
diagram that CA depends on the universal set U. 
 
 
 
                                                      
                                                      CA 
 
 
                                                                    A 
                                                                      A 
 
 
 
 
 
 

For example, if A is the set of positive natural numbers, and U the set of 
all natural numbers, then  CA is {0}, while if U is the set of all integers, then A 
is the set {..., –2 ,–1, 0}. 
 
 If A and B are sets, their union A ∪ B and intersection A ∩ B are defined 
by 
 

A  ∪ B = {x: x  ∈ A ∨  x ∈ B},     A  ∩ B = {x: x  ∈ A ∧  x ∈ B},       
 

For example, 
 
       {1,2,3} ∩  {2,3,4} = {2,3},  {1,2,3}  ∪ {2,3,4} = {1,2,3,4},   {1,2,3} ∩  {0,4} = ∅    

 
{x: x ≤ 0} ∩ {x: x ≥ 0} = {0} 

 
 
 
 

 
 
                                                                                  
                                                                                  
                       A ∪ B                                             A ∩ B 
 

          A 
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Exercises. 1. Draw Venn diagrams to illustrate the relations (i) not A ⊆ B,     
(ii) A and B are disjoint, that is, A ∩ B = ∅ . 
 2. Prove that, for any subsets A, B, C of a universal set U: (i)  CCA = A  
(ii) A ⊆ A; (iii) A  ∪  CA = U; (iv) A ∩  CA = ∅ ; (v) A ∩ (B ∪ C) = (A ∩ B) ∪(A ∩ C);                    
(vi) A ∪(B ∩C) = (A ∪ B) ∩ (A ∪ C);  (vii) A ∩(B ∩ C) = (A ∩ B) ∩ C;                 
(viii) A ∪ (B ∪ C) =  (A ∪ B) ∪ C; (ix)  C(A ∩ B) = CA ∪ CB; (x)  C(A ∪ B) =  CA ∩ 
CB. Draw Venn diagrams to depict these. 
 3. For subsets A, B of a universal set U, prove that the following are 
equivalent:  (a) A ⊆ B, (b)  CB  ⊆ CA, (c) A ∪ B = B, (d) A ∩ B = A, (e) A ∩ CB = ∅ 
(f)  CA ∪ B = U.  
 4. Let A – B—the relative complement of B in A—denote the set                
{x: x ∈ A ∧ x ∉ B}. Draw a Venn diagram to depict A – B. (i) Prove that A – B =    
A – (A ∩ B), A = (A ∩ B) ∪ (A – B). (ii) Are the following always true?                  
(A – B) ∪  B = A,  (A – B) – B = A. 
 
 

RELATIONS 
 
 Given any two individuals a, b, we assume that we can form another 
individual (a, b) called the ordered pair with first component a and second 
component b. If a and b are distinct, the ordered pair (a, b) will be held to be 
different from the ordered pair (b, a): it follows that (a, b) cannot be the same as 
the set {a, b}, since always {a, b} =   {b, a}. Generally speaking, ordered pairs (a, 
b) and (c, d) are said to be equal precisely when their first and second 
components are pairwise identical, that is, if  a = c and   b = d. Thus 

 
(*)                                     (a, b) = (c, d)  ⇔   a = c  ∧ b = d. 
 
The concept of ordered pair can be introduced in a variety of ways, for instance 
by defining 

(a, b) = {{a},{a, b}}. 
 
We shall not, however, be concerned with the exact definition of (a, b): we will 
only need to know that it satisfies condition (*) above.  
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 We shall also assume that we can form ordered triples (a, b, c), 
quadruples     (a, b, c, d)—in general, for any n ≥ 2, ordered n-tuples (a1, ..., an). 
Again, all we need to know about these is that 
 

(a1,..., an) = (b1,..., bn) ⇔  a1 = b1 ∧  ... ∧  an = bn. 
 
 Given two sets A, B, the set of all ordered pairs (a, b) with a ∈ A and b ∈ 
B is called the Cartesian product of A and B: it is denoted by A × B. Cartesian 
products arise frequently in mathematics (and implicitly in logic): for instance, 
since each point in the euclidean plane can be identified by an ordered pair of 
coordinates, the plane itself can be described as the Cartesian product of two 
lines. (This fact was essentially known to Descartes—hence the term 
"Cartesian".)  
 
 Similarly, given n sets A1, ..., An, the set of all ordered n-tuples (a1 ,..., an) 
with a1 ∈ A1 ,..., an ∈ An is called the Cartesian product of A1, ..., An and denoted 
by A1 × ... × An. If all the A s are identical with a fixed set A, then A1 × ... × An is 
written An and called the nth (Cartesian) power of A. 
 
 
Exercise. (i) Prove that A × (B ∪ C) = (A × B) ∪ (A × C), A × (B ∩ C) =                  
(A × B) ∩ (A × C), A × (B – C) = (A × B) – (A × C).  
(ii) If C ≠ ∅, prove that A ⊆ B  ⇔  A × C ⊆ B × C. 
 
 We often have occasion to consider binary relations. A binary relation 
may be regarded as a property of ordered pairs, that is, as a predicate defined 
on a Cartesian product of two sets. Since, as we have observed, a predicate 
defined on a set amounts to the same thing as a subset of that set, it follows 
that a binary relation is essentially just a subset of a Cartesian product of two 
sets. This is best illustrated by an example. 
 
 Consider the binary relation of marriage between women and men. 
Writing W for the set of women, and M for the set of men, the marriage relation 
may be identified with the set R of ordered pairs (a, b) in which a is a woman, b 
is a man, and a is married to b. Thus R is a subset of W × M: we naturally say 
that R is a relation between W and M. In general, a subset of the Cartesian 
product A × B of two sets A and B is called a (binary) relation between A and B. 
If H denotes the set of all human beings, then the marriage relation R is clearly 
also a subset of H × H: it is accordingly natural to say that R is a relation on H. 
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Generally, a subset of a Cartesian product  A × A is called a (binary) relation on 
A. 
 
 Similarly, a subset of A1 × ... × An is called a relation among A1, ..., An and 
a subset of a Cartesian power An an n-ary relation on A. 
 
 If R is an n-ary relation, it is customary to write Ra1...an for (a1, ..., an) ∈ 
R. More particularly, if R is a binary relation, it is common practice to write aRb 
for Rab: the former is read "a bears the relation R to b". 
 
Exercises. 1. Let A, B, C be sets, let R be a relation between A and B, and let S 
be a relation between B and C. We define the composite relation S  R between A 
and C to be the set of all pairs (a, c) with a ∈ A, c  ∈ C such that, for some        
b ∈ B, we have aRb and bSc. Let R, S be the parenthood and sisterhood 
relations on the set of human beings. What are S R, R  S, R  R, S  S? 
 2. If R is a relation between sets A and B, the inverse relation R–1 
between B and A is defined to be the set of all pairs (b, a) such that aRb.  
 (i) What is R–1 when R is (a) the marriage relation, (b) the parenthood 
relation, (c) the brotherhood relation, on the set of human beings? 
 (ii) Let R be a relation between A and B, and S a relation between B and 
C. Prove that (S  R)–1 = R–1  S-1, and that (R–1)–1 = R. 
 
 

EQUIVALENCE RELATIONS 
 
 The idea of equivalence is of universal importance: in fact all abstractions 
met with in everyday life involve this idea. For instance, a hitchhiker seeking a 
ride in a passing vehicle will ignore all the properties of such a vehicle except 
its mobility: as far as he or she is concerned, all moving vehicles are equivalent, 
regardless of type.  
 
 This idea of equivalence is given precise expression in set theory through 
the concept of equivalence relation. An equivalence relation on a set A is a 
relation R on A satisfying the following conditions for all a, b, c in A: 
 (i) reflexivity: aRa, 
 (ii) symmetry: aRb  ⇔  bRa 
 (iii) transitivity: (aRb  ∧ bRc) ⇒  aRc. 
 
As examples of equivalence relations we have: 
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The identity relation on any set A consisting of all ordered pairs of the 
form (a, a) with a in A. 

The relation R on the set of all human beings defined by aRb  ⇔  a and b 
have the same parents. 

The relation R on the set of natural numbers defined by mRn  ⇔  m and 
n have the same remainder when divided by 2. 

The relation of logical equivalence on the set of all statements. 
 
 If R is an equivalence relation on a set A, and a ∈ A, the equivalence class 
of R containing a, written aR, is the set comprising all members of A which bear 
the relation R to a, that is, 
 

aR, = {x: xRa}. 
 
For example, the equivalence classes of the first three relations above are, 
respectively. all sets of the form {a} for a ∈ A; all families of siblings; the set of 
even numbers and the set of odd numbers. 
 
Exercise. Prove that any two equivalence classes are either disjoint, or 
identical. 

 
ORDERINGS 

 
 The idea of an ordering relation, or ordering, is another important concept 
in everyday life. Whenever we make a comparison, for example, when we say 
that something is bigger, or heavier, or more interesting than something else, 
we are implicitly employing the idea of ranking or ordering with respect to the 
property in question. 
  
 In set theory this idea is captured by making the following definition. An 
ordering on a set A is a relation—often written “≤”—on A which is reflexive:       

a ≤ a, transitive: (a ≤ b and b ≤ c) ⇒  a ≤ c and antisymmetric: a ≤ b and b ≤ a 

⇒  a = b. If in addition  ≤ satisfies the condition of totality: for all a, b in A, a ≤ 

b or b ≤ a, then ≤  is called a total ordering on A. An ordering which is not total 

will be referred to as a partial ordering. If ≤ is an ordering (partial or total) on A, 

we will say that A is partially or totally ordered by ≤. 
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Examples. (i) The set of natural numbers is totally ordered by the relation ≤ of 
increasing magnitude. It is partially ordered by the relation | of divisibility: m | n  
⇔  m ia a divisor of n. 
 (ii) The power set  PA of a set A is the set whose elements are all subsets 
of A. (For example, if A = {1, 2}, then  PA = {∅, {1}, {2}, {1, 2}}.)  If A has more 
than one element, the inclusion relation ⊆ is a partial ordering on  A. (Exercise: 
prove this.) 
  
Exercises. 1. If ≤ is a (partial, total) ordering on a set A, prove that its inverse  

≤–1 is also a (partial, total) ordering on A. 
 2. A relation on a set A which is both reflexive and transitive is called a 
preordering on A.  For example, the relation at least as tall as is a preoredring 
on the set of human beings.  

(i) Prove that the relation p logically implies q is a preordering on the set 
of all statements. 
 (ii) If R is a preordering on A, prove that the relation S defined by aSb  ⇔  
(aRb ∧ bRa) is an equivalence relation on A. What are the equivalence classes of 
this equivalence relation when R is the preordering specified in (i)?  
 

FUNCTIONS 
 
 Intuitively, a function from a given set A to a given set B is a device which 
assigns a unique element of B to each element of A. In set theory this idea is 
given a precise formulation in terms of relations. Thus we define a function from 
A to B to be a relation f between A and B possessing the following property: 
 

for any a ∈ A, there is a unique b ∈ B for which afb. 
 
In this situation we write f: A →B. A is called the domain, and B the codomain, 
of f. For a ∈ A, we also write f(a) or fa for the unique element b of B such that 
afb: f(a) is called the value of f at a, or the image of a under f. A function          
f: A → A is called a (unary) operation on A. 
Examples. (i) The fatherhood relation F on the set H of all human beings 
defined by  

aFb  ⇔  b is the father of a  
 
is an operation on H. 
 (ii) The relation R between the set H of human beings and the set  of 
natural numbers defined by 
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aRn ⇔  n is the number of children of a 

 
is a function from H to . 

 (iii) The relation R on  defined by 
 

mRn ⇔ n = m2 
 
is an operation on . 
 (iv) For any set A, the identity relation on A is an operation on A. As 
such, it is called the identity operation on A and denoted by 1A. 
 
 It is often helpful to depict a function f: A  → B by means of a "mapping" 
diagram like the one below: 
 
 
                                                                   f 
                                •                                                                    • 
                                                                                                                  $ 
                         a • 

 
 
 
 
 
Functions or operations can have more than one variable. For example, 

the operation of addition on the set of natural numbers and the operation of 
conjunction on the set of all statements both involve two variables. Formally, 
an n-ary operation on a set A is defined to be a function f: An → A. The value of f 
at an n-tuple (a1, ..., an) is written f(a1, .., an). 
Exercises. 1. Let f: A  → B, g: B → C. Prove that g  f is a function from A to C, 
and that, for any x in A, (g  f)(x) = g(f(x)). Prove also that f = 1B  f = f  1A. 
  
2. A function f: A → B is said to be one-to-one if, for any x, y in A, f(x) = f(y)   ⇒  
x = y. 
 (i) Which of the functions in the examples above are one-to-one? 
 (ii) If f: A → B and g: B → C are both one-to-one, prove that g  f is also. 

            
                 
 
 
          a  

    
             
                           
            fa  
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 3. Let f: A → B be a function, and X a subset of A. The image of X under f 
is the set f[X] consisting of all elements of B of the form f(x) with x in X. The 
function f: A  → B is said to be onto B if f[A] = B. 
 (i) Draw a "mapping" diagram to illustrate f[X]. 
 (ii) If X, Y  ⊆ A, prove that X ⊆ Y  ⇒  f[X] ⊆  f[Y]. 
 (iii) If X, Y ⊆ A, prove that f[X ∪ Y] = f[X] ∪  f[Y]. Does this remain true 
when "∪”  is replaced by "∩"? 
 (iv) If f: A → B and g: B → C are both onto, prove that g  f: A → C is also. 
 4. Let g: A → B be a function, and Y a subset of B. The preimage of Y 
under g is the set g–1[Y] = {x: g(x) ∈ Y}. 
 (i) Draw a "mapping" diagram to depict g–1[Y]. 
 (ii) If Y, Z ⊆ B, prove that g–1[Y ∪ Z] = g–1[Y] ∪ g–1[Z],  g–1[Y ∩ Z] =              
g–1[Y] ∩ g–1[Z], and g–1[B – Y] = A – g–1[Y]. 
 (iii) Prove that, for any X ⊆ A, X ⊆ g–1[g[X]], and that g is one-to-one if and 
only if X = g–1[g[X]] for all X ⊆ A. 

(iv) Prove that, for any Y ⊆ B, g[g–1[Y]] ⊆ Y, and that g is onto B if and 
only if g[g-1[Y]] = Y for all Y ⊆ B. 
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II. Interpretations of Predicate Statements 
 
 
 We take up the idea of an interpretation of a predicate statement, using 
the concepts of set theory to make the notion precise. 
 
 Suppose that we are given a vocabulary for predicate logic, which 
includes names, variables, predicate symbols, and relation symbols. An 
interpretation I of our logical vocabulary consists of: 
 

1. A nonempty set A called the domain or universe of I.  
2. To each name a, an assignment of a definite element of A, denoted by aI, 

and called the interpretation under I of that name.  
3. To each predicate symbol P, an assignment of a definite subset of A, 

denoted by PI, and called the interpretation under I of that predicate 
symbol. 

4. To each n-ary relation symbol R, an assignment of a definite n-ary relation 
on A (i.e., a subset of An), denoted by RI, and called the interpretation 
under I of that relation symbol. 

 
 We are going to specify how an interpretation assigns a truth value to 
each sentence of our logical vocabulary. To do this we need first to give an exact 
definition of what is meant by a sentence. We do this by laying down the 
following rules of formation. 
 
 1. The following are sentences: (i) any predicate symbol followed by a 
name (for example Pa); (ii) any n-ary relation symbol followed by n names (for 
example Rab);  (iii) any expression of the form a = b, where a and b are names.  
 2. If p and q are sentences, so are ¬p, p ∧ q, p ∨ q, p → q, p ↔ q. 
 3. If p is a sentence, let p* be the result of replacing a particular name by 
a variable v that does not appear in p. Then both (∃v)p* and (∀v)p* are 
sentences. 
 4. Nothing counts as a sentence unless its being so follows from rules 1 
to 3. 
 
 Sentences formed under rule 1 are called atomic sentences. We usually 
abbreviate ¬(x = y) to x ≠ y.  
 To illustrate the mode of operation of rule 3, consider the process of 
forming the sentence (∀x)(∃y)Rxy. Starting with the sentence Rab, we first 
replace "b" by "y" to obtain the expression (not a sentence) Ray. To this 



 14 
 

expression we prefix "(∃y)" to obtain (by rule 3) the sentence (∃y)Ray. In this 
latter sentence we now replace "a" by "x" (which does not appear in it), thereby 
obtaining the expression (∃y)Rxy (again, not a sentence). To this expression we 
prefix "(∀x)", thus finally obtaining the desired sentence (∀x)(∃y)Rxy.  
 
 When there is no danger of ambiguity, we shall omit the parentheses 
around  (∀x) and (∃x). 
 
 Now we can parallel the rules of formation for sentences by rules for 
determining their truth values under an interpretation. Suppose we are given an 
interpretation I. Then: 
 
 1. (i) Pa is true under I just when aI is a member of PI; (ii) Ra1...an is true 
under I  just when RIa1I...anI holds; (iii) a = b is true under I just when aI and bI 
are identical.  
 2. ¬p is true under I just when p is false under I. 
    p ∧ q is true under I just when both p and q are true under I. 
    p ∨ q is true under I just when at least one of p, q is true under I. 
    p  → q is true under I just when at least one of ¬p, q is true under I 
(equivalently, if when p is true under I, so is q) 
    p ↔ q is true under I just when p and q receive the same truth value 
under I. 
 
Before stating the final rule we need to introduce some additional notation. 
Given a sentence p, and names m, n, we write p(n/m) for the sentence obtained 
from p by replacing each occurrence of n by m. For any member a of the 
domain A of the interpretation I, we write m

aI for the interpretation that agrees 
with I except in assigning the element a to the name m. Now our final rule is:  
 
 3. Let p* be the expression obtained by replacing in a sentence p each 
occurrence of the  name n by the variable v. Let m be a new name, that is, one 
to which I assigns no interpretation. Then: 
  ∀vp* is true under I just when p(n/m) is true under m

aI for all (or 
any) a in A; 
  ∃vp* is true under I  just when there exists a in A such that p(m/n) 
is true under m

aI (or for some a in A, p(m/n) is true under m
aI ). 

 
 All this is best explained by example. 
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Example. Suppose our vocabulary contains one predicate symbol P, one binary 
relation symbol R and two names j, n. Consider the interpretation I whose 
domain is the set  of natural numbers (starting with 0), and under which PI is 
the set of odd numbers, RI is the "less than" relation <, jI is the number 1, and 
nI is the number 2. Let us determine the truth values under I of the statements 
 

(1) ∃x[Px ∧ Rxj]      (2) ∀x∃y[Py ∧ Rxy]. 
 
 (1) We have: 
 
 Sentence (1) is true under I  
  ⇔  for some a ∈ , Pm ∧ Rmj is true under m

aI       (m new) 

  ⇔  for some a ∈ , both Pm and Rmj are true under m
aI  

  ⇔  for some a ∈ , a ∈ PI and RIa1 

  ⇔  for some a ∈ , a is odd and a < 1. 
 
But this last statement is clearly false. It follows that statement (1) is false 
under I. 
 
 (2) We have: 
 
 Sentence (2) is true under I  
   ⇔ for any a  ∈ , ∃y[Py ∧ Rmy] is true under m

aI   (m new) 

   ⇔ for any a ∈ , there exists b ∈  such that Pk ∧ Rmk  is true under 
mk
a bI  (k new) 

   ⇔ for any a ∈ , there exists b ∈  such that both Pk  and Rm  are true 
under mk

a bI   
   ⇔ for any a ∈ , there exists b ∈  such that b ∈ PI and RIab 

   ⇔ for any a ∈ , there exists b ∈  such that b is odd and a < b. 
 
This last statement is obviously true, and accordingly statement (2) is true 
under I. 
 
 
 



 16 
 

Exercises. 1. In each case, determine as above the truth value of each 
sentence under the interpretation specified. 

(i) Vocabulary and interpretation: same as in above example.  
(a) ∃x∀y[Px  ∧ Rxy].   (b)  ∀x∃y[¬Py ∧ Rxy].  (c)  ∀x∀y[Rxy →  ∃z(Rxz ∧ 

Rzy)]. 
 (ii) Vocabulary: same as 1 but lacking names. Interpretation: domain: set 
H of human beings, P: set of males, R: x is a parent of y.  
    (a)  ∀x∃y(Ryx ∧ Py).  (b)  ∀x∀y(Rxy →  x ≠ y).   (c)  ∀x∀y∀z(Rxz ∧  Ryz ∧  
Px ∧ Py →  x = y). 
 2. Prove that the sentence  ∃x[Px ∧  ∀y(Py → y = x)] is true under an 
interpretation I if and only if the set PI contains exactly one element. Formulate 
sentences which are true under an arbitrary interpretation I if and only if PI 
contains (i) at most one element, (ii) at most two elements, (iii) at least two 
elements, (iv) exactly two elements, (v) at most three elements, (vi) at least 
three elements,   (vii) exactly three elements. 
 

OPERATION SYMBOLS 
 
 We recall that an n-ary operation on a set is a function from An to A. It is 
helpful to enlarge our logical vocabulary to embrace symbols—operation (or 
function) symbols—which will be interpreted as operations on the domain of a 
given interpretation.  
 Accordingly we now suppose that in addition to names, predicate 
symbols and relation symbols, our logical vocabulary includes operation 
symbols f, g, h,... . Each such symbol is assigned a number n ≥ 1 called its 
multiplicity. An operation symbol of multiplicity n will be said to be n-ary. The 
terms of our logical vocabulary are now defined as follows.     
 
 (i) Any variable or name standing alone is a term. 
 (ii) If f is an n-ary operation symbol, and t1,...,tn are n terms, then f t1...tn  
is a term. 
 (iii) Nothing is a term unless it follows from (i) and (ii) that it is so. 
 
 In this enlarged vocabulary, a name will now be any term which does not 
contain variables, and a simple name will be a name in the original sense, i.e., a 
name that does not contain operation symbols.  
 
 We also extend the idea of an interpretation to operation symbols and 
names in the enlarged sense by the clause: 
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   An interpretation I with domain A assigns, to each n-ary operation 
symbol f, an n-ary operation fI on A. If t1,...,tn are names, and f an n-ary 
operation symbol,   (f t1… tn)I =  fI (t1I… tnI). 
 
Example. Suppose our logical vocabulary has one predicate symbol P, one 
relation symbol R, two unary (i.e., 1-ary) operation symbols f, g, and two simple 
names m,n. Let I be the interpretation of this vocabulary whose domain is the 
set H of human beings and in which the interpretation of P is the set of 
females, that of R is the parenthood relation, that is, the set of pairs (x, y) for 
which x is a parent of y, and those of f/g are the operation on H assigning to 
each human being his or her father/mother. The interpretations of m and n will 
be two arbitrary but fixed human beings a and b.   
 
 Then, for example, the sentence 
 

m = gfn 
 
is true under I just when a is b's paternal grandmother. And the sentence 
 

m  ≠ n ∧  Rfmn ∧  Rgmn ∧  Pm 
 
is true just when a is b's sister. 
 
Exercises. 1. In each case write down a sentence in logical vocabulary which is 
true under the above interpretation I precisely when: (i) a is a grandmother of 
b, (ii) a is a father, (iii) a is a maternal aunt of b, (iv) a is a grandfather, (v) a 
and b are full siblings, (vi) a and b are full or half siblings. 
 2. In each case compose a concise English sentence which is true just 
when each one of the following sentences is true under I: (i) m ≠ n ∧ fm = fn ∧  
gm = gn, (ii) fm = fn ↔  gm ≠ gn, (iii)  ∃x(Rxm ∧ fn = fx ∧ gn = gx),                   
(iv) ¬Pn ∧ ¬Rnm ∧ ∃x(Rxm ∧ Rfnx ∧ Rgnx).  
 
 

VALIDITY, SATISFIABILITY, AND MODELS 
 
 An argument or inference A formulated within predicate logic is said to 
be valid if, for any interpretation I of its vocabulary, whenever all the premises 
of A are true under I, so is its conclusion. In that case, we say that the 
conclusion is a logical consequence of the premises. A sentence is said to be 
valid if it is true under any interpretation. A set S of sentences is said to be 
satisfiable or consistent if there is an interpretation under which all the 
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sentences in S are true: such an interpretation is called a model of S. A 
sentence p is said to be independent of a set of sentences S if there is an 
interpretation under which each sentence in S is true but p is false.  
 
Examples. 1. The sentence  
 
(1)                                                       ∀y∃xRxy  
 
is a logical consequence of the sentence  
 
(2)                                                   ∃x∀yRxy. 
 
Because if I is an interpretation with domain A under which (2) is true, then 
 

there exists a ∈ A such that, for all b ∈ A, RIab. 
 
In that case, choosing a fixed a ∈ A so that RIab for all b ∈ A, it follows that 
 

for all b ∈ A, Rmn is true under nm
b aI   

                                     ⇒ for all b ∈ A, ∃xRxn is true under n
bI  

                                     ⇔ sentence (1) is true under I. 
 
It follows also that the sentence  ∃x∀yRxy  →  ∀y∃xRxy is valid. 
 
 2. The sentence 
 
(3)                                                       ∃y∀xRxy 
 
is not a logical consequence of the sentence 
 
(4)                                                         ∀x∃yRxy. 
 
For consider the interpretation I with domain  in which RI is <, the "less than" 
relation. Then (4) is true under I just when 
 

for any a in  , there exists b in  such that a < b, 
 
which is evidently true. On the other hand sentence (3) is true under I just 
when  
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there exists b in  such that, for all a in , a < b, 

 
which is evidently false (since there is no greatest number). It follows also that 
the set of sentences consisting of (4) together with ¬(3) is satisfiable, and that 
(3) is independent of (4). 
 
Exercises. 1. Prove that the following inferences are valid using the method 
just described. (i) ∀x(Px ∨ Qx),  ∃xPx → ∀x(Sx ∨ Tx), ¬∀xQx, ¬∀xSx. ∴  ∃xTx.     
(ii)  ∀xPx,  ∀xQx.   ∴ ∀x(Px ∧ Qx). (iii)  ∀xPx → ∀xQx. ∴  ∃x∀y(Px → Qy). 
 2. Establish the validity of the following sentences. (i) ¬∀xPx  ↔ ∃x¬Px,            
(ii) ¬∃xPx  ↔ ∀x¬Px. 
 3. Let p be a sentence and Q a predicate. Establish the validity of the 
following sentences. (i)  ∀x(p ∧ Qx) ↔ (p ∧ ∀xQx), (ii)  ∀x(p ∨ Qx) ↔ p ∨ ∀xQx, 
(iii)  ∃x(p ∧ Qx) ↔  (p ∧ ∃xQx), (iv) ∃x(p ∨ Qx) ↔  (p ∨ ∃xQx), (v)  ∀x(p → Qx) ↔     
(p → ∀xQx), (vi) ∀x(Qx →  p) ↔ (∃xQx → p), (vii)  ∃x(p → Qx) ↔ (p → ∃xQx),   
(viii)  ∃x(Qx → p) →  (∀xQx → p).  
 4. Determine which of the following sentences are valid. For each 
sentence which is not valid, provide an interpretation in which it is false.        
(i) ∃x(Px → ∀yPy), (ii)  ∀x∀y∀z[(Rxy ∧ Ryz)  → Rxz],     (iii) (∃xPx  ∧ ∃xQx) →                    
∃x(Px ∧ Qx), (iv)  ∀x(Px ∨  Qx) →  (∀xPx ∨ ∀xQx). 
 5. Which of the following sets of sentences are satisfiable? In each of the 
satisfiable cases, supply an interpretation under which all of the sentences are 
true. (i)  ∀xPx, ∀x[Px  → ∃yRxy], ∃x∃y¬Rxy. (ii) ∀x∃yRxy,  ∀x∃y¬Rxy.              
(iii) ∀x¬Rxx, ∀x∀y ∀z((Rxy ∧ Ryz) → Rxz),  ∃x∃y∃z(Rxy ∧ Ryz ∧ Rzx). 
 
 Recall that the concepts of validity and consistency were originally 
defined in terms of trees: an argument was deemed valid if its associated tree 
closes, and a set of sentences consistent if any tree with that set as initial 
statements contains at least one open path. It can be shown (although we shall 
not do so here) that—just as for propositional logic—the two versions of validity 
and the two versions of consistency are equivalent. We shall in fact only make 
use of the equivalence of the two notions of validity.  
 

 
 
 
 

POSTULATE SYSTEMS FOR ARITHMETIC 
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 Mathematical concepts are often presented by means of postulates 
(sometimes called axioms) formulated as sentences of predicate logic. In writing 
such sentences it is customary to place binary operation symbols between 
arguments, rather than in front of them: thus, for example, one writes x + y 
instead of +xy.  
 The logical vocabulary for arithmetic includes a unary operation symbol s, 
two binary operation symbols + and ×, and a name 0. The standard 
interpretation N of this vocabulary is the familiar natural number system, 
specified as follows:   
 
 Domain: the set   = {0. 1. 2,...} of natural numbers 
 Interpretation of s: the (immediate) successor operation  _ + 1 
 Interpretation of + and ×: the usual operations of addition and 
multiplication 
 Interpretation of 0: the number zero. 
 
Thus the domain and successor operation of the standard interpretation may 
be represented by the following diagram: 
 
(*)                                          .  →  .  →  .  →  .   ... 
                                               0       1       2       3   
  
in which each arrow proceeds from an element to its successor. 
 
 The postulates for basic arithmetic are the following 
 
B1     ∀x∀y(x ≠ y →  sx ≠ sy) 
B2     ∀x    0 ≠ sx 
B3     ∀x(x ≠ 0 → ∃y(x = sy)) 
B4    ∀x    x + 0 = x 
B5     ∀x∀y   x + sy = s(x + y) 
B6     ∀x    x × 0 = 0 
B7     ∀x∀y    x × sy = (x × y) + x. 
 
These postulates are all true in the standard interpretation. The first three 
express familiar facts about the successor operation: 
 
B1 Distinct natural numbers have distinct successors. 
B2 Zero is the successor of no natural number. 
B3 Every nonzero natural number is a successor. 
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The next two postulates tell us how to add in this notation: 
 
B4 Adding 0 has no effect. 
B5 (x + y) + 1 = x + (y + 1). 
 
In this notation each numeral 1, 2, 3, 4,... is represented by a string of s's of the 
appropriate length followed by 0, as in 

 
1 = s0  2 = ss0  3 = sss0  4 = ssss0,... 

 
Here is a tree justifying the inference of 2 + 2 = 4 from B4 and B5: 
 
(1)                                               ∀x    x + 0 = x 
(2)                                         ∀x∀y    x + sy = s(x + y) 
(3)                                          ¬(ss0 + ss0 = ssss0) 

  
(4)                                               ss0 + 0 = ss0                   from (1) 

  
(5)                                         ss0 + s0 = s(ss0 + 0)             from (2) 

  
(6)                                        ss0 + ss0 = s(ss0 + s0)           from (2) 

  
(7)                                        ss0 + ss0 = ss(ss0 + 0)           from (5) and (6) 

  
                                                  ss0 + ss0 = ssss0                from (7) and (4) 

  × 
  

Finally, the two remaining postulates reduce multiplication to repeated 
addition: 
 
B6 Multiplying by 0 yields 0. 
B7 x × (y + 1) = (x × y)  +  x. 
 
 
Exercise.  Using the tree test, show that the arguments from one or more of 
the postulates of basic arithmetic to the following sentences are valid: (i) 0 ≠ s0,            
(ii) s0 ≠ ss0, (iii) 0  ≠ ssss0,  (iv) ss0 ≠ ssss0, (v)  0 + ss0 = ss0, (vi) 0 × ss0 = 0. 
 
 Basic arithmetic has a property known as incompleteness. By this is 
meant that there are certain sentences true in the standard interpretation (the 
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natural number system) which are independent of basic arithmetic. For 
instance, although each of the sentences    

 
0  ≠ s0, s0  ≠ ss0, ss0  ≠ sss0,... 

 
is provable in basic arithmetic (the first two are (i) and (ii) of the exercise 
immediately above), the corresponding generalization 
 
(a)                                              ∀x    x ≠ sx 
 
is not. Similarly, none of the following generalizations are deducible in basic 
arithmetic, even though all their particular instances are: 
 
(b)                                               ∀x    0 + x = x 
(c)                              ∀x∀y∀z    x + (y + z) = (x + y ) + z 
(d)                                       ∀x∀y    x + y = y + x 
(e)                                             ∀x    0 × x = 0 
(f)                                      ∀x∀y    sx × y = (x × y) + y  
(g)                                          ∀x∀y    x × y = y × x 
 
 To establish the independence of (a) - (g) from the postulates of basic 
arithmetic, we must supply a model of basic arithmetic, that is, an 
interpretation in which B1 - B7 are true, but in which (a) - (g) are false.  It is 
easy to check that the following interpretation J does the job: 
 
 Domain: the natural numbers together with two additional distinct 
objects $,@ 
 Interpretation of s: indicated by the diagram below, in which each arrow 
leads from a  member of the domain to its successor: 
 
(**)                                 . →  . →  . →  . →  ...     .        . 
                                     0     1      2     3             $       @ 
 
                                              
 Interpretation of + and ×: as usual when the arguments are both natural 
numbers. When one or both arguments are $ or @, the values are given by the 
tables below, in which n is any natural number, and n> is any nonzero natural 
number: 
 
                                    +     n    $    @                   ×      0    n>    $     @ 
                                    n          @    $                    n                   $      @ 
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                                    $    $    @    $                  $      0    @     @      @ 
                                   @    @    @    $                  @     0    $      $      $ 
 
 The incompleteness of basic arithmetic implies that it also fails to be 
categorical. A set of postulates is said to be categorical if all of its models are 
isomorphic (Greek iso: "same", morphe: "form") in the sense that the same 
diagram serves for all of them, apart from the relabelling of nodes. The 
noncategoricity of basic arithmetic can be seen immediately from the fact that 
the standard interpretation N is not isomorphic to the interpretation J defined 
above. For no relabelling of nodes can ever convert N's diagram (*) into J's 
diagram (**), since the latter contains loops and the former doesn't.  
 Incompleteness of basic arithmetic is a kind of deductive weakness: 
certain sentences that one would expect to be able to prove turn out not to be 
provable. This weakness can be to a great extent overcome by adding to it a 
new rule known as the principle of mathematical induction. Informally, this is 
the rule of arithmetic which states:  
 

for any property P of natural numbers, if P0, and if, for any number n, 
P(n+1) follows from Pn, then every number has the property P.  

 
It follows from this that, if P is a property of natural numbers such that P0 is 
true but Pa is false for some number a, then there must be some number n for 
which P(n + 1) does not follow from Pn, that is, for which Pn is true but P(n + 1) 
is false. It is this consequence that we express in the form of the new tree rule: 
 
MI                                                  p(0) 

: 
¬p(t) 

  
p(b) 

¬p(sb) 
 
Here p(t) is any sentence containing occurrences of the name t, b is a new 
simple name, and p(0), p(b) are the sentences obtained by substituting 0, b, 
respectively, for each occurrence of t in p(t). This rule is clearly sound in the 
standard interpretation. 
 Let us show that sentence (a) above follows from B1 and B2 when we are 
allowed to use rule MI. Here is the appropriate closed tree: 
 

∀x∀y(x ≠ y → sx ≠  sy) 
∀x    0 ≠ sx 
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¬ ∀x   x ≠ sx 
  

   0  ≠  s0  
  

    a  =  sa 
  

                                   (*)                   b  ≠  sb 
    sb = ssb 

  
                                                   b ≠  sb   →   sb ≠ ssb 

  
   b = sb                        sb ≠ ssb 

                                            ×                                × 
 
Here to obtain the sentences at (*) we applied MI to the two sentences 
immediately above, with p(t) the sentence ¬(t = st).  
 
Exercises. 1. Show that MI is unsound in the interpretation J of basic 
arithmetic given above. That is, find a sentence p for which the premises of MI 
are true under J, but the sentences forming the conclusion cannot be 
simultaneously true. (Hint: consider the sentence a ≠ sa.) 

2. Use MI to derive sentences (b) and (e) above from (some of) the 
postulates of basic arithmetic. 

3. Derive the following inference form from MI: 
 

p(0) 
∀x[p(x) → p(sx)] 

 ∀xp(x) 
 

4. Consider the following "rule" ("the ω-rule"): 
 

p(0) 
p(s0) 
p(ss0) 

: 
:    

∀xp(x) 
 
This rule stipulates that a universal generalization follows from the infinite set 
of premises consisting of its instances for all numeral values of the universally 
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generalized variable. It is an infinitary rule allowing an infinite branch to close. 
The rule is clearly sound for the standard interpretation. 
 (i) Show that the  ω-rule is unsound for the interpretation J above.  
 (ii) Sketch the general appearance of trees, using the ω-rule but not MI, 
for the inference of sentence (a) above from B1 and B2, and sentence (b) above 
from B1, B2, B4 and B5. 
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III. Second-Order Logic 
 
 
 Predicate logic is often known as first-order logic, because in forming its 
sentences quantification is restricted to individuals, that is, first-order entities. 
Second-order logic is an extension of first-order logic which allows existential 
and universal quantification of second-order entities such as predicates, 
relations, and operations. As examples of second-order sentences we have: 
 

(1)  ∀x∀y[x = y ↔ ∀P(Px → Py)]          (2)  ∀x∀y∃R Rxy. 
 
The first of these asserts that individuals are identical just when one possesses 
every property the other does, and the second that any two individuals are 
related in some way or other. In these sentences the letter "P" is used as a one-
place predicate variable, for properties of individuals, and the letter "R" is used 
as a binary relation variable, for relations between individuals. 
 
 Another example is the sentence 
 
(3)                                   ∀P[[P0 ∧ ∀x(Px → Psx)] → ∀xPx], 
 
which expresses the principle of mathematical induction stated in the previous 
chapter.  
 
 The formation and interpretation rules for sentences of second-order 
logic are straightforward extensions of the corresponding first-order rules. One 
needs to note only that, in the second-order case, a name can now be a 
predicate, relation, or operation symbol, or an expression that, as in the 
examples above, can be construed as one. An interpretation of such a name is 
then a predicate, relation (of the appropriate number of argument places) or 
operation on the domain of the interpretation. The notions of validity, 
consistency and model are thus automatically extended to second-order 
sentences. 
 
 The tree method can be applied to reasoning involving second-order 
sentences —second -order reasoning —in essentially the same way as for first-
order reasoning. For instance, let us apply the tree test for validity to the 
sentence (1) above. We get the tree below, in which the vertical lines have been 
omitted. 

 
     ¬ ∀x∀y[x = y ↔  ∀P(Px → Py)] 
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         : 
         : 

          ¬[a = b   ↔ ∀P(Pa → Pb)] 
                                        
                                
                                      a = b                                           a ≠ b      
                                    ¬∀P(Pa → Pb)                            ∀P(Pa → Pb)      
                                    ∃P¬(Pa → Pb)                        a = a  →  a = b    (*) 
                              (**)    ¬(Ka  → Kb) 
                                         Ka                                       
                                        ¬Kb                             a ≠ a                        a = b 
                                         Kb                                 ×                              × 
                                          ×    
       
 
To obtain line (*) we applied UI (extended in the obvious way to second-order 
sentences) to the sentence ∀P(Pa → Pb) immediately above by choosing the 
instance of the predicate variable "P" to be the expression "a =  ", that is, the 
property of being a. To obtain line (**) we applied EI (extended in the obvious 
way to second-order sentences) to the sentence ∃P¬(Pa → Pb) immediately 
above by introducing a new predicate name K and substituting it for P. The tree 
is then seen to close, so that the sentence in question is a logical truth. This 
means, in effect, that in second-order logic identity x = y can be defined as 
∀P(Px → Py).      
 
 Similarly, in the case of sentence (2), we get the tree 
 

¬ ∃R Rab 
  

∀R ¬Rab 
  

¬(a = b ∨  a ≠ b) 
: 
: 
× 

 
where the last line is obtained from second-order UI by choosing for R the 
relation x = y  ∨ x ≠ y. 
Exercise. Using the tree method as above, show that the following arguments 
are valid: (i) ∀P(Pa → Pb), ∀P(Pb → Pc).  ∴ ∀P(Pa → Pc), (ii)  ∀P(Pa → Pb)               
∴ ∀P(Pb → Pa). 
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 We have seen that basic arithmetic has models that differ in essential 
respects from the standard interpretation—the natural number system. 
Sentence (3) above— the principle of mathematical induction —is a second-order 
sentence which is true in the standard interpretation, and, in a certain sense, 
only in that interpretation. The first, and crucial, step in demonstrating this is 
to establish what we shall call the 
  

Exhaustion principle. Models of the principle of mathematical 
induction are exactly those interpretations in which (the interpretations 
of the names on) the list 0, s0, ss0, sss0,... exhausts the whole domain of 
the interpretation.  

 
 To see this, suppose that I is a model of the principle. Then if L is (a 
name for) the property of being the interpretation under I of a name on the list, 
clearly L0 and  ∀x(Lx → Lsx) are both true under I. Since the induction 
principle has been assumed to be true under I, so then will the sentence ∀xLx. 
But the truth of this means precisely that every individual in the domain is 
named on the list. 
 
 Conversely, suppose that the domain of an interpretation I consists 
exactly of (the interpretations of) 0, s0, ss0, sss0,... . Let P be (a name for) any 
predicate defined on the domain of I, and assume that P0 and  ∀x(Px  → Psx) 
are both true under I. We claim that  ∀xPx is also true under I. If not, then 
some element of the domain fails to satisfy PI. This element cannot be (the 
interpretation of) 0, and must therefore be (the interpretation of) sn0 for some  
n ≥ 1 (here sn0 is 0 preceded by n s's). Choosing n to be least, we have n ≥ 1 
and Psn-10 is true under I. Since ∀x(Px → Psx) is true under I, it follows that 
Psn-10 → Psn0 is true under I, and hence Psn0 is also true under I. This 
contradiction shows that ∀xPx must have been true under I after all. 
Accordingly  
 

P0  ∧ ∀x(Px → Psx) → ∀xPx 
 
is true under I; since P was arbitrary, we conclude that the induction principle 
is true under I. 
 It follows immediately from the exhaustion principle that in any model of 
the induction principle the postulate 
 
B3     ∀x(x ≠ 0  →  ∃y(x = sy)) 
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of basic arithmetic must also be true. In fact this postulate is derivable from 
the induction principle, as the following closed tree demonstrates. Here we use 
"S(x)" as an abbreviation for "x ≠ 0  → ∃y(x = sy)." 
 
 

∀P[[P0 ∧ ∀x(Px → Psx]) → ∀xPx] 
¬ ∀xS(x) 

[S(0) ∧ ∀x[S(x) → S(sx)]] → ∀xS(x) 
                                                                                                           
                                                                                                                  ∀xS(x) 
                                                                                                                      × 
                                                 ¬[S(0)  ∧ ∀x[S(x) → S(sx)]]                          
  
 
                      ¬S(0)                        ¬ ∀x[S(x) → S(sx)] 
                                                                                  
                      0  ≠  0                       ¬[S(a)  → S(sa)] 
                        ×                                
                                                            S(a) 
                                                           ¬S(sa) 

  
                                                              sa  ≠  0 
                                                      ¬∃y   sa = sy 

  
                                                           ∀y   sa ≠ sy 

  
                                                             sa  ≠  sa 
                                                               × 
 
 The second order induction principle has several nonisomorphic models, 
which shows that, taken by itself, it is not categorical. These models are based 
on the four diagrams below, in which the interpretations of s and 0 are 
displayed: as usual, each arrow goes from an element to its "successor". 
 
                          
                           (a)           (b)                 (c)                                  (d)  
                                                                                    . →  . →  . →  . →  . 
                        0.          0.     . $     0.      $ .      .@       0      1      2     3 
                                                                                         standard interpretation 
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Clearly no one of these diagrams can be converted into another by relabelling 
nodes, since they all contain different numbers of nodes: 1, 2, 3, infinity. The 
interpretations are therefore nonisomorphic. 
 
Exercise. Show that the induction principle is true in each of the 
interpretations whose diagrammed by (a) (b) and (c) (and of course (d)). 
 
 In contrast, the system—known as second-order arithmetic—obtained by 
adding postulates 
 
B1     ∀x∀y(x ≠ y → sx ≠ sy) 
B2      ∀x   0 ≠ sx 
 
to the second-order induction principle is categorical, as we shall shortly 
establish. 
 
Exercise. Show that B1 is false in interpretation (c), and B2 is false in both (a) 
and (b).  
 
 Second-order arithmetic is categorical: any interpretation I in which B1, 
B2 and the second-order induction principle are all true is isomorphic to the 
standard interpretation N. 
 
 To prove this, we first note that, by the exhaustion principle, the domain 
of I consists of the interpretations of the names on the list  
 
(*) 0, s0, ss0, sss0,... .  
 
The truth of B2 under I means that the sentences 0  ≠s0, 0 ≠ ss0, 0 ≠ sss0 are 
all true under I. The truth of B1 under I now implies that distinct members of 
the list (*) receive distinct interpretations under I. (For if not, then, for example, 
sss0 = sssss0 would be true under I and three applications of B1 would show  
0 = ss0 to be true under I, contradicting what we have already established.) It 
follows that the diagram of I  looks like: 
 

 
.   →  .  →   .  →   .  →... 

                                         0       s0       ss0    sss0 
 
Clearly this diagram can be relabelled so as to convert it into the diagram of the 
standard interpretation N, viz., 
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. →  . →  . →  . → ... 
                                             0     1     2      3    
 
Therefore I and N are isomorphic. 
 
 The categoricity of second-order arithmetic means that—unlike basic 
arithmetic—it furnishes a complete characterization of the natural numbers 
with the successor function in the following sense: 
 
 For any sentence p in the vocabulary of second-order arithmetic, p is a 
logical consequence of second-order arithmetic if and only if p is true in the 
standard interpretation N. 
 
 To prove this, we observe that if p is a logical consequence of second-
order arithmetic, it must be true in every model of it, and so in particular it 
must be true in N. Conversely, suppose p is true in N, and let I be any model of 
second-order arithmetic. Since second-order arithmetic is categorical, I is 
isomorphic to N, so since p is true in N, it must also be true in I. Therefore p is 
a logical consequence of  second-order arithmetic. 
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IV. Contextual (Modal) Logic 
 
 
 In classical propositional logic we think of a statement as being simply 
true or false, with no reference to context. In contextual logic, on the other 
hand, we are concerned with statements whose truth is in some way context 
dependent. For instance, 
 

it is raining here 
 
is a context-dependent statement of the kind we have in mind: its truth 
depends on the exact location of "here", which, accordingly, plays the role of 
the context.  
 
 Another example of a context dependent statement is  
 

it is raining over a 10 square mile circular region centred 50 miles north of here. 
 
There is a connection between these two types of statement. Let us write simply 
p for the partial statement it is raining.  Then it is raining at (place) x is the same 
as 
 

p holds at x. 
 
Given a place x, call any place y within a 10 square mile circular region centred 
50 miles north of x a place of relevance to x and the set of such places the 
region of relevance determined by x: it will of course vary with x. We agree to 
write p (read "box p") for the partial statement it is raining over a region of 

relevance. In that case, the statement  
 

it is raining over a 10 square mile circular region centred 50 miles north of x 
 
may be written 
 

 p holds at x. 

 
 Similarly, if we agree to write ◊p (read "diamond p") for the partial 
statement 

it is raining at a place of relevance, 
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then the statement 
 

it is raining somewhere within a 10 square mile circular region centred 50 miles 
north of x 

 
may be written 
 

 ◊p holds at x. 
 
Clearly we have  
 

¬◊p  ⇔  ¬p   and   ¬ p ⇔ ◊¬p.  

 
 The symbols  and ◊ are operators, which, like ¬, when applied to a 

propositional statement (such as "it is raining") yield new propositional 
statements.  They are called contextual or modal operators. Thus the class of 
contextual (propositional) statements is defined by adding to the formation rules 
for propositional statements the clause:   
 

if p is a statement, so are  p and ◊p. 

 
 As indicated by the example above, we think of the truth values of 
contextual statements as being implicitly determined by contexts. This idea 
leads us to adopt the following tree rules for contextual statements. First, the             
 
                                                          ◊ rule: 
 
                                                                ◊p  
                                                                  
                                                             p              
 
This may be read: if ◊p occurs in a tree, a new context may be introduced 
immediately below and p asserted there.. 

Here we have incorporated a new device into our trees, namely that of 
introducing or moving to a new context. We will indicate a change of context by 
means of a solid horizontal line: thus two statements in a given path not 
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separated by a horizontal line are said to be in the same context: it follows that 
a tree containing n horizontal lines contains n + 1 contexts. It is important to 
understand that each application of the ◊ rule to statements appearing in the 
same context requires the introduction of a separate and independent new 
context. This is illustrated by the following example: 
 

: 
: 

◊p 

◊q 
 
 

 p          q 
 
 
Here it is important to note that  the  fork                   does not indicate the 
splitting of the given path into two paths; it signifies merely the introduction of 
two independent contexts within a single path. 
 

Our second new rule is the 
                                                 

   rule: 

 
                                                             p                

 
                                                              p 
  
This may be read: if p occurs in a given context, and a new context is introduced 

just below that context, then p may be asserted there. 
                                                                                                                                                      
 Note that in presenting these rules a solid line will indicate that it is 
permissible to introduce a new context, while a broken line means only that if 
some other rule allows us to introduce a new context, then the rule in question 
allows us to assert something in it.  
 
 We also adopt the  
 
 



 35 
 

Interchange rules 
 
                                            ¬ p                         ¬◊p 

                                                                  
                                            ◊¬p                         ¬p 

 
  

Finally, we declare a path to be closed only when it contains some 
statement and its negation not separated by a horizontal line, that is, within the 
same context. As usual, a tree is said to be closed if all its paths are closed. 
 
 We write  for the system of tree rules consisting of the rules for the 
propositional operators, the - and  ◊- rules, the interchange rules, and the 

new rule for closing a path. This system is called basic contextual logic. A tree 
constructed in accordance with the -rules is called a -tree A statement p is 

-valid if there is a closed -tree with initial statement ¬p1.  
 
 Let us use these new tree rules to establish some simple properties of the 
system. First, we show that the statement 
 

 (p → q) →  ( p → q) 

 
is -valid.  
 

 
¬[  (p → q) → ( p →  q)] 

  
                                                       (p → q)      (#) 

  ¬( p → q) 

  
                                                           p     (*)    

                                                           
1 In general, if R is a collection of tree rules, a R-tree is a tree constructed in accordance with the rules of R, and a  
statement p is R-valid if there is a closed R-tree with initial statement ¬p. This should be borne in mind in connection 
with the logical systems to be presented in the sequel. 
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                                                          ¬ q 

  
                                                            ◊¬q     (+)   
                                                                     
                                                                 ¬q      (++) 

  
                                                              p       (**) 
                                                           
                                                           p  → q   (##)  
                                                        
 
                                                     ¬p                   q 
                                                       ×                  ×                                                      
 
Here (++) is derived from (+) by the ◊-rule, and (**) from (*), as well as (##) from 
(#) by the  -rule.   

 Next, we show that, if p is -valid, then so is p, and conversely. For the 

-validity of p means that there is a closed -tree with initial statement ¬p: 
 
(*)                                                      ¬p 
                                                            : 
                                                           × 
This yields a closed tree 
 

¬ p 

 
 ◊¬p 

 
¬p 

             :        (*) 
                                                             ×           
 
Here the nodes below the horizontal line reproduce the tree (*). So  p is valid. 
 
 Conversely, suppose that p is -valid. Then there is a closed -tree  

 



 37 
 

¬ p 

(**)                                                     : 
                                                             : 
                                                             ×                
  
Now the only -rule applicable to ¬ p is the appropriate interchange rule, so 

that the tree (**) must begin: 
 

¬ p 

  
 ◊¬p 

: 
 
Similarly, the only rule applicable to  ◊¬p is the  ◊-rule, so (**) must look like 
 

¬ p 

  
 ◊¬p 

  
¬p 
: 
: 
× 
 

But then the portion of this tree below the horizontal line is a closed tree with 
initial statement ¬p. Accordingly p is valid. 
 
Exercises. 1. By constructing closed trees, establish the -validity of the 
statements (p ∧ q)  ↔ p  ∧ q, ◊(p ∨ q) ↔  (◊p ∨ ◊q),  p ∨ q → (p ∨ q),       

( p → ◊q) → ◊(p → q), and ( p → ◊q)→ ¬ f (here f is any contradiction, e.g.    

A  ∧ ¬A). 
2. Show that,   satisfies the disjunction principle: if  p ∨ q is -valid, then at 

least one of p, q is -valid. (Hint: consider a closed tree with initial statement   
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¬( p ∨ q) and apply the same sort of analysis as was applied to the tree (**) 

above.) 
 

 
INTERPRETATIONS OF CONTEXTUAL STATEMENTS 

 
 
 As one might expect, the formal definition of an interpretation of 
contextual statements involves both the abstract notion of a context and the 
relation of relevance among concepts. Thus we define a contextual structure to 
be an ordered pair (C, R) = C in which C is a nonempty set and R is a binary 
relation on C. The members of C are called contexts of C and R the relevance 
relation of C. We use symbols a, b, c to indicate members of C; aRb is read "b is 
relevant to a."  

An interpretation of contextual statements in a contextual structure C  is 
a function I which, to each pair (p, a) consisting of a contextual statement p 
and a context a, assigns an element I(p, a) of the set of truth values {t, f} in 
such a way that 
 
(1)  I(¬p, a) = t       ⇔   I(p, a) = f 
(2)  I(p ∧ q, a) = t    ⇔   I(p, a) = I(q ,a) = t 
(3)  I(p ∨ q, a) = t    ⇔   I(p, a) = t or I(q, a) = t 
(4)  I(p → q, a) = t   ⇔   I(p, a) = f or I(q, a) = t 
(5)  I(p ↔ q, a) = t   ⇔   I(p, a) = I(q, a) 
(6)  I( p, a) = t        ⇔   I(p, b) = t  for every b in C such that aRb 

(7)  I(◊p, a) = t        ⇔   I(p, b) = t  for some b in C such that aRb. 
 
We think of I(p ,a) = t as asserting that 
 

 p holds (under I) in the context a. 
 
Thus clause (6) may be construed as saying that 
 
 p holds in a context just when p holds in all contexts relevant to the given one, 

 
and clause (7) reads 
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 ◊p holds in a context just when p holds in at least one context relevant to the 
given one 

 
It follows immediately that, if a is a context with no contexts relevant to it, 
then, for any statement p, p holds in a and ◊p fails to hold in a. 

It will be convenient to write  
 

a I  p  or  a  p   
 
for I(p ,a) = t. The assertion a  p  is read “a forces (the truth of)p”. We also write 
 

a  p 
 

for the negation of a   p.   
 
Exercise. Show that a  ◊p if and only if a  ¬ ¬p. 

 
 Clearly any assignment of truth values to pairs (A, a), where A is a 
statement letter and a a context of C generates a unique interpretation 
determined by clauses (1) - (7). So in specifying an interpretation in a given 
contextual structure we need only specify the truth values it assigns to pairs of 
that form. 
 
 We say that a contextual statement p is true under an interpretation I in 
a contextual structure  C = (C, R) if a I p for all a in C, that is, if p holds under 
I in every context of C. We say that p is satisfiable if a I p for some 
interpretation I and some context a.   
 We now show that -valid contextual statements are true under every 
interpretation. (Recall that " -valid" means "negation generating a closed -
tree.") This is proved in the same way as the inference correctness for 
propositional trees. We first specify what it means for a tree rule to be correct. If 
the rule is an old (noncontextual) rule or either of the interchange rules, we say 
that it is correct if whenever its premise holds under a given interpretation in a 
given context, all the statements in at least one of its lists of conclusions hold 
under that interpretation. As for the - and ◊-rules, we say that either is 

correct if whenever its premise is true in a given context under a given 
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interpretation, its conclusion holds under the same interpretation in some 
context relevant to the given one. It is readily shown that all tree rules are 
correct in this sense. Thus, starting with a satisfiable statement q, there is an 
interpretation under which, and a context in which, q is true. Since each tree 
rule is correct, it readily follows that any tree with initial statement q will 
contain at least one complete open path. If p is valid, then the finished tree 
with initial statement ¬p is closed, and so ¬p cannot be satisfiable; in other 
words p is true under every interpretation.  
 As in the case of ordinary propositional logic, the tree method for 
contextual logic can be used to generate counterexamples or countermodels, 
that is, interpretations in which invalid statements are false. We give a couple 
of examples which will serve to indicate the general procedure. 
 

1. A countermodel for  A  → A. Here we generate the following 

finished -tree:  
 
 

¬( A → A) 

  
A  

               ¬ A              1 

  
 ◊¬ A 

 
¬ A 

  
                                                              A                 2 

  
 ◊¬A 

                     ¬A                  3 
 
Since this tree contains two horizontal lines, it contains three contexts which 
we label 1, 2, 3, and each context is relevant to the one immediately below it. 
This may be represented by a "relevance diagram" 
 

  . →  . →  . 
                                                  1      2      3 
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in which the nodes represent contexts and each arrow goes from a context to 
one relevant to it. The diagram determines a contextual structure  C = (C, R) in 
which C = {1,2,3} and R = {(1, 2), (2, 3)}. The countermodel will be an 
interpretation I in C making the initial statement of the tree false in the context 
(1) in which it appears. As with propositional trees we allow the truth values 
assigned to statement letters to be determined by whether they occur positively 
or negatively, only now this assignment will also depend on the context in 
which they occur. We see that, in the tree above, A occurs positively in context 
2 and negatively in context 3. So our interpretation I we should define           
I(A, 2) = t, I(A, 3) = f. (The value of I(A, 1) is irrelevant.) Our interpretation may 
then be displayed by the diagram 
  
                                                              t       f 

  . →  . →  . 
                                                     1      2      3   

 
 Let us verify that A  → A is false under I in context 1. Since 2 is the 

only context relevant to 1, and 2  A, it follows that 1  A. On the other hand, 

since 3 is the only context relevant to 2, and 3  A, it follows that 2  A, But 

this means that 1 A. Therefore 1  A → A, as claimed. So I is a 

countermodel for A → A. 

 
 2. A countermodel for  (A ∨ B) → A ∨ B. In this case we generate the 

following finished tree: 
 

¬[ (A ∨ B)  → A ∨ B] 

  
(A ∨ B) 

         ¬( A ∨ B)         1 

  
¬ A 

 ¬ B  
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◊¬A 

 ◊¬B 
 

 
                                                      ¬A          ¬B 

              
A ∨ B      A ∨ B 

 
2                                          3 

                                                A       B    A      B 
                                               ×                      ×     
 
In this case the diagram of the interpretation I determined by the tree is, 
writing t, f and t, f  for the truth values assigned to A,B respectively, 
 
                                                                     t f 
                                                                    . 3 
                                               
                                                  1  .  
                                        
                                                                          . 2  
                                                                           f t 
  
 
Let us verify that  (A ∨ B) → A ∨ B is false under I in context 1. To begin 

with, since I(A ∨ B, 2) = I(A ∨ B, 3) = t, and 2,3 are the only contexts relevant to 
1, it follows that 1  (A ∨ B). On the other hand, since I(A, 2) = I(B, 3) = f, it 

follows that  I( A, 1) = I( B, 1) = f. Therefore 1  A ∨ B, and so 1  (A ∨ B) 

→ ( A ∨  B) as claimed. 

 
Exercise. In a way similar to the two examples above, construct countermodels 
to the following statements: (i) A → A, (ii) A →  A, (iii) A → ◊A,                

(iv) ◊ A → A, (v)  ( A → A) →  A. Show that  A → A is true in context 1 

of the countermodel for (i).  
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 Although we shall not prove it here, it can be shown that this method of 
construction works in general, that is, each -invalid contextual statement is 
false under some interpretation. Equivalently, any contextual statement true 
under every interpretation is valid. 
 

 
 

OTHER SYSTEMS OF CONTEXTUAL LOGIC 
 
 So far we have imposed no conditions whatsoever on relevance relations. 
One possible and, indeed, natural condition to consider is that of reflexivity: 
aRa for any   a ∈ C. This condition means that each context is self-relevant. A 
contextual structure whose relevance relation R satisfies this condition is called 
reflexive. Truth in reflexive contextual structures is captured by adding the 
following  -elimination rule to our system   of tree rules:  

 
 -elimination 

 
p 

  
                                                           p 
 
 
 
We write  1 for the resulting system of tree rules. 
 
 Clearly  A → A becomes a 1-valid statement. On the other hand, the 

statement A → A remains 1-invalid. This can be seen by returning to the 

tree on p. 43 which generates a countermodel for A → A. This tree can be 

finished in accordance with the rules of  1 by adding a node with "A" on it in 
context 1. Since we want the relevance relation of our interpretation to be 
reflexive, the original relevance diagram must now have loops attached to each 
node, as in 
 
                                         .  →   .  →   . 
                                      1        2        3  
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And in addition to assigning the value "t" to A in context 2, and "f" in context 3, 
the interpretation must assign "t" to A in context 1. Then, as before,              

A → A is false in context 1 under this interpretation. 

 
Exercises. 1.Show that  p → ◊p is 1-valid, and construct countermodels to 

show that the statements ◊ A → A and ( A → A) → A   are both  1-invalid.  

2. Show that 1 satisfies the disjunction principle: for any statements p, q, if 
p ∨ q is 1-valid, then at least one of p, q is 1-valid.  

 
 Another natural condition that can be imposed on a relevance relation is 
that it be transitive: (aRb ∧ bRc) ⇒ aRc. A contextual structure whose relevance 
relation satisfies this condition is called transitive. Truth in transitive 
contextual structures is captured by adding to the following rule to the system 

:  
 
 

-repeat 

 
p 

 
p 

 
 
(Recall that the broken line indicates that if a new context is introduced, 
something may be asserted in it.) The resulting system is denoted by  2. 
 
 The closed tree below shows that  p → p is 2-valid. 

 
¬( p → p) 

 p 

¬ p 

  ◊¬ p 

¬ p 
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  p 

  × 
 
Here the last line is derived from the second by the  -repeat rule. 

 
Exercises. 1. Show that the statement  ◊◊p → ◊p is 2-valid.   
2. Show that 2 satisfies the disjunction principle: for any statements p, q, if 

p ∨ q is 2-valid, then at least one of p, q is 2 -valid.  

 Invalidity in 2 is established, as before, by using trees to generate 
countermodels, only now the contextual structure in each countermodel must 
be transitive. For instance, it will be found that this is the case for the 
countermodels for  ◊A → A and ◊ A → A in the exercise on p.42. So neither of 

these two statements are 2-valid.   
 
 The system  3 is obtained by amalgamating 1 and 2, in other words, 
by adding both the  -elimination and -repeat rules to .  3 captures truth 

in preordered contextual structures, those whose relevance relations are 
transitive and reflexive, that is, preorderings. 
 
Exercises. 1. Show that the statements ◊◊p ↔ ◊p and ◊ ◊p ↔ ◊p are 3-

valid.  
2. Show that the statements   ◊A → A and   ◊ A → A are both 3-invalid. 

3. Show that 3 satisfies the disjunction principle: for any statements p, q, if 
p ∨ q is 3-valid, then at least one of p, q is 3-valid.  

  Another possible condition on a relevance relation is the extreme (but not 
unnatural) one that all contexts are relevant to one another. A contextual 
structure  (C, R) satisfying this condition will then have R = C × C—we shall call 
such contextual structures full—and the clause for the truth of  p under an 
interpretation I in such a structure becomes  
 

I( p, a) = t ⇔  I(p, b) = t for every b ∈ C. 
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That is, p is true in a particular context if and only if p is true in all contexts. 

Similarly, ◊p is true in a particular context if and only if p is true in some 
context. In this event, it is natural to say that the truth of p means the 

necessary truth of p— truth in every conceivable context—and the truth of  ◊p 
means the possible truth—truth in some conceivable context. Construed in this 
way, and ◊ are the so-called modal operators of necessity and possibility. For 

this reason, what we have called contextual logic is usually known as modal 
logic. 
 Let  4 be the system obtained from  by adding the additional “closure” 
rule: 
 
( 4closure) If either of the pairs of statements ( p, ¬p), or ( ¬p, p) occur in a 

path, close the path. 
 

4 captures truth in full contextual structures. 
 
 As an illustration of how this new rule works, let us show that the 
statement ◊ p → p is 4-valid. Here is the relevant tree: 
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Here p and ¬p appear on different tines of the fork, but nevertheless in the 

tree’s single path, which therefore closes. 
 
Exercises. 1. (i) Establish the 4-validity of  the following statements:            
(i) p → p, (ii) p → ◊p, (iii) p ↔ p, (iv) ◊◊p ↔ ◊p, (v)  ◊ ◊p ↔ ◊p,     

(vi)  p ↔ ◊ p,  (vii) ◊p ↔ ◊p, (viii) ◊ p → p. Deduce that in 4 any 

statement of the form …A, where each " " is either  or ◊, is either 

equivalent to ◊A, or to A. Deduce from (vii) that 4 does not satisfy the 

disjunction principle.  
2. By constructing countermodels, show that the statements ◊A → A, A → A 

and ( A → A) → A are 4-invalid. (Remember that a 4 countermodel has 

to be a full contextual structure.) 
 
 
 
 

¬(◊ p → p) 

 
         ◊ p 

         ¬ p 

 
         ◊¬p 
 
 
 p               ¬p 

            × 
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3. (i) Show that the tree rules  
 
                                            p                          p 

                                                                          
                                           p                        p 

 
are correct for interpretations in contextual structures in which the relevance 
relation is the identity relation, that is, in which each context is relevant only to 
itself. 
 (ii) Show that the "premiseless" tree rule 
 
                                              
                                                        p 

 
is correct for interpretations in contextual structures in which the relevance 
relation is empty, that is, in which no contexts are relevant to one another. 
 

 
OTHER INTERPRETATIONS OF   AND ◊ 

 
 
 We have seen that, in addition to its "contextual" interpretation, one 
possible meaning that can be assigned to  is "it is necessarily true that". This 

is known as the alethic interpretation (from Greek aletheia, "truth"). There are 
several others, for example: "it is known that", the epistemic interpretation 
(from Greek episteme, "knowledge"); "it is believed that", the doxastic 
interpretation (from Greek doxa, "opinion"); "it is obligatory that", the deontic 
interpretation (from Greek deon, "duty"); "it is demonstrable that", the apodeictic 
interpretation (from Greek apodeiknunai, "demonstrate").   
 
 As we have remarked, the system  4 is a good set of rules for the alethic 
interpretation. The system  3 provides a reasonably faithful set of rules for 
the epistemic interpretation, and 2 for the doxastic interpretation. As for the 
deontic interpretation, the only rule which would seem to be correct (in 
addition to those of the basic system  ) is 
 
                                                              p 
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◊p 
 
"whatever is obligatory is permissible." The system obtained by adding this rule 
to   is denoted by  ½. 
 
Exercises. 1.  Show that the above rule for the deontic interpretation is 
equivalent to the following "closure" rule: 

 
p 

: 
: 

 ¬p 

                                                            × 
 
2. Why isn't  1 suitable  for  the  doxastic  interpretation?   What  about ½?
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V. Intuitionistic Logic 
 
 
 
 The idea behind intuitionistic logic is that statements are only asserted to 
be true or false when one is in possession of, or can in principle produce, 
evidence for the fact. Evidence might take the form of a proof, or even a direct 
verification. It is reasonable to express the fact that such evidence can be 
produced by saying that the statement in question is known to be true—or 
false—as the case may be.  
 
 In this event, certain classically valid principles will no longer remain 
valid. For example, to assert the truth of the statement p ∨ ¬p is now to assert 
that  

p is known to be true or known to be false,  
 
which is clearly not the case in general. (To see this, take p to be the statement 
"Aldebaran has planets.") Similarly, to assert the truth of the statement ¬¬p → 
p is to assert that  
 

if "p is known to be false" is known to be false, then p is known to be true. 
 
Again, by taking p to be the same statement as before, this can be seen not to 
be true in general. Thus, while 

 
Aldebaran is known not to have planets is known to be false, 

 
it is not the case that 
 

Aldebaran has planets is known to be true. 
 
The crucial feature of intuitionistic reasoning is that "not (known to be) true" is 
not the same as "(known to be) false". 
 
 We see, then, that intuitionistic logic (so defined) is a kind of epistemic (or 
apodeictic) logic. The principal difference between them is that, in epistemic 
logic, as in any contextual logic, statement operators , ◊ are introduced as 

explicit devices to represent knowledge or evidence, thereby enlarging the class 
of statements, while the meaning of—and thus the logical principles 
governing—the statements on which they operate remains the same: simple 
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truth or falsity. In intuitionistic logic, on the other hand, the criterion of 
evidence is, so to speak, injected into the meaning of the statements themselves. 
As we have seen above, this results in a change in the rules of reasoning.    
 
 Although in presenting intuitionistic logic we shall not introduce new 
propositional operators in the usual sense, the tree rules we shall formulate for 
it will involve a new piece of notation—the interrogative sign ?—which will allow 
us to express in a purely formal way the idea of a sentence—like the one 
above—which is not known to be true. Thus, for any statement p, we will be able 
to write ?p and think of it as asserting that p is not known to be true, or that we 
do not possess evidence for p. Clearly ?p does not entail ¬p, that is, it does not 
entail that p is known to be false. As we have said, we do not regard ? as a new 
logical operator, nor do we regard ?p as a new statement of our logical system. 
Rather, expressions of the form ?p are to be viewed as purely formal 
constituents of trees. The ? sign is only allowed to be placed at the front of any 
statement. Thus no brackets are needed for writing interrogatives: for example 
in ?p  ∧ q the ? sign must apply to the whole statement p ∧ q, and not just to p.    
 
 As a kind of epistemic logic, intuitionistic logic is related to the system  

3 of contextual logic considered in the previous chapter. Recall that this latter 
captures truth in preordered contextual structures, that is, those in which the 
relevance relation is reflexive and transitive. These structures also furnish 
natural interpretations of statements of intuitionistic logic. When playing that 
role, contexts in such structures should be thought of stages of knowledge, and 
relevance relations R as relations of possible development of knowledge. That is, 
if a and b are stages of knowledge, aRb is understood to mean that what is 
known at stage b is a possible development of what is known at stage a. When 
R is thought of in this way, it is quite natural to require it to be both reflexive 
and transitive. 
 
 We now state our tree rules for intuitionistic propositional logic. They fall 
into the following three groups:  
 
 
 
 
 
 
                       p ∧ q          p ∨  q            p →  q              p ↔ q             ¬p  
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                          p         p          q      ?p           q         p            ?p         ?p 
                          q                                                      q             ?q 
 
                       ?p ∧ q      ?p ∨ q           ?p → q              ?p ↔ q            ?¬p 
                                                                                          
                                                                                                                  
                    ?p        ?q        ?p                  p                 p          ?p           p 
                                          ?q                ?q              ?q           q 
                           
 Transport rule. We are allowed to carry any statement not marked by "?" 
across any horizontal line introduced by the ?→ , ?↔ , and ?¬ rules.  
 Closure rule. A path is closed when (and only when), both p and ?p 
occur on it not separated by a horizontal line. When this is the case, the path is 
marked, as before, by "×". (And, as usual, a tree is closed if all its paths are.)                        
 
 Note that all these rules—apart from those for ¬, ?→ ,?↔ , ?¬ and the 
transport rule—are essentially the corresponding classical rules with "?" in 
place of "¬". The ¬ rule (which is obviously correct) is a device for converting ¬p 
into an expression we can work with, since our rules are formulated in terms of 
"?" rather than "¬". Clearly the negation rule allows us to close a path if both p 
and ¬p occur in it not separated by a horizontal line.   
 The → rule deserves a detailed explanation. The key point is that—in 
contrast with classical logic—implication in intuitionistic logic is not material 
implication: that is, p → q is not equivalent to ¬p ∨ q. In classical logic, the 
justification for identifying p ∨ q with ¬p ∨ q rests on the principle of bivalence, 
that either p or ¬p must be true. Then, if p is true, so is q by the entailment of 
q by p. Hence ¬p or q. Since intuitionistic logic does not (as we have seen) 
satisfy the principle of bivalence, this justification breaks down. What rule 
should we then adopt for implication? Let us look at things from an epistemic 
standpoint. Asserting that p implies q is known2 amounts to asserting that, if p 
comes to be known, then so thereby will q. Another way of putting this is to say 
that knowledge of p → q means possessing a method for converting knowledge 
of p into knowledge of q. In that case since in fact either p is known or p is not 
known, it follows that either p is not known or q is known. This the content of 
the → rule. Similar remarks apply to the ↔ rule: note that, as for contextual 
trees, the fork indicates signifies the introduction of two new stages of 
knowledge in a single path. 
 
                                                           
2Henceforth the term "known", if used without further qualification, will mean "known to be true." 
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 Next, consider the ?→ rule. Recall that in contextual logic the horizontal 
line indicated passage to a new context. Here the horizontal line may be taken 
to signalize advancement to a later stage of knowledge. Why is it needed? 
Because, if at some stage p → q isn't known, it could turn out that, at some 
later stage, p comes to be known without thereby causing q also to become 
known. This is the content of the ?→  rule. Similarly for the ?↔  rule. 
 
 To justify the ?¬ rule, we observe that, if p isn't known to be false at a 
given stage, it could turn out that p becomes known at some later stage.  
 
  Two statements on the same path not separated by a horizontal line may 
be said to occur at the same stage of knowledge. The closure rule expresses the 
obvious fact that something can't be both known and not known at the same 
stage of knowledge. 
 
 The transport rule is designed to reflect a simple feature of our usual 
understanding of the claim that a statement is known to be true: if p is known 
at some stage, then it is true, and so will continue to be true—and known—at 
all later stages. This property is called persistence.  
 
 It is important to note that in applying the ?→  or ?¬ rules to statements 
on a single path occurring at the same stage of knowledge—that is, not 
separated by a horizontal line—it is necessary to introduce a separate and 
independent horizontal line for each such application. This is illustrated by 

 
 ?¬p  ∨ ¬q 

  
?¬p 

                                                       ?¬q                                                   (*) 
 

  
                                                           p          q 
                                                        :           : 
 
in which the fork is obtained by independent applications of the ?¬ rule to ?¬p 
and ?¬q within a single path.  
 
 The tree test for validity is applied to intuitionistic statements in just the 
same way as for classical statements, except that ? replaces ¬.  That is, to 
determine whether a statement p is intuitionistically valid, start a tree with ?p: 
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if the tree closes in the new sense, p is valid. If it doesn't, then p is invalid and 
a countermodel can be read off from the tree, as we shall see later. 
 
Exercises. 1. Call a statement p intuitionistically contradictory if there is a 
closed intuitionistic tree with initial statement p. Show that p is 
intuitionistically contradictory if and only if ¬p is intuitionistically valid. 
2. Show that intuitionistic logic has the weak disjunction property: if ¬p ∨ ¬q is 
intuitionistically valid, then so is at least one of ¬p, ¬q. (Hint: consider the tree 
(*) on the previous page. Later we shall show that intuitionistic logic has the 
full disjunction property.) 
3. Observe that replacing “?” by “¬” and erasing the horizontal lines in each 
intutionistic tree rule transforms it into the corresponding classical tree rule. 
Deduce that any intuitionistically valid statement is classically valid.  
 
 Here are some examples of intuitionistically valid statements. In each 
case, the tree closes through straightforward application of the above rules. 
 
 
1.  p  → (q → p). 
 

?p → (q → p) 
 

p 
?q → p 

 
q 
?p 
p 
× 

 
 
 
 
 
 
 
 
2.  p →  (q →  (p ∧ q)). 
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? p →  (q →  (p ∧ q)). 
p 

? q →  (p ∧ q). 
 
q 

?p ∧ q 
 
 

   ?p          ?q  
                                                                          × 
                                                           p             
                                                       ×              
 
 
3. (¬p ∨ q) →  (p → q). 

? (¬p ∨ q) →  (p → q). 
¬p ∨ q 
?p → q 

p 
?q 

¬p ∨ q 
 
 

¬p         q 
  ×           × 

 
 
 
 Exercise. By constructing closed trees, show that each of the following 
statements is intuitionistically valid. (i) (p → (q → r)) → ((p → q) → (p → r)).                
(ii) (p ∧ q) → p. (iii) p → (p ∨ q). (iv) (p → r) → ((q → r) →  (p ∨ q →  r)).                    
(v) (p → q) →  ((p →  ¬q) → ¬p). (vi) ¬p →  (p → q). (vii) (p ∧ (p → q)) → q.                   
(viii) [(p ∨ ¬p) →  ((p → q)  → (¬p ∨ q))]. (ix) p  → ¬¬p. (x) ¬¬¬p  ↔ ¬p.                   
(xi) (p ∨ ¬p) →  (¬¬p → p). (xii) p ∧ (q ∨ r) ↔  (p ∧ q) ∨ (p ∧ r).                   
(xiii) p ∨  (q ∧  r) ↔  (p ∨ q) ∧  (p ∨ r). (xiv) ¬(p ∨ q) ↔ ¬p ∧ ¬q.                    
(xv) (¬p  ∨ ¬q) →  ¬(p ∧ q). (xvi) ¬p ↔ (p → f), where f is any contradiction.  
(xvii) ¬¬(p ∧ q) ↔ ¬¬p ∧ ¬¬q.  
 
 We now give a precise definition of the idea of an interpretation of 
statements of intuitionistic logic, similar to that given for contextual 
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statements. For simplicity let us call a preordered contextual structure a frame. 
If  C = (C, R) is a frame, the elements of C will be called stages of knowledge. 
Instead of aRb, we will write a ≤ b (or b ≥ a) and read this "b is later than (or 
the same as) a." An (intuitionistic) interpretation of statements in a frame C is a 
function I which assigns, to each pair (p, a) consisting of a sentence p and a 
stage of knowledge a, an element I(p, a) of {t, f} in such a way that: 
 
 (i) For any statement letter A, if I(A, a) = t and a ≤ b, then I(A, b) = t. 

(ii) I(p ∧ q, a) = t     ⇔   I(p, a) = I(q ,a) = t. 
 (iii) I(p ∨ q, a) = t    ⇔   I(p, a) = t or I(q, a) = t.  
 (iv) I(¬p, a) = t        ⇔    I(p, b) = f  for all b ≥ a. 

 (v) (I(p → q, a) = t   ⇔    (I(p, b) = t ⇒ I(q, b) = t)) for all b ≥ a. 

 (vi) I(p ↔ q ,a) = t   ⇔   I(p, b) = I(q, b) for all b ≥ a. 
 
Clearly any assignment of truth values satisfying condition (i) to all pairs (A, a) 
where A is a statement letter generates a unique interpretation determined by 
clauses (ii) - (vi). So in specifying an interpretation in a given frame we need 
only specify the truth values it assigns to these pairs, at the same time 
ensuring that condition (i)  is satisfied. 
 

If I(p, a) = t, we say that p is true (under I) at stage a. Thus clause (i) 
stipulates that, if a statement letter is true at some stage, it remains true at all 
later stages: its truth is, in short, persistent. It can be shown that then the 
truth of any statement is persistent in this sense. Notice also that, according to 
clauses (ii) and (iii), the truth of p ∧ q and p ∨ q at a given stage is completely 
determined by the truth of p and the truth of q at that stage. However, this is 
not the case for ¬p, p → q, or  p ↔ q. For example, according to clause (iv), ¬p 
is true at a given stage if and only if p is false at all later stages (recall that 
"later" includes the given stage). And according to clause (v), p → q is true at a 
given stage if and only if the truth of p implies that of q at all later stages. 
 
 If p is true at every stage under I, we shall say simply that p is valid 
under I. 
 In future we shall often write a I  p  or a  p for  I(p, a) = t, and a  p for 
I(p, a) = f. The persistence property for statements may then be expressed as:  

 
if a I  p and a ≤ b, then b I  p. 
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Exercise. Prove that a  ¬¬p  ⇔ for all b ≥ a there is c ≥ b such that c  p. 
  

It can be shown without much difficulty that that the rules we have given 
are correct (in the usual sense) for intuitionistic statements provided we take 
the truth of ?p at any stage as meaning the falsity of p at that stage, with no 
reference to future stages—that is, a  ?p  is taken to mean a   p. Accordingly, 
in using the tree method in the familiar way (that is, as for statements of 
contextual logic) to generate countermodels for intuitionistically invalid 
statements, statement letters will be assigned the value f at stages where they 
occur preceded by ?. This will result in the truth values of sentences changing 
from f to t as knowledge "advances". While perhaps a trifle counterintuitive, it 
is the price that must be paid for employing just the two truth values t and f in 
intuitionistic interpretations. It is, nevertheless, perfectly consistent, since, 
while truth is required to persist, the same is not demanded of falsity.  
  
 By way of illustration, we now construct a countermodel for (A  → B) →  
(¬A ∨ B).  

?(A → B) → (¬A ∨ B)     1 
 

A  → B 
?¬A ∨ B 

  
                    ?¬A                 2 

?B 
 
 

?A             B 
                × 

                                                     A                          3 
                                                     A → B            
                                                                                        ff      ff       tt 
                                                                                   . →    . →    . 
                                                 ?A         B                       1        2        3    
                                                ×  
The tree is finished and has one open branch. That branch contains three 
stages of knowledge which we label 1, 2, 3. At stage 2, both ?A and ?B appear, 
so our interpretation will assign f  to A and B there. Similarly, at stage 3, it 
assigns t to both A and B. Thus the countermodel I will be an interpretation in 
the frame (C, R) where C = {1, 2, 3}, R is the usual "equal to or less than" 
relation on {1, 2, 3}, and I(A, 2) = I(B, 2) = f, I(A, 3) = I(B, 3) = t. (To respect 
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persistence we must also take I(A, 1) = I(B, 1) = f, but this fact will not figure in 
our calculations.) Clearly 2 A →B.  On the other hand, since 3  A , we have  
2 ¬A, so that 2  ¬A ∨ B  Therefore 2  (A → B) → (¬A ∨ B),  so I is a 
countermodel for  (A → B) → (¬A ∨ B). 
 
Exercise. Using the tree method as above, construct intuitionistic 
countermodels for the following statements. (i) ¬¬A → A. (ii) A ∨ ¬A                
(iii) (A → B) ∨ (B → A).  (iv) (¬A → ¬B) ∨ (¬B → ¬A). (v) ¬A ∨ ¬¬A. (vi) ¬(A ∧ B) 
→ (¬A ∨ ¬B). 

 
 
 

CORRECTNESS OF THE INTUITIONISTIC TREE RULES 
 
 We now take up once again the question of the correctness of the 
intutionistic tree rules. First, what is actually meant by correctness? We say 
that a tree rule is correct if either 
 
(i)  it is a rule that introduces no horizontal lines and whenever its premise 

holds at a given stage under a given interpretation, at least one of its lists of 
conclusions holds at that stage under that interpretation; or 

(ii) it is a rule that introduces new horizontal lines and whenever its premise 
holds at a given stage under a given interpretation, at least one of its lists of 
conclusions holds under the same interpretation at a stage later than (or 
the same as) the given one. 

 
Correctness of all rules not introducing new horizontal lines is then clear. The 
correctness of (most of ) the remaining rules may be indicated as follows. 
 
  ?p → q         if a   p → q, then there is b ≥ a s.t. b  p and b   q 
                                                        
       p 
      ?q 
 
 
     ?¬p        if a   ¬p, then there is b ≥ a s.t. not b  p , i.e. b   p 
 
        p 
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 Now suppose we start a tree T with a satisfiable statement q, i.e., one for 
which there is an interpretation I and some stage at which it is true. Then each 
application of a tree rule will yield a stage at which at least one of its lists of 
conclusions is true under I, so that T will always contain an open path.  
 If p is (tree) valid, then the finished tree starting with ?p is closed, so 
that, by the above, ?p cannot be satisfiable, in other words, p is valid under 
every interpretation. 
 Conversely, if the finished tree starting with ?p contains an open path, 
this will generate an interpretation in which p is false at its first stage, as 
presented in the example above. 

 
 

STRENGTHENING THE INTUITIONISTIC TREE RULES 
  

How might the intuitionistic tree rules be strengthened so as to obtain 
classical logic? The simplest way would be to erase the horizontal line in the ?¬ 
rule. In that case, both ¬¬p → p and p ∨ ¬p become valid: 

 
?¬¬p → p 

 
¬¬p 
?p 

?¬p 
 

p 
× 

 
                                                  ?p ∨ ¬p 

 
        ?p 

        ?¬p 
 

       p 
      × 

 Next, consider the classically valid statements ¬A ∨ ¬¬A, (¬A → ¬B)  ∨ 
(¬B → ¬A). As we have seen, neither of these is intuitionistically valid. But each 
is valid in every directed frame, that is, one whose set of stages satisfies: for 
every a, b, there is c for which c ≥ a and c ≥ b. To see this, we observe that, in a 
directed frame, for any statement p, there can be no stages a, b for which a  p 
and b  ¬p. For if there were, there would also exist c ≥ a, b, and then 
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persistence would yield c  p and c  ¬p, a contradiction. Now suppose given 
an interpretation in a directed frame, and suppose also that a  ¬A ∨ ¬¬A. 
Then a  ¬A and a  ¬¬A, so that there is b ≥ a for which b  A, and c ≥ a for 
which c  ¬A. This contradicts what we have just established concerning 
interpretations in directed frames. Therefore a  ¬A ∨ ¬¬A. Similarly, suppose 
if possible that a   (¬A → ¬B) ∨ (¬B → ¬A). Then a  ¬A → ¬B  and                
a  ¬B → ¬A. So there is b ≥ a  such that b  ¬A and b  ¬B, and c ≥ a for 
which       c  ¬B and c  ¬A, whence d ≥ c for which d   A. This again gives 
us a contradiction, and we conclude that a  (¬A → ¬B) ∨ (¬B → ¬A). 

Now consider the open finished trees 
 

?¬A ∨ ¬¬A 
 

?¬A 
                                             ?¬¬A                                            (1) 

 
                                                       
                                                       A                ¬A 
 

 
 
 
 

? (¬A → ¬B)  ∨ (¬B → ¬A) 
 
 

                                           ?¬A → ¬B                                       (2) 
?¬B → ¬A 

 
 

¬A                             ¬B 
?¬B                             ?¬A 

 
 

                                                 B                               A 
 
Both would close if each could be “fused” by appending, to (1): 
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A          
                                                              ¬A 

 × 
and to (2): 
 
 
 

 
                                                               A 
                                                               B 

(¬A) 
× 

This leads us to formulate the  
 
 

Fusion rule 
. 
. 
. 
 
 

                                                
p                            q 

 
 
 
                                                               p 
                                                               q 
This rule is correct under interpretations in directed frames. For suppose         
a  p and b  q in such an interpretation. Then there are a′ ≥ a and b′ ≥ b for 

which a′  p and   b′  q. Taking c  ≥ a′, b′, persistence gives  c  p and   c  q. 
Accordingly, to investigate validity in directed frames we should add the 

fusion rule. With this rule, as we have seen, both ¬A ∨ ¬¬A and (¬A → ¬B) ∨ 
(¬B → ¬A)  become valid. So also does ¬(A ∧ B) → ¬A ∨ ¬B: 
 

? ¬(A ∧ B) → ¬A ∨ ¬B 
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¬(A ∧ B)  

?¬A ∨ ¬B 
 

?¬A 
?¬B 

 
  

  A                          B 
 

A 
B 

¬(A ∧ B)  
 

¬A       ¬B  
  ×         × 

Next, consider the classically valid statement (A → B) ∨ (B → A). This 
statement is not intuitionistically valid, as is shown by the following tree: 
 

 
 

? (A → B) ∨ (B → A) 
 

?A → B  
?B → A 

 
 
 

A                        ?A 
?B                        B 

 
with associated countermodel 
  

                1 tf 
ff  0 

                2  ft 
 
 
If we allow an application of the fusion rule the tree can be finished with 
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                                                               A 
                                                               B        
 
which leads to the directed countermodel 

 
                1 tf 

            ff  0          3 tt 
                2  ft 

 
This shows that (A → B) ∨ (B → A) is invalid even in the presence of the fusion 
rule.  
  

However, (A → B) ∨ (B → A) is valid under interpretations in linearly 
ordered frames. For suppose given an interpretation in a frame C under which 
(A → B) ∨ (B → A) is false at some stage a. Then there must be stages b, c ≥ a 
for which b  A, b  B,  c  A, c  B. If b ≤ c, then c  A; if c ≤ b, then b  B —in 

both cases a contradiction. So b  c and c   b, and C is not linearly ordered. 

 
 Now consider the open tree 

 
?(A → B) ∨ (B → A) 

 
?A → B    
 ?B → A 

 
 

A                      ?A 
?B                      B 

 
This would close if the bottom fork could be “linearized” to: 
 
 

 
 A 
?B 
 

 
?A 
B 
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A 
× 
 

This suggests the  
 
Linearization procedure: in applying the ?→ or ?¬ rules to statements on a 
single path, extend the path without introducing forks (but retaining horizontal 
lines).  
 
This procedure can be shown to be correct (in an appropriate sense) under 
interpretations in linearly ordered frames. Linearization is thus a suitable 
procedure for investigating validity in linearly ordered frames.  
 
 With linearization (A → B) ∨ (B → A) becomes valid (as we have seen 
above), and so do ¬A ∨ ¬¬A and ¬(A ∧ B) → ¬A ∨ ¬B: 

 
? ¬A ∨ ¬¬A 

 
?¬A  

?¬¬A 
 

  A 
 

¬A 
A 
× 

 
?¬(A ∧ B) → ¬A ∨ ¬B 

 
¬(A ∧ B)  

?¬A ∨ ¬B 
 

?¬A 
?¬B 

 
A 
 

B 
¬(A ∧ B) 

A 
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¬A                ¬B 
×                    × 

 
 
 

THE DISJUNCTION PROPERTY 
 

 The disjunction property. If p ∨ q is (intuitionistically) valid, then either p 
is valid or q is valid.  
 For suppose that neither p nor q is valid. Then there are interpretations 
I, J in frames C and D with bottom stages a0, b0 for which a0  p and b0  q. 
Construct a new frame E from C and D by pasting a new bottom stage u to the 
union of C and D: 
 
 
 
 
                                        C                    D  
 
                                         a0                       b0  
                                         

 
  
                                                         u  
 
Define an interpretation K in E by stipulating that K(A, u) = f for all A and   
K(A, a) = I(A, a) for any stage a of C, K(A, b) = J(A, b) for any stage b of D. Since   
a0  p and b0  q, it follows that u  p  ∨ q, so that p ∨ q is not valid. 
 

GLIVENKO’S THEOREM 
 

 
 Glivenko’s theorem. For any statement p, p is classically valid if and only 
if ¬¬p is intuitionistically valid. 
 To prove this, we first observe that if a is a maximal stage in a frame—
that is, if, for any stage b, a ≤ b ⇒ a = b,—then a  p for any classical tautology 
p. 
 We also note that, if p is intuitionistically invalid, then the tree method 
generates a finite frame in which p is false at its bottom stage. Therefore, if p is 
true in every finite frame, it is valid.  
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 In a finite frame, for any stage a there is a maximal stage b for which      
a ≤ b.  
 Now suppose that p is a classical tautology. Then, as observed, it is true 
at every maximal stage under any interpretation in any finite frame. In 
particular, for any stage a in any such interpretation there is b ≥ a for which     
b p. This implies that a  ¬¬p so ¬¬p is valid in every finite frame, and so 
valid. 
 

A TRANSLATION OF INTUITIONISTIC LOGIC INTO 3. 
 
For each statement p define p* by: 
 

 A* = A 

 (p ∧ q)* = p* ∧ q* 
 (p ∨ q)* = p* ∨ q* 

 (¬p)* = ¬p* 

 (p → q)* = p* → q* 
 (p ↔ q)* = p* ↔ q* 

 
It can be shown that, for any statement p, p is intuitionistically valid if and 
only if p* is 3-valid. 
 Consider, for example, p ∨ ¬p. 
 
 (p ∨ ¬p)* = p* ∨ ¬p* = p ∨ ¬ p ⇔ ¬ p ⇒ ¬ p. 

 
Construing p as “p is unprovable”, the last statement above may be read: if p 

is unprovable, then it is provable that p is unprovable. This is not necessarily the 
case. 
 On the other hand, consider the statement ¬¬(p ∨ ¬p). 
 
 (¬¬(p ∨ ¬p))* = ¬ ¬( p ∨ ¬ p) ⇔ ◊(◊ p → p) 

 
This last statement is 3-valid, as the following closed tree demonstrates: 
 

¬ ◊(◊ p → p) 
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◊¬◊(◊ p → p) 

 
¬◊(◊ p → p) 

 
¬(◊ p → p) 

 
¬(◊ p → p) 

◊ p 

 ¬ p 

p 

¬(◊ p → p) 

 
¬(◊ p → p) 

◊ p 

¬ p 

× 
 
 
 

INTUITIONISTIC PREDICATE LOGIC 
 

In intuitionistic predicate logic the following statements are valid: 
 
 ∃x¬p(x) → ¬∀xp(x)        ¬∃xp(x) → ∀x¬p(x)      p ∨ ∀xq(x) → ∀x(p ∨ q(x)) 
          ∀x(p(x) → q) ↔ (∃xp(x) → q) ∃x(p → q(x)) → (p → ∃xq(x))  
          ∃x(p(x) → q) →  (∀xp(x) → q)    ¬¬∀x(p(x) ↔ ∀x¬¬p(x)  
 
 
But the following are not: 
  
 ¬∀xp(x) → ∃x¬p(x)     ∀x¬¬p(x) → ¬¬∀xp(x)    ∀x(p ∨ q(x))  → p ∨ ∀xq(x) 
              (p → ∃xq(x)) → ∃x(p → q(x))    (∀xp(x) → q) → ∃x(p(x) → q)  
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∀x∀y(x = y ∨ x ≠ y) (nor even its ¬¬) 
 

Here are some concrete examples of intuitionistically invalid statements: 
 
Let A(n) be the assertion: “the nth place in the decimal expansion of π is a 7 
and is preceded by six 7s”. Then for ∃xA(x) ∨ ¬∃xA(x) to be intuitionistically 
valid we would require a proof yielding an n such that A(n), or one showing that 
no such n exists. But we don’t have either. So ∃xA(x) ∨ ¬∃xA(x) is not 
intuitionistically valid. On the other hand, ¬¬(∃xA(x) ∨ ¬∃xA(x)) is valid (since 
any statement of the form ¬¬(p ∨ ¬p) is). Therefore the law of double negation 
fails for the statement ∃xA(x) ∨ ¬∃xA(x). Finally, ¬¬(∃xA(x) ∨ ¬∃xA(x)) is 
intuitionistically equivalent to ¬(∃xA(x) ∧ ¬∃xA(x)) (which is obviously valid). 
But ¬∃xA(x) ∨ ¬¬∃xA(x) is not assertable since we do not know either that it is 
impossible for there to exist a sequence of seven 7s in the decimal expansion of 
π nor whether it is impossible for there to exist no such sequence. This gives an 
instance of the intuitionistic failure of the law ¬(p ∧ q) → ¬p ∨ ¬q. 



 69 
 

Solutions to Selected Exercises 
 
 

4 Let A be any set. Then for any x, x ∈ ∅ is a false statement, so x ∈ ∅ ⇒  x ∈ A 
is a true one. Hence ∅ ⊆ A. 
 
6  2. (i)  x ∈ CCA ⇔ ¬¬x ∈ A ⇔ x ∈ A. 
(ii)  x ∈ A ⇒ x ∈ A.. 
(iii)  x ∈ U ⇔ x ∈ A ∨ x ∈ CA. 
(iv)  x ∈ A ∩ CA ⇔ x ∈ A ∧ x ∉ A ⇔ x ∈ ∅. 
(vi) x ∈ (A ∪ (B ∩ C)) ⇔ x ∈ A ∨ (x ∈B ∧ x ∈ C) ⇔ (x ∈ A ∨ x ∈ B) ∧                   
(x ∈ A ∨ x ∈ C) ⇔ x ∈ A ∪ B ∧ x ∈ A ∪ C ⇔ x ∈ (A ∪ B) ∩ (A ∪ C). 
(vii) x ∈ A ∩ (B ∩ C) ⇔ x ∈ A ∧ (x ∈B ∧ x ∈ C) ⇔ (x ∈ A ∧ x ∈ B) ∧ x ∈ C                   
⇔ x ∈ (A ∩ B) ∩ C.  
(ix)  x ∈ C(A ∩ B) ⇔ ¬(x ∈ A ∩ B) ⇔ ¬ (x ∈ A ∧ x ∈ B) ⇔ x ∉ A ∨ x ∉ B                   
⇔ x ∈ CA ∨ x ∈CB ⇔ x ∈ CA ∪ CB. 
3. (a) ⇔ (b). A ⊆ B ⇔ ∀x (x ∈ A ⇒ x ∈ B) ⇔ ∀x (x ∉ B ⇒ x ∉ A) ⇔ CB ⊆ CA. 
(a) ⇔ (c) A ⊆ B  ⇔ ∀x (x ∈ A ⇒ x ∈ B) ⇔ ∀x ((x ∈ A ∨ x ∈ B) ⇔ x ∈ B) ⇔ A ∪ B  = 
B. 
(a) ⇔ (e) A ∩ CB = ∅ ⇔ ∀x¬(x ∈ A ∧ x ∈ CB)  ⇔ ∀x (x ∈ A  ⇒ x ∉ CB)                   
⇔ ∀x (x ∈ A ⇒ x ∈ B) ⇔ A ⊆ B. 
4.(i) x ∈ A – (A ∩ B) ⇔ x ∈ A ∧ x ∉ A ∩ B ⇔ x ∈ A ∧ (x ∉ A ∨ x ∉ B) ⇔ (x ∈ A ∧     
x ∉ A) ∨ (x ∈ A ∧ x ∉ B )⇔ x ∈ A ∨ x ∉ B ⇔ x ∈ A – B. 
(ii) Note that B ⊆ (A – B) ∪ B, so if not B ⊆ A, then (A – B) ∪ B ≠ A. 
 
7 (i)  (x, y) ∈ A × (B ∪C) ⇔ x ∈ A ∧ y ∈ B ∪ C  ⇔ x ∈ A ∧ (y ∈ B ∨ y ∈ C)                 
⇔ (x ∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C) ⇔ (x, y) ∈ A × B  ∨ (x, y) ∈ A × C                    
⇔ (x, y) ∈ (A × B) ∪ (A × C). 
(ii) Suppose A ⊆ B; then  (x, y) ∈ A × C ⇒ x ∈ A ∧ y ∈ C ⇒ x ∈ B ∧ y ∈ C                    
⇒ (x, y) ∈ B × C. Conversely suppose C ≠ ∅ and fix an element c ∈ C. If A × C  ⊆ 
B × C, then x ∈ A ⇒ (x, c) ∈ A × C ⇒ (x, c) ∈ B × C ⇒ x ∈ C. 
 
8 2. (ii) (x, y) ∈ (S  R)–1 ⇔ (y, x) ∈ (S  R) ⇔ ∃z(yRz ∧ zSx) ⇔ ∃z(z R–1y ∧ x S–1z) 
⇔ (x, y) ∈ R–1  S–1. 
 
 9 Let U = aR, V = bR  be two equivalence classes. If U ∩ V ≠ ∅, then there is c 
such that c ∈ aR  ∩ bR, i.e., cRa ∧ cRb, whence by symmetry aRc ∧ cRb, so that 
aRb by transitivity. So if x ∈ U, then xRa, and, since aRb,  xRb follows by 
transitivity. Therefore U ⊆ V; similarly V ⊆ U, so that U = V. 
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10  1.  If ≤ is a partial ordering, then it is transitive, i.e., x ≤ y ∧ y ≤ z ⇒  x ≤ z. 

This is equivalent to y ≤–1 x ∧ z ≤–1y ⇒ z ≤–1 x, in other words to the transitivity 

of ≤–1. Similarly for the remaining conditions. 
2.  If R is a preordering, then S is easily verified to be reflexive and transitive. It 
is also obviously symmetric, and hence an equivalence relation. 
 
11-12 1. To show that g  f  is a function, we need to show that, for any x ∈ A, 
there is at most one u ∈ C such that (x, u) ∈ g  f . If (x, u) ∈ g  f  and (x, u′) ∈   

g  f, then for some b, b′ ∈ B we have (x, b) ∈ f  ∧ (b, u) ∈ g  and (x, b′) ∈ f  ∧    

(b′, u′) ∈ g. Then b = b′ because f is a function and hence u = u′  because g is a 
function.  
2. (ii)  Suppose f and g are one-to-one. Then (g  f)(x) = (g  f)(y) ⇒ g(f(x) = g(f(y)) 
⇒ f(x) = f(y) ⇒ x = y. So g  f is one-to-one. 
3. (ii) Suppose X ⊆ Y. Then  y ∈ f[X] ⇒ ∃x ∈ X  y = f(x) ⇒ ∃x ∈ Y y = f(x) ⇒         
y ∈ f[Y]. So f[X] ⊆f[Y]. (iii) z ∈ f[X ∪ Y] ⇔  ∃x ∈ X ∪ Y  z = f(x)  ⇔ ∃x ∈ X z = f(x) ∨ 
∃x ∈ Y z = f(x) ⇔ z ∈ f[X] ∨ z ∈ f[Y] ⇔ z ∈ f[X]  ∪  f[Y]. Hence f[X ∪ Y] = f[X]  ∪  
f[Y]. In general f[X ∩ Y] ⊆ f[X]  ∩  f[Y]. But they are not always equal, for 
consider the function f: {0, 1} → {0} defined by f(0) = f(1) = 0, and let X = {0},      
Y = {1}. Then X ∩ Y = ∅, so f[X ∩ Y] = ∅. But f[X] = f[Y] = {0}, so f[X ∩ Y] ≠        
f[X]  ∩  f[Y]. 
4. (ii) x ∈ g–1[Y ∪ Z] ⇔ g(x) ∈ Y ∪ Z ⇔ g(x) ∈ Y ∨ g(x) ∈ Z ⇔ x ∈ g–1[Y] ∨ x ∈ g–1[Z]        
⇔  x ∈ g–1[Y ∪ Z]. (iii)  x ∈ X ⇒ g(x) ∈ g[X] ⇒ x ∈ g–1[g[X]]. Hence X ⊆ g–1[g[X]]. 
Now suppose that g is one-to-one. We already know that X ⊆ g–1[g[X]]. If           
y ∈ g–1[g[X]], then g(y) ∈ g[X], so g(y) = g(x) for some x ∈ X, whence y = x ∈ X 
since g is one-to-one. Therefore g–1[g[X]] ⊆ X, so X = g–1[g[X]]. 
 
16  1.(i) (a) false. (b) true. (c) false. (ii) all parts true. 
2. (i)  ∀x∀y(Px ∧ Py → x = y). (ii) ∀x∀y∀z(Px ∧ Py ∧ Pz → x =y ∨ x = z ∨ y = z).          
(iii) ∃x∃y(Px ∧ Py ∧ x ≠ y). (v) ∃x∃y(x ≠ y ∧ ∀z(Pz ↔(x = z ∨ y = z))). 
 
17 1.(i) a = gfb ∨ a = ggb. (iii) Pa ∧ a ≠ gb ∧ fa = fgb  ∧ ga = ggb. (v) fa = fb ∧ ga 
= gb ∧ a ≠ b.  
2. (ii) a and b are half siblings. (iv) b is a’s uncle. 
  
19 1. (iii) Suppose that ∀xPx → ∀xQx is true under I. This means that either   
∀xPx is false or ∀xQx is true under I. In the first case, there is some a  such   
that   a ∈ Pi   is false.   Then  ∀y(Pn → Qy)   is true under n

aI , so that                 
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∃x∀y(Px → Qy) is true under I. In the second case, fix a in the domain of I. 
Then since ∀xQx is true under I,  Qm is true under m

bI  for any b in the domain 
of I. It follows that Pn → Qm is true under mn

baI for any b, so that  ∀y(Pn → Qy) is 
true under n

aI , and again ∃x∀y(Px → Qy) is true under I.   
4. (i) is valid. For either  ∀yPy is true under I or it is false under I. In the first 
case  ∃x(Px → ∀yPy) is clearly true under I. In the second case, we can choose 
a ∉ PI, so that a ∈ PI ⇒ (∀yPy is true under I) is true since a ∈ PI is false. Hence 
∃x(Px → ∀yPy) is true in the second case as well. 
 (iii) is invalid. Counterinterpretation I : domain: set of natural numbers; PI: set 
of even numbers; QI: set of odd numbers.  
5. (i) Satisfiable. Satisfying interpretation I: domain: set of natural numbers; PI: 
set of natural numbers; RI: “less than” relation. 
 
22 (iv)                                ∀x∀y(x ≠ y → sx ≠ sy) 

∀x  0 ≠ sx 
ss0 = ssss0 

 
0 ≠ ss0 

 
0 ≠ ss0 → s0 ≠ sss0 

 
            0 = ss0                              s0 ≠sss0                     

                                           × 
                                                  
                                                                      s0 ≠ sss0 → ss0 ≠ ssss0 
 
 
                                                              s0 = sss0                   ss0 ≠ ssss0 
                                                                          ×                               × 
 
(vi) 

∀x  x + 0 =x 
∀x∀y  x × sy = (x × y) + x 

∀x  x × 0 = 0 
0 × ss0 ≠ 0 

 
0 × ss0 = (0 × s0) + 0 

 
(0  × s0) + 0 = 0 × s0 
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0 × ss0 = 0 × s0 

 
0 × s0 = (0 × 0) + 0 

 
(0  × 0)  +  0 = 0  × 0 

 
0  × s0 = 0 × 0 

 
0  × 0 = 0 

 
0 × s0 = 0 

 
0  × ss0 = 0 

× 
 
24 2. (b)  

∀x  x + 0 = x 
∀x  x + sy = s(x + y) 

 
¬∀x  0 + x = x 

 
0 + a ≠ a 

 
0 + 0 = 0 

 
0 + b = b 

0 + sb ≠ sb 
 

o + sb = s(0 + b) 
 

0 + sb = sb 
× 

 
28 (ii) 

∀P(Pa → Pb) 
¬∀P(Pb → Pa) 

 
∃P¬(Pb → Pa) 

 



 73 
 

Qb 
¬Qa 

¬Qa → ¬Qb 
  

Qa             Qb 
 ×               × 

 
 
37-38 1. 

¬(  (p ∧ q) → p ∧ q) 

 
 (p ∧ q)  

¬( p ∧ q) 

 
 

                                                ¬ p            ¬ q 

 
 ◊¬p               ◊¬q 
¬p                  ¬q 

 
  p ∧ q              p ∧ q 

 
 p                    q 
  ×                   × 

¬( p ∧ q → (p ∧ q)) 

 
p ∧ q  

¬  (p ∧ q) 

 
  p              

  q 

    
◊ (¬p ∧ q) 
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¬(p ∧ q) 

 
 ¬p                    ¬q 

                                                  p                      q 
                                                     ×                      × 

 
 

¬[( p → ◊q) → ¬ f] 

p → ◊q  

 
f 

¬ p            ◊q  

 
◊¬p              q 
   ¬p               f 
      f              × 

                                                           ×       
 
 43 (iii) 

¬( A → ◊A) 

 
A  

¬◊A 
 
¬A  

                                            t or f                        
                                             .                       
                                              1 
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(v) 
¬( ( A → A) → A) 

 
( A → A)  

¬ A 

 
◊¬A 
¬A 

 
A → A 

 
¬ A                   A 

                         × 
 

                                                   ◊¬A 
                                                    ¬A 

                                                                                                                    f       f 
                                                                                                               . →  .  →  . 
                                                                                                              1      2      3 
 
44 
          1.                                    ¬(◊ A → A) 

 
◊ A  

¬A 
 
A 

 
                                                                 A                                    
                                                                                                           f      t 
                                                                                                    . →  . 
                                                                                                    1     2 
45 1. 

¬( ◊ ◊p → ◊p) 
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◊ ◊p  

¬ ◊p 

 
◊¬◊p 

¬◊p 
 

◊ ◊p  

 
¬p 

 
◊p  

 
¬p 

 
◊p 

 
p 
 

¬p 
× 
 

¬( ◊p → ◊ ◊p) 

 
◊p  

¬ ◊ ◊p 

 
◊¬◊ ◊p 

¬◊ ◊p 

 
◊p 
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¬ ◊p  

p 
 

¬ ◊p 

 
 ◊p  

                                                            × 
 
2.  

¬( ◊A → A) 

 
◊A 

¬A 
 

◊A 
A 

                                                                                                    f        t 
                                                                                                    .  →   . 
                                                                                                   1       2 
  
 
 
47.   1 (v)     

   ¬( ◊ ◊p → ◊p) 

              ◊ ◊p 

              ¬ ◊p 

               ◊¬◊p 

                 ¬◊p 

                ◊ ◊p 

                  ¬p 

                   ◊p 

                    ×
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55 1. (x) 
 

?¬¬¬p → ¬p 
 

¬¬¬p 
?¬p 

 
p 

¬¬¬p 
  

?¬¬p 
 

¬p 
 

 p 
 ×  

  
?¬p → ¬¬¬p 

 
¬p 

?¬¬¬p 

¬( ◊p → ◊ ◊p) 

               ◊p 

          ¬ ◊ ◊p 

          ◊¬ ◊ ◊p 

             ¬◊ ◊p 

              ¬ ◊p 

×
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¬¬p 

 
?¬p 

 
  p 

 
¬p 
 × 
 

 
 
(xv) 

?(¬p ∨ ¬q) → ¬(p ∧ q) 
  
  

¬p ∨ ¬q)  
?¬(p ∧ q) 

    
  p ∧ q 

 
  

  ¬p ∨ ¬q 
 

¬p               ¬q 
  p                 q 
  ×                × 

 
58 (i) 

?¬¬A → A 
 

¬¬A 
 

?A 
 

?¬A 
 

                                                                             f      f      t 
                                                                                         . →  . →  . 
                                                                                         1     2     3 
(ii) 
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?A ∨ ¬A 
 

?A 
?¬A 

  
A 

                                                                                          
                                                                                           f         t 
                                                                                           .  →    . 
                                                                                           1       2 
 
 
 
 
 
(iii) 

?(A → B) ∨ (B → A) 
 

                                                          ?A → B                   
                                                          ?B → A 
                                                  ___________________ 

 
                                                 A                             B 
                                               ?B                            ?A                              t f                                  

                                                                                             . 2 
                                                                                            f f     
                                                                                             1 . 
 
                                                                                                                 . 3 
                                                                                                            f t 

 
 
 


