HEYTING ALGEBRAS

Heyting Algebras (named after the Dutch mathematician *Arend Heyting* (1898- 19?)) are algebraic structures that play in relation to intuitionistic logic (*q.v.*) a role analogous to that played by Boolean algebras (*q.v.*) in relation to classical logic. They are most simply defined as a certain type of lattice. A *lattice* is a partially ordered set ($L \le$) in which every pair of elements *x*, *y* has a least upper bound, or *join*, denoted by $x \lor y$, and a greatest lower bound, or *meet*, denoted by $x \land y$. A *top* (*bottom*) element of a lattice *L* is an element, denoted by 1 (0) such that $x \le 1$ ($0 \le x$) for all $x \in L$. Now a *Heyting algebra* is defined to be a lattice ($L \le$), possessing distinct top and bottom elements, such that, for any pair of elements *x*, $y \in L$, the set of $z \in L$ satisfying $z \land x \le y$ has a largest element. This element, which is uniquely determined by *x* and *y*, is denoted by $x \Rightarrow y$: thus $x \Rightarrow y$ is characterized by the following condition: for all $z \in L$,

$$z \le x \Rightarrow y$$
 if and only if $z \land x \le y$.

The binary operation on a Heyting algebra which sends each pair of elements *x*, *y* to the element $x \Rightarrow y$ is called *implication*; the operation which sends each element *x* to the element $-x = x \Rightarrow 0$ is called *negation* (or pseudocomplementation): we note that the latter operation satisfies

$$z \leq -x$$
 if and only if $z \wedge x = 0$ if and only if $x \leq -z$

It is not difficult to show that any Heyting algebra is a *distributive lattice*, that is, the following equalities hold:

$$x \land (y \lor z) = (x \land y) \lor (x \land z), \ x \lor (y \land z) = (x \lor y) \land (x \land z).$$

Heyting algebras are associated with theories in intuitionistic logic in the same way as Boolean algebras are associated with theories in classical logic. Indeed, given a consistent theory *T* in an intuitionistic propositional or first-order language **L**, define the equivalence relation \approx on the set of formulas of **L** by $\varphi \approx \psi$ if $T \vdash \varphi \leftrightarrow \psi$. For each formula φ write $[\varphi]$ for its \approx equivalence class. Now define the relation \leq on the set H(T) of \approx -equivalence classes by $[\varphi] \leq$ $[\psi]$ if and only if $T \vdash \varphi \rightarrow \psi$. Then \leq is a partial ordering of H(T) and the partially ordered set $(H(T), \leq)$ is a Heyting algebra in which $[\varphi] \Rightarrow [\psi] = [\varphi \rightarrow \psi]$, with analogous equalities defining the meet and join operations, 0, and 1. H(T) is called the the Heyting algebra *determined by T*. It can be shown that Heyting algebras of the form H(T) are typical in the sense that, for any Heyting algebra L, there is a propositional intuitionistic theory T such that L is isomorphic to H(T). This is the exact sense in which Heyting algebras are identified as the algebras of intuitionistic logic.

Topology furnishes another, and equally important, source of Heyting algebras. If X is a topological space, then the partially ordered set $(O(X), \subseteq)$ is a Heyting algebra, where O(X) is the family of all open sets in X, and \subseteq is the partial ordering of set inclusion. In O(X) meet and join are just set-theoretic intersection and union, while the implication operation is given by

$$U \Rightarrow V = interior \ of (X - U) \cup V.$$

It can be shown that, for any Heyting algebra L, there is a topological space X such that L is isomorphic to a sub-Heyting algebra of O(X). In this sense, Heyting algebras may also be identified as the *algebras of topology*.

Bibliography

Balbes, R., and Dwinger, P., *Distributive Lattices*. Columbia, Missouri: University of Missouri Press, 1974.

Rasiowa, H., and Sikorski, R., The Mathematics of Metamathematics. Warszawa: PWN, 1963.