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 Introduction. 

 

We begin with the following quotation from Karp [1964]: 

  
My interest in infinitary logic dates back to a February day in 1956 when I remarked to my thesis supervisor, 

Professor Leon Henkin, that a particularly vexing problem would be so simple if only I could write a formula 

which would say x = 0 or x = 1 or x = 2 etc. To my surprise, he replied, "Well, go ahead."  
  

Traditionally, expressions in formal systems have been regarded as signifying finite inscriptions 

which are—at least in principle—capable of actually being written out in primitive notation. 

However, the fact that (first-order) formulas may be identified with natural numbers (via "Gödel 

numbering") and hence with finite sets makes it no longer necessary to regard formulas as 

inscriptions, and suggests the possibility of fashioning "languages" some of whose formulas—

such as that in the above quotation—would be naturally identified as infinite sets. A "language" 

of this kind is called an infinitary language: in this article we discuss those infinitary languages 

which can be obtained in a straightforward manner from first-order languages by allowing 

conjunctions, disjunctions and, possibly, quantifier sequences, to be of infinite length. In the 

course of the discussion we shall see that, while the expressive power of such languages far 

exceeds that of their finitary (first-order) counterparts, very few of them possess the "attractive" 

features (e.g., compactness and completeness) of the latter. Accordingly, the infinitary languages 

that do in fact possess these features merit special attention.   

 In §1 we lay down the basic syntax and semantics of infinitary languages and 

demonstrate their expressive power by means of examples. §2 is devoted to those infinitary 

languages which permit only finite quantifier sequences: these languages turn out to be relatively 

well-behaved. In §3 we discuss the compactness problem for infinitary languages and its 
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connection with purely set-theoretical questions concerning "large" cardinal numbers. In §4 an 

argument is sketched which shows that most "infinite quantifier" languages have a second-order 

nature and are, ipso facto, highly incomplete. In §5 we give a brief account of a certain special 

class of sublanguages of infinitary languages for which a satisfactory generalization of the 

compactness theorem can be proved. We conclude with an Appendix on admissible sets and with 

historical and bibliographical remarks. 

 

 

1. Definition and basic properties of infinitary languages. 

 

Given a pair κ, λ of infinite cardinals such that λ < κ, we define a class of infinitary languages in 

each of which we may form conjunctions and disjunctions of sets of formulas of cardinality < κ, 

and quantifications over sequences of variables of length < λ. 

 Let L —the (finitary) base language—be an arbitrary but fixed first-order language with 

any number of extralogical symbols. The infinitary language L (κ, λ) has the following basic 

symbols: 

 all symbols of  L; 

 a set Var of individual variables, where1  |Var|  = λ ; 
 logical operator  (infinitary conjunction). 
 
The class of preformulas of L (κ, λ)  is defined recursively as follows:  

 

 each formula of L is a preformula; 

 if  ϕ and ψ are preformulas, so are ϕ ∧ ψ  and ¬ϕ ; 

 if  Φ is a set of preformulas such that |Φ| < κ, then Φ is a preformula; 

 if  ϕ is a preformula and X ⊆ Var is such that |X | < λ , then  ∃Xϕ  is a preformula; 

 all preformulas are defined by the above clauses. 

 

                                                           
1For any set X, |X| denotes the cardinality of X. 
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 If Φ  is a set of preformulas given in the form of an indexed set, say  Φ = {ϕi: i ∈ I} or    
Φ = {ϕξ : ξ  < α}, we agree to write i

i I∈
ϕ   or ϕ0 ∧  ϕ1 ∧  ...      for Φ   . 

                                                       
 If X is a set of individual variables given as an indexed set X = {xξ : ξ < α}, we agree to 

write (∃xξ )ξ <α ϕ  for ∃Xϕ . 

 The logical operators ∨ , → , ↔   are defined in the customary manner. We also 
introduce the operators  (infinitary disjunction) and  ∀ (universal quantification) by 

Φ   =df ¬{¬ϕ : ϕ ∈ Φ}          ∀Xϕ  =df ¬∃X¬ϕ , 

and employ similar conventions as for , ∃. 

 Thus  L(κ, λ) is the infinitary language obtained from L by permitting conjunctions and 

disjunctions of length < κ and quantifications2 of length < λ. Languages  L(κ, ω) are called 

finite-quantifier languages, the rest infinite-quantifier languages. Observe that  L(ω, ω) is just L 

itself.  

 Notice the following anomaly which can arise in an infinitary language but not in a 

finitary one. In the language  L(ω1, ω), which allows countably infinite conjunctions but only 

finite quantifications, there are preformulas with so many free variables that they cannot be 

"closed" into sentences of  L(ω1, ω) by prefixing quantifiers. Such is the case, for example, for 

the  L(ω1, ω)-preformula  

x0 < x1  ∧ x1 < x2 ∧  ... ∧  xn < xn+1   ...,  

where L contains the binary relation symbol <. For this reason we make the following 

 

 Definition. A formula of  L(κ, λ) is a preformula which contains < λ free variables. The 

set of all formulas of  L(κ, λ) will be denoted by Form(L(κ, λ)) or simply Form(κ, λ) and the 

set of all sentences by Sent(L(κ, λ)) or simply Sent(κ, λ). 

 

 In this connection, observe that, in general, nothing would be gained by considering 

"languages"  L(κ, λ)  with λ > κ . For example, in the "language"  L(ω, ω1), formulas will have 

                                                           
2 Observe, however, that while the formation rules for L(κ, λ) allow the deployment of infinitely many quantifiers, 
each preformula can contain only finitely many alternations of quantifiers. Languages permitting infinite quantifier 
alternations have been developed in the literature, but we shall not discuss them here.  



 4

only finitely many free variables, while there will be a host of "useless" quantifiers able to bind 

infinitely many free variables.3 

 Having defined the syntax of L (κ, λ), we next sketch its semantics. Since the 

extralogical symbols of  L(κ, λ)  are just those of L, and it is these symbols which determine the 

form of the structures in which a given first-order language is to be interpreted, it is natural to 

define an   L(κ, λ)- structure to be simply an  L -structure. The notion of a formula of L(κ, λ) 

being satisfied in an  L-structure A (by a sequence of elements from the domain of A) is defined 

in the same inductive manner as for formulas of L except that we must add two extra clauses 

corresponding to the clauses for  Φ  and  ∃Xϕ  in the definition of preformula. In these two 

cases we naturally define: 

Φ  is satisfied in A (by a given sequence)  ⇔ for all  ϕ ∈ Φ, ϕ is satisfied in A (by the 
sequence);  
 

∃Xϕ is satisfied in A ⇔ there is a sequence of elements from the domain of A in                         

bijective correspondence with X which satisfies ϕ in A.    

 

These informal definitions need to be tightened up in a rigorous development, but their meaning 

should be clear to the reader. Now the usual notions of truth, validity, satisfiability, and model 

for formulas and sentences of  L(κ, λ) become available. In particular, if A is an  L -structure and  

σ ∈ Sent(κ, λ), we shall write A  σ  for A is a model of σ, and  σ for σ is valid, that is, for all 

A, A  σ. If  ∆ ⊆ Sent(κ, λ), we shall write ∆  σ for σ is a logical consequence of ∆, that is, 

each model of ∆ is a model of σ . 

 We now give some examples intended to display the expressive power of the infinitary 

languages  L (κ, λ)  with  κ ≥ ω1. In each case it is well-known that the notion in question 

cannot be expressed in any first-order language.  

 

                                                           
3This remark loses its force when the base language contains predicate symbols with infinitely many argument 
places. However, this possibility is excluded here since our base language is a conventional first-order language. 
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 Characterization of the standard model of arithmetic in  L(ω1, ω).  Here the standard 

model of arithmetic is the structure ` = (N, +, ⋅  ,s, 0), where N is the set of natural numbers,          

+,  ⋅ , and 0 have their usual meanings, and s is the successor operation. Let  L  be the first-order 

language appropriate for `. Then the class of  L -structures isomorphic to ` coincides with the 

class of models of the conjunction of the following   L ( ω1, ω) sentences: 

 
m n∈ω ∈ω
  sm0 + sn0 = sm+n0 ,   

m n∈ω ∈ω
  sm0.sn0 = sm.n0 ,    

{ }m n m∈ω ∈ω−
  sm0 ≠  sn0 , 

                                                      ∀x
m∈ω
  x = sm0. 

                                                             
The terms snx are defined recursively by s0x = x, sn+1x = s(snx). 

 

 Characterization of the class of all finite sets in  L(ω1, ω).  Here the base language  has 

no extralogical symbols. The class of all finite sets then coincides with the class of models of the  

L(ω1, ω)-sentence 

m∈ω
  ∃v0 ... ∃vn∀x(x = v0 ∨  ...∨  x = vn). 

                                                
 

 Truth definition in L(ω1, ω) for a countable base language L.  Let L be a countable 
first-order language (for example, the language of arithmetic or set theory) which contains a 
name n for each natural number n, and let  σ0, σ1, ... be an enumeration of its sentences. Then the  
L(ω1, ω)-formula 

Tr(x) =df  
n∈ω
   (x = n ∧  σn) 

                                                                         
is a truth predicate for L  inasmuch as the sentence 

Tr(n) ↔  σn 

is valid for each n. 

 

 Characterization of well-orderings in  L(ω1, ω1).  The base language L  here includes a 

binary predicate symbol ≤. Let  σ1 be the usual  L-sentence characterizing linear orderings. Then 

the class of  L-structures in which the interpretation of ≤ is a well-ordering coincides with the 

class of models of the  L(ω1, ω1) sentence σ =  σ1 ∧ σ2, where 
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σ2 = df ∀(vn)n∈ω ∃x [
n∈ω
 (x = vn)  ∧  

n∈ω
 (x ≤ vn)]. 

                                                                        
 Notice that the sentence σ2 contains an infinite quantifier: it expresses the essentially 

second-order assertion that every countable subset has a least member. It can in fact be shown 

that the presence of this infinite quantifier is essential: the class of well-ordered structures cannot 

be characterized in any finite-quantifier language. This example indicates that infinite-quantifier 

languages such as  L(ω1, ω1) behave rather like second-order languages; we shall see that they 

share the latters’ defects (incompleteness) as well as some of their advantages (strong expressive 

power).  

 Many extensions of first-order languages can be translated into infinitary languages. For 

example, consider the generalized quantifier language L(Q0) obtained from L  by adding a new 

quantifier symbol Q0 and interpreting Q0xϕ(x) as there exist infinitely many x such that ϕ(x). It is 

easily seen that the sentence Q0xϕ(x) has the same models as the  L(ω1, ω)-sentence 

¬ 
n∈ω
  ∃v0...∃vn∀x[ϕ(x) → (x = v0  ∨... ∨  x = vn)]. 

                                           
Thus  L(Q0) is, in a natural sense, translatable into L(ω1, ω). Another language translatable into  

L(ω1, ω) in this sense is the weak second-order language obtained by adding a countable set of 

monadic predicate variables to L which are then interpreted as ranging over all finite sets of 

individuals.  

 

2. Finite-quantifier languages. 

 

We have remarked that infinite-quantifier languages such as L(ω1, ω1) resemble second-order 

languages inasmuch as they allow quantification over infinite sets of individuals. The fact that 

this is not permitted in finite-quantifier languages suggests that these may be in certain respects 

closer to their first-order counterparts than might be evident at first sight. We shall see that this is 

indeed the case, notably in the case of L(ω1, ω).  

 The language L(ω1, ω) occupies a special place among infinitary languages because—

like first-order languages—it admits an effective deductive apparatus. In fact, let us add to the 

usual first-order axioms and rules of inference the new axiom scheme 
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      Φ  →  ϕ 

for any countable set Φ ⊆ Form (ω1, ω) and any  ϕ ∈ Φ, together with the new rule of inference 

 
ϕ0, ϕ1, ..., ϕn, ... 

                                                                        
n∈ω
 ϕn 

                                                                         

and allow deductions to be of countable length. Writing  * for deducibility in this sense, we 

then have the 

 

 L(ω1, ω)-Completeness Theorem. For any σ ∈ Sent  (ω1, ω), 

 σ   ⇔    * σ . 

 

 As an immediate corollary we infer that this deductive apparatus is adequate for 

deductions from countable sets of premises in  L(ω1, ω). That is, with the obvious extension of 

notation, we have, for any countable set ∆  ⊆ Sent(ω1, ω), 

(2.1)                                                    ∆  σ   ⇔   ∆ * σ  . 

 

 This completeness theorem can be proved by modifying the usual Henkin completeness 

proof for first-order logic, or by employing Boolean-algebraic methods. Similar arguments, 

applied to suitable further augmentations of the axioms and rules of inference, yield analogous 

completeness theorems for many other finite-quantifier languages.  

 If just deductions of countable length are admitted, then no deductive apparatus for   

L(ω1, ω) can be set up which is adequate for deductions from arbitrary sets of premises, that is, 

for which (2.1) would hold for every set ∆ ⊆ Sent(ω1, ω), regardless of cardinality. This follows 

from the simple observation that there is a first-order language L and an uncountable set Γ of   

L(ω1, ω)-sentences such that Γ has no model but every countable subset of Γ does. To see this, 

let L  be the language of arithmetic augmented by ω1 new constant symbols {cξ : ξ  <  ω1} and 

let Γ  be the set of   L(ω1, ω)-sentences {σ} ∪  {cξ ≠  cη: ξ ≠ η}, where σ is the   L(ω1, ω)-
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sentence characterizing the standard model of arithmetic. This example also shows that the 

compactness theorem fails for   L (ω1, ω) and so also for any  L(κ, λ) with κ ≥ ω1. 

 Another result which holds in the first-order case but fails for  L(κ, ω) with κ ≥ ω1 (and 

also for  L (ω1,  ω1), although this is more difficult to prove) is the prenex normal form theorem. 

A sentence is prenex if all its quantifiers appear at the front; we give an example of an          

L(ω1, ω)-sentence which is not equivalent to a conjunction of prenex sentences. Let  L  be the 

first-order  

language without extralogical symbols and let σ be the  L (ω1, ω)-sentence which characterizes 
the  class  of  finite  sets.  Suppose    that σ   were   equivalent  to  a  conjunction 

i I∈
 σi of prenex   

L(ω1, ω)-sentences σi. Then each σi is of the form Q1x1...Qnxn ϕi(x1 ,..., xn), where each Qk is ∀ or  

∃  and ϕ i is a (possibly infinitary) conjunction or disjunction of  formulas  of  the form xk = xl  or  

xk ≠ xl . Since each σi is a sentence, there are only finitely many variables in each ϕi, and it is 

easy to see that each  ϕi is then equivalent to a first-order formula. Accordingly each  σi may be 

taken to be a first-order sentence. Since σ is assumed to be equivalent to the conjunction of the  

σi, it follows that σ and the set ∆ = {σi: i ∈ I} have the same models. But obviously σ, and hence 

also ∆, have models of all finite cardinalities; the compactness theorem for sets of first-order 

sentences now implies that ∆, and hence also σ, has an infinite model, contradicting the 

definition of σ.   

 Turning to the Löwenheim-Skolem theorem, we find that the downward version has 

adequate generalizations to  L(ω1, ω) (and, indeed, to all infinitary languages). In fact, one can 

show in much the same way as for sets of first-order sentences that if ∆ ⊆ Sent(ω1, ω) has an 

infinite model of cardinality ≥ |∆|, it has a model of cardinality the larger of ℵ0, |∆|. In 

particular, any  L(ω1, ω)-sentence with an infinite model has a countable model. 

 On the other hand, the upward Löwenheim-Skolem theorem in its usual form fails for all 

infintary languages. For example, the L(ω1, ω)-sentence characterizing the standard model of 

arithmetic has a model of cardinality  ℵ0 but no models of any other cardinality. However, all is 

not lost here, as we shall see.  
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 We define the Hanf number h(L) of a language L to be the least cardinal κ such that, if 

an L-sentence has a model of cardinality κ, it has models of arbitrarily large cardinality. The 

existence of h(L) is readily established. For each L-sentence σ not possessing models of 

arbitrarily large cardinality let  κ(σ) be the least cardinal κ such that σ does not have a model of 

cardinality κ. If λ is the supremum of all the κ(σ), then, if a sentence of L has a model of 

cardinality λ, it has models of arbitrarily large cardinality. 

 Define the cardinals µ(α) recursively by 

µ(0) = ℵ0,   µ(α+1) = 2µ(α),   µ(λ) = ( )
α<λ

µ α∑   for limit λ.     

                                                                                          
Then it can be shown that 

h(L(ω1, ω)) = µ(ω1), 

similar results holding for other finite-quantifier languages. The values of the Hanf numbers of 

infinite-quantifier languages such as  L(ω1, ω1) are sensitive to the presence or otherwise of large 

cardinals, but must in any case greatly exceed that of   L(ω1, ω). 

 A result for L which generalizes to L(ω1, ω) but to no other infinitary language is the 

Craig Interpolation Theorem: if  σ, τ ∈ Sent(ω1, ω) are such that  σ → τ, then there is              

θ ∈ Sent(ω1, ω) such that  σ → θ  and   θ → τ, and each extralogical symbol occurring in θ   

occurs in both σ and τ. The proof is a reasonably straightforward extension of the first-order 

case. 

 Finally, we mention one further result which generalizes nicely to L(ω1, ω) but to no 

other infinitary language. It is well known that, if A is any finite L -structure with only finitely 

many relations, there is an  L-sentence σ characterizing A up to isomorphism. For L(ω1, ω) we 

have the following generalization known as  

 

 Scott's Isomorphism Theorem. If A is a countable L-structure with only countably 

many relations, then there is an  L(ω1, ω)-sentence whose class of countable models coincides 

with the class of  L-structures isomorphic with A. 
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The restriction to countable structures is essential because countability cannot in general be 

expressed by an  L(ω1, ω)-sentence. 

 

 

3. The compactness property. 

 

As we have seen, the compactness theorem in its usual form fails for all infinitary languages. 

Nevertheless, it is of some interest to determine whether infinitary languages satisfy some 

suitably modified version of the theorem. This so-called compactness problem turns out  to have 

a natural connection with purely set-theoretic questions involving "large" cardinal numbers.  

 We make the following definition. Let κ be an infinite cardinal. A language L is said to 

be  κ-compact (resp. weakly κ-compact) if whenever ∆ is a set of L-sentences (resp. a set of L-

sentences of cardinality ≤ κ) and each subset of ∆ of cardinality < κ has a model, so does ∆. 

Notice that the usual compactness theorem for L is precisely the assertion that L is ω-compact.  

 One reason for according significance to the κ-compactness property is the following. 

Call L κ-complete (resp. weakly κ-complete) if there is a deductive system P for L with 

deductions of length < κ such that, if ∆ is a P-consistent4 set of L-sentences (resp. such that |∆| 

≤ κ), then ∆ has a model. Observe that such a P will be adequate for deductions from arbitrary 

sets of premises (of cardinality ≤ κ) in the sense of §2. It is easily seen that if L is κ-complete or 

weakly κ-complete, then L is κ-compact or weakly κ-compact. Thus, if we can show that a given 

language is not (weakly) κ-compact, then there can be no deductive system for it with deductions 

of length < κ adequate for deductions from arbitrary sets of premises (of cardinality ≤ κ). 

 It turns out, in fact, that most languages L(κ, λ) fail to be even weakly κ-compact, and, 

for those that are, κ must be an exceedingly large cardinal. We shall need some definitions. 

 An infinite cardinal κ is said to be weakly inaccessible if (a)5  λ < κ ⇒  λ+ < κ, (b) |I| < κ 
and  λi < κ  for  all  i ∈ I  ⇒ i

i I∈
λ∑  < κ.  If  in  addition  (c)  λ < κ  ⇒  2λ < κ, then κ is said to be  

                                                           
4 I.e., such that no contradictions can be derived from ∆ using the deductive machinery in P. 
5 λ+ denotes the cardinal successor of λ. 
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(strongly) inaccessible. Since ℵ0 is inaccessible, it is normal practice to confine attention to 

those inaccessible, or weakly inaccessible cardinals that exceed ℵ0. Accordingly,  “inaccessible” 

or “weakly inaccessible” cardinals will always be taken to be uncountable.  It is clear that such 

cardinals—if they exist—must be extremely large; and indeed the Gödel incompleteness theorem 

implies that the existence of even weakly inaccessible cardinals cannot be proved from the usual 

axioms of set theory. 

 Let us call a cardinal κ compact (resp. weakly compact) if the language L(κ, λ) is κ-

compact (resp. weakly κ-compact). Then we have the following results: 

 

(3.1) ℵ0  is compact. This is, of course, just a succinct way of expressing the compactness 

theorem for first-order languages. 

(3.2)  κ weakly compact ⇒ L(κ, ω) weakly κ-compact ⇒ κ weakly inaccessible. Accordingly, it 

is consistent (with the usual axioms of set theory) to assume that no language L(κ, ω) with          

κ ≥ ω1  is weakly κ-compact, or, a fortiori, weakly κ-complete. 

(3.3)  κ weakly compact, inaccessible ⇔ L(κ, ω) weakly κ-compact, κ inaccessible ⇒ there is a 

set of κ inaccessibles before κ. Thus a weakly compact inaccessible cardinal is exceedingly 

large; in particular it cannot be the first, second, …, nth , … inaccessible.  

(3.4)  κ compact ⇒ κ inaccessible. (But, by the result immediately above, the converse fails.) 

   

 Let Constr stand for Gödel’s axiom of constructibility; recall that Constr is consistent 

with the usual axioms of set theory.  

 

(3.5)  If Constr holds, then there are no compact cardinals. 

(3.6)  Assume Constr and let κ be inaccessible. Then κ is weakly compact ⇔ L(ω1, ω) is weakly 

κ-compact for all L.  

(3.7)  If Constr holds, then there are no cardinals κ for which L(ω1, ω) is compact.  

Accordingly, it is consistent with the usual axioms of set theory to suppose that there is no 
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cardinal κ such that all languages L(ω1, ω) are κ-complete. This result is to be contrasted with 

the fact that all first-order languages are ω-complete. 

 

 The import of these results is that the compactness theorem fails very badly for most 

languages L(κ, λ) with κ ≥ ω1.  

 Some historical remarks are in order here. In the 1930s mathematicians investigated 

various versions of the so-called measure problem for sets, a problem which arose in connection 

with the theory of Lebesgue measure on the continuum. In particular, the following very simple 

notion  of  measure was formulated. If  X is  a  set, a (countably  additive  two-valued  nontrivial)  

measure on X is a map µ on the power set PX to the set {0, 1} satisfying (a) µ(X) = 1, (b) µ({x}) 

=  µ(∅) = 0 for all x ∈ X, (c)  if A is any countable family of subsets of X, then µ(∪A) = 

( )
Y

Y
∈

µ∑
A

. Obviously, whether a given set supports  such  a  measure  depends  only on its 

cardinality, so it is natural to define a cardinal κ to be measurable if all sets of cardinality κ 

support a measure of this sort. It was quickly realized that a measurable cardinal must be 

inaccessible, but the falsity of the converse was not established until the 1960s when Tarski 

showed that measurable cardinals are weakly compact and his student Hanf showed that the first, 

second, etc. inaccessibles are not weakly compact (cf. (3.3)). Although the conclusion that 

measurable cardinals must be monstrously large is now normally proved without making the 

detour through weak compactness and infinitary languages, the fact remains that these ideas 

were used to establish the result in the first instance. 

  

 

 

4.  Incompleteness of infinite-quantifier languages. 

 

Probably the most important result about first-order languages is the Gödel completeness 

theorem which of course says that the set of all valid formulas of any first-order language L can 

be generated from a simple set of axioms by means of a few straightforward rules of inference. A 

major consequence of this theorem is that, if the formulas of L are coded as natural numbers in 
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some constructive way, then the set of (codes of) valid sentences is recursively enumerable. 

Thus, the completeness of a first-order language implies that the set of its valid sentences is 

definable in a particularly simple way. It would accordingly seem reasonable, given an arbitrary 

language L, to turn this implication around and suggest that, if the set of valid L-sentences is not 

definable in some simple fashion, then no meaningful completeness result can be established for 

L, or, as we shall say, that L is incomplete. In this section we are going to employ this 

suggestion in sketching a proof that “most” infinite quantifier languages are incomplete in this 

sense. 

 Let us first introduce the formal notion of definability as follows. If L is a language, A an 

L-structure, and X a subset of the domain A of A, we say that X is definable in A by a formula 

ϕ(x, y1, …, yn) of L if there is a sequence a1, …, an of elements of A such that X  is the subset of 

all elements x ∈ A for which  ϕ(x, a1, …, an) holds in A.   

 Now write Val(L) for the set of all the valid L-sentences, i.e., those that hold in every L-

structure. In order to assign a meaning to the statement “Val(L) is definable”, we have to specify 

 

(i)  a structure C(L)—the coding structure for L; 

(ii)  a particular one-one map—the coding map—of the set of formulas of L into the domain of 

C(L). 

 

Then, if we identify Val(L) with its image in C(L) under the coding map, we shall interpret the 

statement “Val(L) is definable” as “statement “Val(L), regarded as a subset of the domain of 

C(L), is definable in C(L) by a formula of L.” 

 For example, when L is the first-order language L of arithmetic, Gödel originally used as 

coding structure the standard model of arithmetic `  and as coding map the well-known function 

obtained from the prime factorization theorem for natural numbers. The recursive enumerability 

of Val(L) then means simply that the set of codes (“Gödel numbers”) of members of Val(L) is 

definable in ` by an L-formula of the form ∃yϕ(x, y) where ϕ(x, y) is a recursive formula.  
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 Another, equivalent, coding structure for the first-order language of arithmetic is the 

structure6 〈H(ω), ∈|H(ω)〉 of hereditarily finite sets, where a set x is hereditarily finite if x, its 

members, its members of members, etc., are all finite. This coding structure takes account of the 

fact that first-order formulas are naturally regarded as finite sets. 

 Turning now to the case in which L is an infinitary language L(κ, λ), what would be a 

suitable coding structure in this case? We remarked at the beginning that infinitary languages 

were suggested by the possibility of thinking of formulas as set-theoretical objects, so let us try 

to obtain our coding structure by thinking about what kind of set-theoretical objects we should 

take infinitary formulas to be. Given the fact that, for each ϕ ∈ Form(κ, λ), ϕ and its 

subformulas, subsubformulas, etc., are all of length < κ 7, a moment’s reflection reveals that 

formulas of     L(κ, λ) “correspond” to sets x hereditarily of cardinality < κ in the sense that x, its 

members, its members of members, etc., are all of cardinality < κ. The collection of all such sets 

is written H(κ). H(ω) is the collection of herditarily finite sets introduced above, and H(ω1) that 

of all hereditarily countable sets. 

 For simplicity let us suppose that the only extralogical symbol of the base language L is 

the binary predicate symbol ∈ (the discussion is easily extended to the case in which L contains 

additional extralogical symbols). Guided by the remarks above, as coding structure for L(κ, λ) 

we take the structure 

H(κ) =df 〈 H(κ), ∈|H(κ)〉. 

Now we can define the coding map of Form(κ, λ) into H(κ). First, to each basic symbol s of  

L(κ, λ) we assign a code object s ∈ H(κ)  as follows. Let {vξ: ξ < κ} be an enumeration of the 

individual variables of L(κ, λ).  

                    

 

 

 
                                                           
6 If A is a set, ∈|A denotes the membership relation on A, i.e., {<x, y> ∈ A × A: x ∈ y}.  
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                   Symbol                                     Code Object                                Notation 

¬ 1 ¬  

∧ 2 ∧  

 3   

∃ 4 ∃  

∈ 5 ∈  

= 6 =  

vξ <0, ξ> vξ  

 

Then, to each ϕ ∈ Form(κ, λ) we assign the code object ϕ  recursively as follows: 

 

vξ  = vη   =df  < vξ , = , vη >, 

vξ  ∈ vη   =df  < vξ , ∈ , vη >; 

 

for ϕ, ψ ∈ Form(κ, λ),  

 

ϕ ∧ ψ   =df < ϕ , ∧ , ψ > 

¬ϕ   =df < ¬ , ϕ > 

∃Xϕ   =df < ∃ , { x : x ∈ X}, ϕ >; 

 

and finally if Φ ⊆ Form(κ, λ) with |Φ| < κ, 

ϕ  =df <  , { ϕ : ϕ ∈ Φ}>. 

                                                                                                                                                                                           
7 Strictly speaking, this is only the case when κ is regular, that is, not the limit of < κ cardinals each of which is < κ. 
In view of the fact that “most” cardinals are regular, we shall take this as read. 
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 The map ϕ 6 ϕ  from Form(κ, λ) into H(κ) is easily seen to be one-one and is the 

required coding map. Accordingly, we agree to identify Val(L(κ, λ)) with its image in H(κ) 

under this coding map. 

 When is Val(L(κ, λ)) a definable subset of H(κ)? In order to answer this question we 

require the following definitions. 

 An L-formula is called a ∆0-formula if it is equivalent to a formula in which all 

quantifiers are of the form ∀x∈y or ∃x∈y (i.e., ∀x( x ∈ y → …) or ∃x( x ∈ y ∧ …).) An L-

formula is a Σ1-formula if it is equivalent to one which can be built up from atomic formulas and 

their negations using only the logical operators ∧, ∨, ∀x∈y, ∃x. A subset X of a set A is said to be 

∆0 (resp. Σ1) on A if it is definable in the structure 〈A, ∈|A〉 by a ∆0- (resp. Σ1-) formula of L. 

 For example, if we identify the set of natural numbers with the set H(ω) of hereditarily 

finite sets in the usual way, then for each X ⊆ H(ω) we have:  

 

 X is ∆0 on H(ω) ⇔ X is recursive 

 X is Σ1 on H(ω) ⇔ X is recursively enumerable. 

 

Thus the notions of ∆0- and Σ1-set may be regarded as generalizations of the notions of recursive 

and recursively enumerable set, respectively. 

 The completeness theorem for L implies that Val(L)—regarded as a subset of H(ω)—is 

recursively enumerable, and hence Σ1 on H(ω). Similarly, the completeness theorem for L(ω1, ω) 

(see §2) implies that Val(L(ω1, ω))—regarded as a subset of H(ω1)—is Σ1 on H(ω1). However, 

this pleasant state of affairs collapses completely as soon as  L(ω1, ω1) is reached. For one can 

prove 

 

 Scott’s Undefinability Theorem for L(ω1, ω1).  Val(L(ω1, ω1)) is not definable in H(ω1) 

even by an L(ω1, ω1)-formula; hence a fortiori Val(L(ω1, ω1)) is not Σ1 on H(ω1). 
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 This theorem is proved in much the same way as the well-known result that the set of 

(codes of ) valid sentences of the second-order language of arithemetic L 2 is not second-order 

definable in its coding structure `. To get this latter result, one first observes that ` is 

characterized by a single L 2-sentence, and then shows that, if the result were false, then “truth in 

`” for L 2-sentences would be definable by an L 2-formula , thereby violating Tarski’s theorem 

on the undefinability of truth.  

 Accordingly, to prove Scott’s undefinability theorem along the above lines, one needs to 

establish: 

 

(4.1) Characterizability of the coding structure H(ω1) in L(ω1, ω1): there is an L(ω1, ω1)-

sentence τ0 such that, for all L -structures A, 

A  τ0  ⇔  A ≅ H(ω1). 

(4.2)  Undefinability of truth for L(ω1, ω1)-sentences in the coding structure: there is no              

L (ω1, ω1)-formula ϕ(v0) such that, for all L(ω1, ω1)-sentences σ, 

H(ω1)  σ ↔ ϕ( σ ). 

(4.3)  There is a term t(v0, v1) of L(ω1, ω1) such that, for each pair of sentences σ, τ of L(ω1, ω1), 

H(ω1)  t( σ , τ ) = σ → τ . 

 

 (4.1) is proved by analyzing the set-theoretic definition of H(ω1) and showing that it can 

be “internally” formulated in L(ω1, ω1). (4.2) is established in much the same way as Tarski’s 

theorem on the undefinability of truth for first- or second-order languages. (4.3) is obtained by 

formalizing the definition of the coding map σ 6 σ  in L(ω1, ω1).  

 Armed with these facts, we can obtain Scott’s undefinability theorem in the following 

way. Suppose it were false; then there would be an L(ω1, ω1)-formula θ(v0) such that, for all 

L(ω1, ω1)-sentences σ, 

(4.4)                                        H(ω1)  θ( σ )  ⇔  σ ∈ Val(L(ω1, ω1)).  

Let τ0 be the sentence given in (4.1). Then we have, for all L(ω1, ω1)-sentences σ, 
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H(ω1)  σ  ⇔  τ0 → σ ∈ Val(L(ω1, ω1)), 

so that, by (4.4), 

H(ω1)  σ  ⇔ H(ω1)  θ( τ0 → σ ). 

If t is the term given in (4.3), it would follow that 

H(ω1)  σ  ↔ θ(t( τ0 , σ )). 

Now write ϕ(v0) for the L(ω1, ω1)-formula θ(t( τ0 , σ )). Then 

 

H(ω1)  σ ↔ ϕ( σ ), 

contradicting (4.2), and completing the proof. 

 Thus Val(L(ω1, ω1)) is not definable even by an L(ω1, ω1)-formula, so a fortiori L(ω1, 

ω1) is incomplete. Similar arguments show that Scott’s undefinability theorem continues to hold 

when ω1 is replaced by any successor cardinal κ+; accordingly the languages L(κ+, κ+) are all 

incomplete.8 

 

5. Sublanguages of L(ω1, ω) and the Barwise Compactness Theorem. 

 

Given what we now know about infinitary languages, it would seem that L(ω1, ω) is the only one 

to be reasonably well behaved. On the other hand, the failure of the compactness theorem to 

generalize to L(ω1, ω) in any useful fashion is a severe drawback as far as applications are 

concerned. Let us attempt to analyze this failure in more detail. 

 Recall from §4 that we may code the formulas of a first-order language L as hereditarily 

finite sets, i.e., as members of  H(ω). In that case each finite set of (codes of) L-sentences is also 

a member of H(ω), and it follows that the compactness theorem for L can be stated in the form: 

 

(5.1)  If  ∆ ⊆ Sent(L) is such that each subset ∆0  ⊆ ∆, ∆0 ∈ H(ω) has a model, so does ∆. 

 

                                                           
8 It should be pointed out, however, that there are languages  L(κ, λ) apart from L(ω, ω) and L(ω1, ω) which are 
complete; for example, all languages L(κ+, ω) and L(λ, λ) with inaccessible λ. 
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 Now it is well-known that (5.1) is an immediate consequence of the generalized 

completeness theorem for L, which, stated in a form similar to that of (5.1), becomes the 

assertion: 

 

(5.2)  If ∆ ⊆ Sent(L) and σ ∈ Sent(L) satisfy ∆  σ, then there is a deduction D of σ from ∆ 

such that D ∈ H(ω).9 

 

 In §2 we remarked that the compactness theorem for L(ω1, ω) fails very strongly; in fact, 

we constructed a set Γ ⊆ Sent(ω1, ω) such that  

 

(5.3)  Each countable subset of Γ has a model but Γ does not. 

 

Recall also that we introduced the notion of deduction in  L(ω1, ω); since such deductions are of 

countable length it quickly follows from (5.3) that  

 

(5.4)  There is a sentence10 σ ∈ Sent(ω1, ω) such that Γ  σ, but there is no deduction of σ in 

L(ω1, ω) from Γ. 

 

 Now the formulas of L(ω1, ω) can be coded as members of  H(ω1), and it is clear that the 

latter is closed under the formation of countable subsets and sequences. Accordingly (5.3) and 

(5.4) may be written: 

 

(5.3 bis)  Each subset Γ0  ⊆ Γ such that Γ0 ∈ H(ω1) has a model, but Γ does not;  

(5.4 bis)  There is a sentence σ ∈ Sent(ω1, ω) such that  Γ  σ, but there is no deduction             

D ∈ H(ω) of σ from Γ. 

 

                                                           
9 This is just a consequence of the fact that a first-order deduction is a finite sequence, hence a member of H(ω). 
10 Take σ to be any logically false sentence! 
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 It follows that (5.1) and (5.2) fail when “L” is replaced by “L(ω1, ω)” and “H(ω)” by “H(ω1)”. 

Moreover, it can be shown that the set Γ ⊆ Sent(ω1, ω) in (5.3 bis) and (5.4 bis) may be taken to 

be Σ1 on H(ω1). Thus the compactness and generalized completeness theorems fail even for Σ1-

sets of L(ω1, ω)-sentences.  

 We see from (5.4 bis) that the reason why the generalized completeness theorem fails for 

Σ1-sets in L(ω1, ω) is that, roughly speaking, H(ω1) is not “closed” under the formation of 

deductions from Σ1-sets of sentences in H(ω1). So in order to remedy this it would seem natural 

to replace H(ω1) by sets A which are, in some sense, closed under the formation of such 

deductions, and then to consider just those formulas whose codes are in A. 

 We now give a sketch of how this can be done. 

 First, we identify the symbols and formulas of  L(ω1, ω) with their codes in H(ω1), as in 

§4. For each countable transitive11 set A,  let 

LA = Form(L(ω1, ω)) ∩ A. 

We say that LA is a sublanguage of L(ω1, ω) if the following conditions are satisfied: 

 

(i)  L  ⊆ LA; 

(ii) if ϕ, ψ ∈ LA, then ϕ ∧ ψ ∈ LA and ¬ϕ ∈ LA; 

(iii)  if ϕ ∈ LA and x ∈ A, then ∃xϕ ∈ LA; 

(iv) if ϕ(x) ∈ LA and y ∈ A, then ϕ(y) ∈ LA; 

(v)  if ϕ ∈ LA, every subformula of ϕ is in LA; 
(vi)  if Φ ⊆ LA and Φ ∈ A, then Φ ∈ LA. 

 

The notion of deduction in LA is defined in the customary way; if ∆ is a set of sentences 

of LA and ϕ ∈ LA, then a deduction of ϕ from ∆ in LA is a deduction of ϕ from ∆ in L(ω1, ω) 

every formula of which is in LA. We say that ϕ is deducible from ∆ in LA if there is a deduction 

D of ϕ from ∆ in LA ; under these conditions we write ∆ A ϕ. In general, D will not be a 

member of A; in order to ensure that such a deduction can be found in A it will be necessary to 

impose further conditions on A. 

                                                           
11 A set A is transitive if x ∈ y ∈ A ⇒ x ∈ A. 
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Let A be a countable transitive set such that LA is a sublanguage of L(ω1, ω) and let ∆ be 

a set of sentences of LA. We say that A (or, by abuse of terminology, LA) is ∆-closed if, for any 

formula ϕ of LA such that ∆ A ϕ, there is a deduction D of ϕ from ∆ such that D ∈ A. It can be 

shown that the only countable language which is ∆-closed for arbitrary ∆ is the first-order 

language L, i.e., when A = H(ω). However J. Barwise discovered that there are countable sets     

A ⊆ H(ω1) whose corresponding languages LA differ from L and yet are ∆-closed for all Σ1-sets 

of sentences ∆. Such sets A are called admissible sets; roughly speaking, they are extensions of 

the hereditarily finite sets in which recursion theory—and hence proof theory—are still 

possible12. 

From Barwise’s result one obtains immediately the 

 Barwise Compactness Theorem.  Let A be a countable admissible set and let ∆ be a set 

of sentences of LA which is Σ1 on A. If each ∆′ ⊆ ∆ such that ∆′ ∈ A has a model, then so does ∆. 

 

The presence of “Σ1” here indicates that this theorem is a generaization of the compactness 

theorem for recursively enumerable sets of sentences. 

 Another version of the Barwise compactness theorem, useful for constructing models of 

set theory, is the following. Let ZFC be the usual set of axioms for Zermelo-Fraenkel set theory, 

including the axiom of choice. Then we have: 

 

 5.5. Theorem. Let A be a countable transitive set such that A =<A, ∈|A> is a model of 

ZFC. If ∆ is a set of sentences of LA which is definable in A by a formula of the language of set 

theory and if each ∆′ ⊆ ∆ such that ∆′ ∈ A has a model, so does ∆. 

 

 To conclude, we give a simple application of this theorem. Let A =<A, ∈|A> be a model 

of ZFC. A model B =<B, E> of ZFC  is said to be a proper end-extension of A if (i) A ⊆ B,    

(ii) A ≠ B, (iii) a ∈ A, b ∈ B, b E a ⇒ b ∈ A. Thus a proper end-extension of a model of ZFC is 

                                                           
12 For the definition of admissible set, see the Appendix. 
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a proper extension in which no “new” element comes “before” any “old” element. As our 

application of 5.5 we prove 

 

 5.6. Theorem. Each countable transitive model of ZFC has a proper end-extension. 

 Proof.  Let A =<A, ∈|A> be a transitive model of ZFC and let L be the first-order 

language of set theory augmented by a name a for each a ∈ A, and an additional constant c. Let 

∆ be the set of LA-sentences comprising: 

all axioms of ZFC; 

 c ≠ a for each a ∈ A; 
 ∀x(x ∈ a →

b a∈
  x = b)for each a ∈ A;  

 a ∈ b  for each a ∈ b ∈ A. 

 

It is easily shown that ∆ is a subset of A which is definable in A by a formula of the language of 

set theory. Also, each subset ∆′ ⊆ ∆ such that ∆′ ∈ A has a model. For the set C of all a ∈ A for 

which a occurs in ∆′ belongs to A—since ∆′ does—and so, if we interpret c as any member of the 

(necessarily nonempty) set  A – C, then A is a model of ∆′. Accordingly, 5.5 implies that ∆ has a 

model <B, E>. If we interpret each constant a as the element a ∈ A, then <B, E> is a proper end-

extension of A. The proof is complete. 

  

 The reader will quickly see that the first-order compactness theorem will not yield this 

result. 

 

Appendix: Definition of the Concept of Admissible Set 

 

A nonempty transitive set A is said to be admissible when the following conditions are satisfied: 

(i)  if a, b ∈ A, then {a, b} ∈ A and ∪A ∈ A; 

(ii)  if a ∈ A and X ⊆ A is ∆0 on A, then X ∩ a ∈ A; 
 

(iii)  if a ∈ A, X ⊆ A is ∆0 on A, and ∀x∈a∃y (<x, y> ∈ X), then, for some b ∈ A,  
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∀x∈a∃y∈b (<x, y> ∈ X). 

 

Condition (ii)—the ∆0-separation scheme—is a restricted version of Zermelo’s axiom of 

separation. Condition (iii)—a similarly weakened version of the axiom of replacement—may be 

called the ∆0-replacement scheme.  

 It is quite easy to see that if A is a transitive set such that <A, ∈|A> is a model of ZFC, 

then A is admissible. More generally, the result continues to hold when the power set axiom is 

ommitted from ZFC, so that both H(ω) and H(ω1) are admissible. However, since the latter is 

uncountable, the Barwise compactness theorem fails to apply to it. 

 

 

 

6. Historical and Bibliographical Remarks 

 

 §§1, 2.  Infinitary propositional and predicate languages seem to have made their first 

explicit appearance in print with the papers of Scott and Tarski [1958] and Tarski [1958]. The 

completeness theorem for L(ω1, ω), as well as for other infinitary languages, was proved by Karp 

[1964]. The Hanf number calculations for  L(ω1, ω) were first performed by Morley [1965]. The 

nondefinability of well-orderings in finite-quantifier languages was proved by Karp [1965] and 

Lopez-Escobar [1966]. The interpolation theorem for L(ω1, ω) was proved by Lopez-Escobar 

[1965] and Scott’s isomorphism theorem for L(ω1, ω) by Scott [1965].  

 

 §3.  Results (3.2) and (3.3) are due to Hanf [1964], with some refinements by Lopez-

Escobar [1966] and Dickmann [1975], while (3.4) was proved by Tarski. Result (3.5) is due to 

Scott [1961], (3.6) to Bell [1970] and [1972]; and (3.7) to Bell [1974]. Measurable cardinals 

were first considered by Ulam [1930] and Tarski [1939]. The fact that measurable cardinals are 

weakly compact was noted in Tarski [1962]. 
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 §4.  The undecidability theorem for  L(ω1, ω1) was proved by Scott in 1960; a fully 

detailed proof first appeared in Karp [1964]. The approach to the theorem adopted here is based 

on the account given in Dickmann [1975].  

 

 §5.  The original motivation for the results presented in this section came from Kreisel; in 

his [1965] he pointed out that there were no compelling grounds for choosing infinitary formulas 

solely on the grounds of “length”, and proposed instead that definability or “closure” criteria be 

employed. Kreisel’s suggestion was taken up with great success by Barwise [1967], where his 

compactness theorem was proved. The notion of admissible set is due to Platek [1966]. Theorem 

(5.6) is taken from Keisler [1974]. 

  

 For further reading on the subject of infinitary languages, see Aczel [1973], Dickmann 

[1975], Karp [1964], Keisler [1974], and Makkai [1977]. 
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