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Logic is the beginning of wisdom, not the end.            
                                      Mr. Spock 

 
 

On the contrary, I find nothing in logistic but shackles.  It does not help us at all 
in the direction of conciseness, far from it; and if it requires 27 equations to 
establish that 1 is a number, how many will it require to demonstrate a real 
theorem?    
 Henri Poincaré 
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I. PROPOSITIONAL LOGIC 
 

1. Statements, Arguments and Counterexamples 

An inference or argument is any list of statements divided into premises and 

conclusions.  We shall confine our attention to inferences with just one conclusion, for 

example, 

1. Either this man's dead, or my watch has stopped. 

2. This man is not dead. 

3. Therefore, my watch has stopped. 

Here statements 1 and 2 are premises, and 3 the conclusion.   

We shall assume that the constituent statements of inferences are assertive in  the 

sense that each can be assigned either of two truth values — true (t) or false (f) — as the 

case may be.  (An example of a statement that would not fall into this category is 

“Would you please go to the store”.)  Granted this, it is natural to declare an inference 

valid if its conclusion is true in any case in which its premises are true.  (Thus, on the 

basis of our usual grasp of the meaning of the terms "or" and "not", the inference above 

would count as valid.)  A counterexample to an inference is a case in which all its 

premises are true but its conclusion is false.  Thus an inference is valid provided it has no 

counterexamples, and invalid if it has counterexamples.  As an example of an invalid 

inference, consider the following: 

Either this man's dead, or my watch has stopped. 

This man is dead. 

Therefore, my watch has stopped. 

This inference is invalid, because the situation in which this man is dead and my watch 

hasn't stopped constitutes a counterexample. 
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To investigate the validity of inferences we need first to consider how their 

constituent statements are formed, and how these are then to be assigned truth values.  

As the basic ingredients from which we shall fashion all such statements we shall take 

simple declarative sentences of the kind "It is raining", "The cranes are flying", etc.  Such 

statements will be called elementary statements: we shall assume that elementary 

statements can be assigned truth values arbitrarily and entirely independently of one 

another. 

     From elementary statements we obtain compound statements by applying the 

syntactical operations "and", "or", "not", "if...then".  (In this way we obtain, e.g. statements 

such as "It is raining and the cranes are flying", "If it is raining, the cranes are not flying", 

etc.)  These operations are truth functional in the sense that the truth value of any 

compound statement built up from them is unambiguously determined by the truth 

values of its constitutive elementary statements.  

     We shall use capital letters A,B,C,... to denote elementary statements, and 

symbols 

∧   for  "and"  (conjunction), 

∨   for  "or"  (disjunction), 

¬   for  "not"  (negation or denial), 

→  for  "if...then"  (implication). 

The symbols A,B,C,... are called statement letters, and the symbols ∧, ∨,¬, →, logical 

operators.  "A → B" is sometimes read "A implies B", or "B if A", or "A only if B".  Also "∨" 

has the inclusive sense of "and\or"; it may also be understood as "unless". 

Using these symbols, statements are obtained by starting with the statement 

letters — which of course count as the simplest kind of statement — and applying the 

logical operators ∧, ∨, ¬, → to these, using parentheses and brackets as necessary to 

eliminate ambiguity.  So, for example, from the statement letters A, B, C, we obtain the 
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compound statements  A ∧ B, (A ∧ B) ∨ C, (A → B) ∨ C, ¬[(A → B) ∨ C], etc. We shall 

use letters p,q,r,... to denote arbitrary statements (elementary or compound). 

Formally, a statement, or propositional statement, may now be defined by means of 

the following ‘rules of formation’: 

1.  Any statement letter is a statement. 

2.  If p and q are statements, so are (p ∧ q), (p ∨ q), (p → q), (¬p). 

Here p,q are called the conjuncts in the conjunction (p ∧ q) and the disjuncts in the 

disjunction (p ∨ q). (Thus, for example, in the disjunction (((¬A) ∨ B) ∨ C) the disjuncts 

are ((¬A) ∨ B) and C.)  Also p is called the antecedent and q the consequent in the 

implication (p → q).   

Strictly speaking, any sequence of statement letters and logical operators that 

cannot be generated by repeated application of rules 1 and 2 above will not, for us, 

count as a statement.  For example, ¬A → ∨ B is obviously not allowed (“If not A, then 

or B” is gibberish), while ((¬A) ∨ B) is allowed.  However, in the interests of brevity 

(and keeping our sanity!) we shall bend the rules slightly and feel free to omit 

parentheses in statements when no ambiguity is likely to result.  For example, instead of 

((¬A) ∨ B) we shall write simply ¬A ∨ B.  For obviously there’s no need for the outside 

brackets if this statement is meant to be a complete statement and not a component of 

some larger statement (like one disjunct of a larger disjunction).  Also, by replacing (¬A) 

by ¬A we are agreeing to understand the “not” operator as only acting upon the 

statement letter A and not upon the larger statement A∨ B.  If, instead, we wanted to 

symbolize the statement “Neither A nor B” then we would have to write ¬(A ∨ B) so 

that the scope of the ¬ operator covers the entire disjunction.  As a general rule of thumb, 

insert parentheses only when it will not otherwise be clear to your readers what 

statement is being negated, or what statements are being disjoined, conjoined, etc.  (For 
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example, A ∧ B ∨ C is not clear, while A ∧ (B ∨ C) is; A → ¬B ∨ C is not clear, (A → ¬B) ∨ 

C is; etc.) 

 

2. Truth Tables and Testing Validity  

The rules for computing the truth values of compound statements are as follows. 

�  A ∧ B is true if A and B are both true, and false if at least one of A and B is false. 

�  A ∨ B is true if at least one of A and B is true, and false if both A and B are false. 

�  ¬A is true if A is false, and false if A is true. 

�  A → B is false when A is true and B is false, but true in all other cases. 

The least intuitive of these rules is the last one.  The idea here is that we want a 

statement of the form p → q to be false exactly when the truth values of p and q 

constitute a counterexample to the validity of the inference from p to q, that is, when p 

is true and q is false.  In all other cases, p → q shall be declared true.♣   

     The above rules for computing truth values may be summed up in the form of 

truth tables. 

                                                 
♣ For those to whom this seems odd, consider the following down-to-earth example to make it more 
palatable.  Suppose that, upon leaving for work in the morning, I promise my wife “If I go to the store 
(p), then I will buy some milk (q)”.  When I arrive back from work in the evening, she asks me whether I 
picked up any milk, and I say No.  Did I break my promise?  That is: should p → q be declared false in 
this case; a case where, in fact, both p and q turned out to be false?  Surely not: I would only have broken 
the promise if in fact I did go to the store but did not buy any milk (due to an oversight, or lack of money, 
or what have you). Nevertheless, it must be admitted that our definition of the truth-conditions for the 
so-called ‘material’ conditional →  fails to do justice to all our intuitions about how the “if...then...” 
construction in natural language functions.  For example, we are being forced to declare that “If New 
York is a big apple, then grass is green” is true simply on the basis of its consequent being true (which it 
is).  A more sophisticated treatment of conditionals would involve discussing ‘strict’ conditionals, 
‘counterfactual’ conditionals, etc. which are beyond the scope of these notes.) 
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  A    B   A ∧ B   A ∨ B    ¬A    A → B
     t      t         t            t           f           t
     t      f         f            t           f           f
     f      t         f            t           t           t
     f      f         f            f           t           t

 

Each line under the first two (A,B) columns represents an assignment of truth values — 

a (truth) valuation.  Here there are 22 = 4 valuations.  If we had n statement letters           

A1 ,...,An  there would be 2n  valuations.                 

So far we have laid down rules for forming compound statements from 

elementary statement letters.  We also have rules for determining the truth values of 

any compound statement given the logical operators that occur in it and any truth 

valuation of its statement letters.  Armed with these rules, we can now test a few 

inferences for validity. 

It is raining and the cranes are flying. 

Therefore, it is raining. 

This has the form 

A ∧ B

A  

The inference is valid since, according to the truth table for ∧, whenever the premise     

A ∧ B is true, so is the conclusion A, thus showing that there are no counterexamples. 

It is raining or the cranes are flying.  

It isn't raining. 

Therefore, the cranes are flying. 

This has the form 
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A ∨ B
¬A
B  

Examining the truth table for possible counterexamples we find 

                  premises         conclusion
 A    B       A       A ∨ B              B
  t      f        f             t                   f
  f      f        t             f                   f

 

Notice that we only needed to examine the (two) cases in which the conclusion (B) is 

false, since counterexamples cannot arise in any other way.  Since neither of these cases 

constitutes a counterexample, there are none, and the inference is, accordingly, valid. 

If it is raining, the cranes are flying. 

It is raining. 

Therefore, the cranes are flying. 

This has the form            

A → B
A
B  

Examine the truth table for possible counterexamples (conclusion false): 

A    B     A      A → B             B
t      f       t           f                    f
f      f       f           t                    f  

 
Neither of these cases constitutes a counterexample, so the inference is valid. 
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If it is raining, the cranes are flying. 

The cranes are flying. 

Therefore, it is raining.  

 
This one has the form 
 

A → B
 B
A

 
The following line in the truth table is a counterexample (in fact the only one) 
 

A    B     A → B    B      A
f      t           t          t        f

 
The inference is, accordingly, invalid. 
 

If it is raining, the cranes are flying. 

If the cranes are flying, the bears are restless. 

Therefore, if it raining, the bears are restless. 

 
This has the form      

A → B
B → C
A → C  

 
Now the only possible counterexamples arise when the conclusion A → C is false.  This 

can happen just when A is true and C is false.  Therefore we need merely examine the 

two lines in the truth table in which this occurs.  These are the following: 
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  A   B    C        A → B     B → C           A → C
   t     t     f              t               f                     f
   t     f     f              f               t                     f

 
 

Since in neither of these lines are both premises A → B and B → C true, neither 

constitutes a counterexample, so there are none, and the inference is, accordingly, valid. 

We shall use the notation 

p1,...,pn |=   q      

to indicate that the inference from the statements p1,...,pn to the statement q is valid.  

Thus the validity of the first three inferences above may be symbolized: 

A ∧ B |=  A;   A ∨ B, ¬A |=  B;   A, A → B |=  B. 

We read "p1,...,pn |=  q" as "p1,...,pn  (logically) imply q" or "q follows from p1,...,pn".♦   

 

3. Tautologies, Contradictions and Satisfiability 

Sometimes conclusions are obtainable without using premises. For example, 

consider the premiseless "inference" 

       Therefore, it is raining or it is not raining.       

          A ∨ ¬A
 

This "inference" is valid because in its truth table 

                                                 
♦ Note that p |=  q is not itself a statement in our logical language, like p → q, but rather a kind of ‘meta-
statement’ or statement about statements—i.e. the statement that the argument from p as premise to q as 
conclusion is a valid argument.  However, there is an obvious connection between the expressions p |=  q 
and p → q, namely, the former holds exactly when the latter’s truth-table has no f’s.   
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     A          A ∨ ¬ A
      t                t
      f                t

 

the conclusion A ∨ ¬A is always true: there are no counterexamples. 

A statement which, like A∨¬A, is true in all possible cases is called (logically) 

valid or a tautology.  An inference with a valid conclusion is always valid, regardless of 

what its premises are.  We shall use the symbol t to stand for a fixed tautologous 

statement, which for definiteness we shall take to be the statement A∨¬A (although any 

tautology would do). The symbol "t" is doing double duty: it indicates both a truth value 

and a particular statement.  Notice that we then have 

p |=  t 

for any statement p. 

     A set S of statements is said to be satisfiable or consistent if there is at least one 

case in which all the members of S are true, and unsatisfiable or inconsistent if not.  This 

concept is related to that of validity in the following way. 

If p1,...,pn |=  q, then the set {p1,...,pn,¬q} is unsatisfiable, and conversely. 

For the unsatisfiability of {p1,...pn,¬q} is just the assertion that p1,...,pn,¬q are never 

simultaneously true, which amounts to asserting that ¬q is false, i.e. q is true, whenever 

p1,...,pn are.  In particular, it follows that if {p1,...,pn} is unsatisfiable, then p1,...pn |=  q for 

any statement q.  That is, inconsistent premises yield any conclusion whatsoever.      

A single unsatisfiable statement (e.g. A ∧ ¬A) is called a contradiction (or 

inconsistent). Thus a contradiction is a statement which is always false.  Notice that 

contradictions are exactly the negations of tautologies. We shall use the symbol "f" to 

stand for a fixed contradiction, which for definiteness we take to be the statement          
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A ∧ ¬A (although, as in the case of "t", it matters not which particular contradiction we 

choose).  Notice that we now have, for any statement p, 

f |=  p  . 

A statement is said to be contingent if it is neither a tautology nor a contradiction; 

so, a contingent statement is one which is true in at least one case, and false in at least 

one case. Any statement is either tautologous, contradictory, or contingent: we shall 

later develop an efficient technique for deciding which 

4. Exercises 

Truth Tables and Testing Validity 

A1. Use truth tables to determine whether the statements in the left column (jointly) 

imply the corresponding statement in the right column. 

(a)  A, B→¬C ¬C 

(b)  ¬(A→B)  ¬B→¬A 

(c)  A, [(A∨B)→B]  A∧B 

(d)  A→ (¬¬B→C)  (A∧¬C)→¬B 

(e)  A→(B∨C), A→¬B  A→C 

(f)  A→¬B, [(A∧C)→B]  ¬[(¬A∧C)→A] 

(g)  A→(B→C)  (A∧B)→C 

(h)  A→(B∨C)  (A→B)∨(A→C) 

(i)  ¬(A∧B)  ¬A∨¬B 

(j)  ¬(A∨B) ¬A∧¬B 

(k)  (A→B)→B A∨B 
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(l) A→(A→B) B 

(m)  (A∧B)→C, ¬C, A ¬B 

(n)   A→B, A→¬B ¬A 

(o)  ¬A→A   A 

A2. Symbolize each of the following inferences and use truth tables to determine which 

of them are valid. 

(a) Silas is either a knave or a fool.  Silas is a knave; so, he's no fool. 

(b) You may enter only if the Major's out.  The Major is out.  So you may enter. 

(c) There will be a fire!  For only if there's oxygen present will there be a fire.  And of 

course there's oxygen present. 

(d) If I'm right, then you're wrong.  But if you're wrong, then I can't be right.  Therefore 

you're wrong. 

(e) If I'm right, then you're wrong.  But if you're wrong, then I can't be right.  Therefore, 

I can't be right. 

(f) If they retreat provided we attack, then we attack.  But they won't retreat.  Therefore 

we attack. 

(g) It's a duck if it walks and quacks like one.  Therefore, either it's a duck if it walks like 

one or it's a duck if it quacks like one.   

(h) You cannot serve both God and Mammon.  But if you don't serve Mammon, you'll 

starve; if you starve, you can't serve God.  Therefore, you can't serve God. 

(i) If today's Friday, we must be in Toronto.  Today is Friday, but we're not in Toronto.  

So we're in London. 
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(j) Computers can think only if they have emotions.  If computers can have emotions 

then they can have desires as well.  But computers can't think if they have desires.  

Therefore computers can't think. 

A3. Knaves always lie, knights always tell the truth, and in Camelot, where everybody 

is one or  the other (but you can't tell which by just looking), you encounter  two people, 

one of whom says to you: "He's a knight or I'm a knave."  What are they? 

A4. Symbolize this argument and use a truth table (truncated, if you like) to determine 

whether it is valid: 

If I'm right, then you're a fool.  If I'm a fool, I'm not right.  If you're a fool, I 

am right.  So one or other of us is a fool! 

A5. Symbolize this set of sentences and determine (using a truth table or otherwise) 

whether the set is consistent (i.e. satisfiable): 

Either the witness was not intimidated, or if Flaherty committed suicide, a 

note was found.  If the witness was not intimidated, then Flaherty did not 

commit suicide.  If a note was found, then Flaherty committed suicide. 

A6. Translate the following two arguments into logical notation (defining your 

symbols).  Then use a truth table (truncated, if you like) to determine whether the 

arguments are valid.  For the invalid arguments (if any), supply all counterexamples.   

(a) You will eat and either I will eat or we shall starve.  Therefore, you and I will eat or 

we shall starve.(assume that: starve = not eat) 

(b) We’ll win!  For if they withdraw if we advance, we’ll win. And we won’t advance! 

A7. Knaves always lie, knights always tell the truth, and in Camelot, where everybody 

is one or the other, you encounter two people, one of whom says to you: "He's a knight 

and I'm a knave.”  What are they? 
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A8. Politicians always lie, taxpayers always tell the truth, and in the US, where 

everybody is one or the other (but never both, as we all know!), you encounter two 

people, one of whom points to the other and grudgingly declares:  

"I’m a taxpayer if and only if he is!”  

What are they? 

A9. Using truth tables, determine whether the following arguments are valid. 

 (a) A→ (H ∧ J)                  (b) (D ↔ ¬G) ∧ G                     (c)  (G ↔ H) ∨ (¬G ↔ H) 

         J ↔ H                              (G ∨ [(A → D) ∧ A]) →¬D    ∴ (¬G ↔ ¬H) ∨  ¬(G ↔ H)   

        ¬J      ∴  G→ ¬D 

  ∴ ¬A 

A10. Consider the following argument: 

This argument is unsound, for its conclusion is false, and no 

sound argument has a false conclusion. 

Is this argument sound? (‘Sound” means “Valid + True Premises”.)  

 

Tautologies, Contradictions and Satisfiability 

B1. Classify the following statements as tautologous, contradictory or contingent: 

(a)  (A→B)∨(B→A)     (b)  [(A→B)∧B]→A    (c) [(A∧B)→C]→[(A→C)∨(B→C)] 

B2. Which of the the following assertions is correct and why: 

(a) There is a statement that implies every other statement. 

(b) Any statement that follows from a satisfiable statement is satisfiable. 

(c) Any statement implying a contingent statement is contingent. 
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(d) Any statement that follows from a contingent statement is contingent. 

(e) Any statement that follows from a valid statement is valid. 

(f) Any statement that implies a valid statement is valid. 

(g) All contingent statements imply one another. 

(h) No inference with a contradiction as conclusion can be valid. 

(i) No statement implies its own negation. 

(j) Each of the disjuncts of a valid disjunction is valid. 

(k) An implication is valid precisely when the consequent follows from the antecedent. 

(l) Any statement implied by its own negation is valid. 

(m) Removing a premise from a valid argument cannot affect its validity. 

(n) In a valid argument, the conclusion is always consistent with the premises; in a 

sound argument it is not.  (Note: An argument is sound exactly when it is both valid 

and has true premises.) 

B3. Determine which of the following five assertions are correct, justifying your answer. 

(a) If a statement is not contingent, nor can its negation be. 

(b) Every valid argument with a satisfiable set of premises has a satisfiable conclusion. 

(c) If a conjunction is a tautology, so is each of its conjuncts. 

(d) An invalid argument can always be made into a valid one by adding premises. 

(e) The argument from p to q is valid if and only if p→q is valid. 

B4. Circle the correct answer to each of the questions below.   

(a) Identify the statement which is a contradiction in the following: 
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 (i) t→t    (ii) t→f  (iii) f→t   (iv) f→f 

(b) Identify the statement which is valid in the following: 

 (i) A∧A    (ii) A∨A  (iii) A→A   (iv) (A→A)∧A 

(c) Any argument with an unsatisfiable set of premises must be: 

 (i) valid and sound     (ii) invalid and sound  

 (iii) valid and unsound   (iv) invalid and unsound 

 B5.  Provide a one to two sentence answer for these questions. 

(a) Explain why each conjunct of a valid conjunction must itself be valid. 

 (b) Why is it that whenever the pair of statements {p,¬c} is jointly satisfiable we can’t 

write p |= c ? 

B6. Circle the correct answer to each of the questions below.   

(a) Which of the following statements is valid? 

 (i) A ∧ A    (ii) A ∨ A   

 (iii) (A ↔ A) ∧ A   (iv) A ↔ A 

(b) Which of the following statements is not equivalent to any of the others? 

 (i) B ∧ ¬B    (ii) B ↔ ¬B   

 (iii) B → ¬B   (iv) ¬B ↔ B 

(c) Which of the following statements is a contradiction? 

 (i) t    (ii) f → t   

 (iii) t ∨ f  (iv) t ∧ (t → f) 

(d) Any argument that concludes with a tautology must be: 



 
 

19

 (i) valid + sound    (ii) valid + unsound   

 (iii) valid   (iv) sound 

(e) At least one of the disjuncts of a valid disjunction must be: 

   (i) valid   (ii) sound    

 (iii) consistent  (iv) contingent  

(f) The consequent of an inconsistent conditional cannot be: 

   (i) unsatisfiable   (ii) satisfiable    

 (iii) a conjunction  (iv) inconsistent 

B7.  Indicate whether each of the following statements is true or false. 

 (a) If a statement is not valid, its negation must be.  

 (b) If a statement fails to logically imply an other, it must imply the negation of that 

other. 

 (c) A statement that logically implies an other cannot imply the negation of that other. 

(d) If a set of statements is satisfiable, so is each statement in the set. 

(e) If each statement in a set is satisfiable, so is the set. 

(f) You cannot make a valid argument invalid by adding more premises. 

(g) You cannot make an invalid argument valid by removing premises. 

(h) Sound arguments can never have f as their conclusion. 

B8. Indicate whether each of the following statements is true or false. 

(a) A tautologous conjunction must have a tautologous conjunct. 

(b) A contradictory disjunction must have a contradictory disjunct. 
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(c) If neither a statement nor its negation is valid, then both must be consistent. 

(d) If a conditional is unsatisfiable, its consequent must be too. 

(e) A contingent statement can logically imply both a statement and the negation of that 

statement. 

(f) No subset of a set of satisfiable statements can be unsatisfiable. 

(g) Every statement logically implies at least one other statement with which it is not 

equivalent. 

(h) You can never make an invalid argument into a sound one by dropping some of its 

premises. 

(i) You can never make a valid argument into an unsound one by adding more premises 

to it. 

(j) Some statements are equivalent to every statement that logically implies them. 

B9. Using truth tables (where necessary), decide if the following sets of sentences are 

satisfiable. 

(a) {A → B, B →C, A → C} 

(b) {¬[J ∨ (H →L)], L ↔ (¬J ∨ ¬H), H ↔ (J ∨L)} 

(c) {(J →J)→H, ¬J, ¬H} 

(d) {A, B, C} 

(e) {(A ∧ B) ∨ (C →B), ¬A, ¬B} 

B10. True or False? 

(a)  A conjunction with one valid conjunct must itself be valid. 

(b) An implication with a valid consequent must itself be valid. 
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(c)  A disjunction with one unsatisfiable disjunct must itself be unsatisfiable. 

(d)  A sentence is valid iff its negation is unsatisfiable. 

(e)  An implication with a valid antecedent must itself be valid. 

B11. Using truth tables, determine whether the following are valid. 

(a) (F ∨ H) ∨ (H ↔ ¬F)                   (b) ¬A → [(B∧A) → C] 

 
II. EQUIVALENCE   

 
1. Equivalence and Bi-implication 

Two statements are called (logically) equivalent if they take the same truth values 

in all possible cases. For example, consider the truth tables for the statements A → B,  

¬B → ¬A: 

  A    B       A → B      ¬B → ¬A
   t      t             t                   t
   t      f             f                   f
   f      t             t                   t
   f      f             t                   t

 
Since A → B and ¬B → ¬A have the same truth value on every line of the table, they are 

equivalent. 

We write  p ≡ q to indicate that the statements p and q are equivalent. We may 

think of ≡ as a kind of equality between statements. We leave it to the reader as an 

exercise to show that for any statements p,q the assertion that p ≡ q amounts to the 

same thing as: 

p |=  q and  q |=  p 

In connection with ≡, we can define a new logical operator" ↔ " called bi-

implication (or ‘if and only if’) as follows:   
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  A    B         A↔  B
   t      t              t
   t      f              f
   f      t              f
   f      f              t

 
 

Thus A ↔ B has value "t" exactly when A and B have the same truth value.  It follows 

from this that p ≡ q holds when and only when the statement p ↔ q is valid. The 

statements p and q are called the components of p ↔ q. 

     It is easy to check the following equivalences: 

p ≡ ¬¬p 

p ∨ q  ≡  ¬(¬p ∧ ¬q)   

p ∧ q  ≡  ¬(¬p ∨ ¬q) 

p → q  ≡  ¬p ∨ q 

p ↔ q  ≡   (p → q) ∧ (q → p) 

We see from these equivalences that → and ↔ are in a natural sense expressible in terms 

of {∧,∨,¬} and hence in terms both of {∧,¬} and {∨,¬}.  The question now arises as to 

whether every possible truth function is so expressible. The answer, as we shall see, is 

yes. 

2. Expressive Completeness 

We begin by describing what is meant by the disjunctive normal form of a truth 

function.  Let us suppose we are given a truth function H of n statement letters A1,...,An.  

Thus, for each valuation of A1,...An, a corresponding (truth) value of H(A1,...,An) is 

obtained.  (For example, H(A1, A2, A3) = (A1 ∨ A2) ↔ A3 defines a truth function, since 

truth values for A1, A2, and A3 fix a truth value for (A1 ∨ A2) ↔ A3 via the truth tables 

for ∨ and ↔.)  We display this situation in the form of a truth table: 
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    A1   A2  ...    An      H(A1,...,An)
      t      t    ...     t                 *
      t      t    ...     f                 *

      f      f    ...     f                 *
 

Assume first that at least one of the entries in the H column is "t".  For each valuation of 

A1,...,An  in which a "t" appears in the H column we form the conjunction A1* ∧  ... ∧ An*  

where each Ai* is Ai if the given valuation assigns t to Ai and ¬Ai if not.  Notice that this 

conjunction is true precisely under the given valuation and no other.  Now we form the 

disjunction of all these conjunctions arising from the "t" cases of the given truth table.  

The resulting statement is called the disjunctive normal form (d.n.f.) of the given truth 

function.  Clearly, its truth table is identical to that of the given truth function. 

It remains to consider the case in which the given truth function always takes the 

value "f".  Here we may take the disjunctive normal form to be, e.g., A1 ∧ ¬A1. 

Since d.n.f.s contain only the logical operators ∧, ∨, ¬, it follows from all this that 

every possible truth function can be expressed in terms of ∧, ∨, ¬ , and so every statement is 

equivalent to one whose only logical operators are these. We sum this up by saying that the 

set {∧, ∨ ¬} is expressively complete.  Moreover, since ∧ is expressible in terms of ∨, ¬  and 

∨ in terms of ∧, ¬ , we may infer that each of the sets {∧,¬} and  {∨ ¬} is expressively 

complete. 

Before proceeding further let us determine a d.n.f. in a practical case.  Suppose 

we are given, for instance, the truth table 
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  A   B    C         H(A,B,C)
   t     t     t                   t
   t     t     f                   f
   t     f     t                   t
   t     f     f                   t
all remaining lines       f

 

The d.n.f. here is, writing A for ¬A etc. and omitting the "∧"s, 

 ABC ∨ ABC ∨ ABC 

The question arises as to whether there are single logical operations (involving 

just two statement letters) which are expressively complete.  We shall see that there are 

exactly two of these. 

We define the logical operators ("Sheffer strokes") "|" —nand — and "↓" — nor — 

by means of the following truth tables. 

  A    B         AB        A ↓ B
   t      t             f                 f
   t      f             t                 f
   f      t             t                 f
   f      f             t                 t

 

Clearly, A|B  ≡  ¬(A ∧ B) and A↓B  ≡  ¬(A ∨ B) (hence ‘nand’ is short for ‘not and’ and 

‘nor’ short for ‘not or’!).  

First, we show that | and ↓ are each expressively complete.  To do this it suffices 

to show that ¬ and ∨ are both expressible in terms of |, and ¬ and ∧ in terms of ↓.  

(Why?)         

Clearly  A|A ≡  ¬(A ∧ A) ≡ ¬A, so ¬ is expressible in terms of |.  Now 

 A|B ≡   ¬(A ∧ B) ≡  ¬A ∨ ¬B, 
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so 

 ¬A|¬B ≡   ¬¬A ∨ ¬¬B ≡  A ∨ B. 

Hence, recalling that ¬A ≡ A|A, we see that 

 A ∨ B ≡ (A|A)|(B|B), 

and so ∨ is expressible in terms of |. 

Similarly, ¬A ≡ A↓A and A ∧ B ≡ (A↓A)↓(B↓B).  Therefore | and ↓ are each 

expressively complete.       

We next show that | and ↓ are the only expressively complete logical operations 

on two statement letters. 

For suppose that H(A,B) is expressively complete.  If H(t,t) were t, then any 

statement built up using only H would take the value t when all its statement letters 

take value t.  So ¬A would not be expressible in terms of H.  Therefore H(t,t) = f.  

Similarly, H(f,f) = t.  So we obtain the partial truth table 

     

   A     B          H(A,B)
    t      t                 f
    t      f
    f      t
    f      f                 t  

If the second and third entries in the last column are t,t or f,f, then H is | or ↓. If they are 

f,t, then H(A,B) ≡ ¬A; and if they are t,f, then H(A,B) ≡ ¬B. So in both of these cases H 

would be expressible in terms of ¬.  But clearly ¬ is not expressively complete by itself, 

since the truth function t is not expressible in terms of it.  So H is | or ↓ as claimed. 

3. Arithmetical Representation of Statements and Logical Operations  



 
 

26

Statements and logical operations can be nicely expressed within binary 

arithmetic: the arithmetic of 0 and 1.  

First, we describe the rules of binary arithmetic. We suppose given the two 

numbers 0,1 and two operations "+" (plus) and "." (times) on them subject to the 

following rules (only one of them may be unfamiliar!): 

0 + 0 = 1 + 1 = 0          0.0 = 0.1 = 1.0 = 0 

0 + 1 = 1 + 0 = 1                  1.1 = 1             

We shall think of statements as determining binary functions (that is, functions 

taking just the values 0 and 1) as follows.  Statement letters A,B,C,... will be regarded as 

variables taking values 0,1: we think of 1 as representing the truth value t and 0 as 

representing the truth value f.  Then the operation "∧" corresponds to "." and the 

operation "¬" to the operation "1 + " of adding 1. 

Given this, how do we interpret "∨" and "→"?  We argue as follows. 

A ∨ B  ≡  ¬(¬A ∧ ¬B)           

=  1 + (1 + A).(1 + B)   

=  1 + 1 + A + B + A.B 

=  0 + A + B + A.B       

=  A + B + A.B            

And 

 A → B ≡  ¬A ∨ B  

= 1 + A + B + (1 + A).B 

= 1 + A + B + B + A.B 

= 1 + A + A.B 

In this way, any statement p gives rise to a binary function called its binary 

representation which we shall denote by the same symbol p.  In that case, tautologies are 
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those statements whose binary representations take only value 1, and contradictions 

those statements whose binary representations take only value 0. 

When, for example, is p → q a tautology?  Exactly when the corresponding 

binary representation 1 + p + p.q is constantly 1.  But this is the case precisely when 0 = 

p + p.q = p.(1 + q), that is, when at least one of p and 1 + q is 0, in other words, if p = 1, 

then 1 + q = 0, i.e. q = 1.  But this means that the value of p never exceeds the value of q:  

we shall write this as p ≤ q.  It follows that 

p |=  q   ⇔   p → q is a tautology  ⇔   p ≤ q       

(where we have written "⇔" to indicate equivalence of assertions). That is, in the binary 

representation, |=  corresponds to ≤.  By the same token, 

p ≡ q  ⇔   p = q. 

That is, in the binary representation, ≡ corresponds to =.     

The binary representation sheds light on expressive completeness. For example, 

the expressive completeness of {∧,¬} translates into the assertion that any binary 

function can be expressed in terms of the operations "." and "1 + ", while the expressive 

completeness of "|" translates into the assertion that any binary function can be 

expressed in terms of the single binary function 1 + x.y. 

4. Venn Diagrams   

Venn diagrams are a convenient method of depicting logical relationships.  We 

represent the various truth valuations of statement letters by points in a rectangle 

(which itself may be thought of as a kind of "logical space"). Then, for a given statement 

p, the collection of valuations making p true is represented by a circle within the 

rectangle: 
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p

 

This circle is called the region corresponding to p, or simply the region of p.  

It is clear that the region corresponding to any tautology is the whole rectangle, and 

that corresponding to any contradiction is the empty region.  For a conjunction p ∧ q the 

corresponding region is the shaded portion in the figure below, that is, the intersection 

qp

 

of the regions corresponding to p and q.  For a disjunction p ∨ q the corresponding 

region is that covered by the union of both circles.  For a negation ¬p the corresponding 

region is that lying outside the region of p: its complement. 

p ¬ p

 

The relation of logical implication corresponds to the relation of inclusion between 

regions: p |=  q is equivalent to the region of p being 
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p
       q

 

included in the region of q.   Finally, the relation of equivalence corresponds to the relation 

of identity between regions: p ≡ q is equivalent to asserting that the regions of p and q 

coincide. 

     It is now straightforward to illustrate the following rules of equivalence by 

means of Venn diagrams: 

1.                     p ≡ ¬¬p                      

2.   p ∧ q ≡  q ∧ p       p ∨ q ≡  q ∨ p   

3. p ∧ (p ∨ q) ≡ p       p ∨ (p ∧ q) ≡ p 

4.           p ∧ f ≡ f        p ∨ f ≡ p           

5.           p ∧ t ≡ p       p ∨ t ≡ t            

6. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)    p ∨ (q ∧ r) ≡  (p ∨ q) ∧ (p ∨ r)      

7.     ¬(p ∧ q) ≡   ¬p ∨ ¬q          ¬(p ∨ q) ≡  ¬p ∧ ¬q. 

Here on line 1 we have the law of double negation, on line 2 the commutative laws, on line 3 

the absorptive laws, on line 6 the distributive laws, and on line 7 de Morgan's laws.  

For example, consider the Venn diagram immediately below.       

qp
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Clearly the shaded region — that corresponding to ¬(p ∧ q) — is the union of the region 

outside that of p with the region outside that of q. This latter is the region 

corresponding to ¬p ∨ ¬q.  This verifies the first de Morgan law. The remaining laws 

may be similarly verified. 

5. Exercises 

Equivalence 

A1.  Which of the following pairs of statements are equivalent? 

(a)  (A∨B)∧¬A  ¬A∧B 

(b)  A→(A∧B)  A∧B 

(c)  A→(A∧B)  A→B 

(d)  ¬(A↔B)  A↔¬B 

(e)  ¬(A↔B)  (A∧¬B)∨(¬A∧B) 

(f)  A↔(B↔C)  (A↔B)↔C 

(g)  A∨(B∧C)  (A∨B)∧C 

(h)  A→(A→A)  A 

(i)  (A→A)→A A 

A2. (a) Indicate which of the following statements are valid: 

(i) t∨t      

(ii) f↔f    

(iii) (t↓f)→(f|t)    

(iv) ¬(p→¬p)    
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(v) ¬(p↔¬p)  

(vi) (p→q)→(q→p)   

(vii) (p→q)→(¬q→¬p)    

(viii) (¬p∧¬q)↔¬(p∨q)   

(ix) (p↔(p∧q))↔(q↔(p∨q)) 

(b) Which of the above statements (i)-(ix) are equivalent to each other? 

Expressive Completeness 

B1. Find statements involving the operators ∧, ∨, ¬ and the statement letters A, B, C that 

have the following truth tables (1), (2), (3): 

 
A B C (1) (2) (3) 
t t t | t t f 
f t t | t t t 
t f t | t t f 
f f t | f f f 
t t f | f t t 
f t f | f f t 
t f f | f t f 
f f f | t f t 

B2. The logical operator ∨ called exclusive disjunction is defined by specifying that p∨q 

is true when exactly one of p, q is true, and false otherwise. 

(a) Define ∨ in terms of ↔ and ¬. 

(b) Show that ∨ is associative, in the sense that p∨(q∨r) ≡ (p∨q)∨r, for any statements 

p, q and r. 

(c) Show that {∨,∧,t} is an expressively complete set. 
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(d) What are the truth conditions for p1∨p2∨ ... ∨pn ?  (That is: when would you 

regard such an expression as true and when not?) 

B3. (a) Show that the pair {¬,→} is expressively complete. 

(b) Show that the single truth function f(A,B,C) = (A∨B)→¬C is expressively 

complete.  (Hint: One approach is to show that {¬, →} are both expressible in terms 

of the function f and invoke (a).) 

B4. (a) Show that ↔ cannot be expressed in terms of → alone.  (Hint: any statement 

containing exactly A, B, → takes value t in at least one case where A and B have 

opposite truth values.) 

 (b) Show that ∨ can be expressed in terms of → alone. 

 (c) Show that ∧ cannot be expressed in terms of → alone.  (Start by showing that any 

statement containing just the logical operator → must take truth value t in at least two 

cases.) 

B5.  Find statements in ¬, ∨, ∧ that have the following truth functions f, g, h. 

A B C f(A, B, C) g(A, B, C) h(A, B, C) 
t t t t f t 
f t t t t f 
t f t f t f 
t t f f t f 
f f t f f f 
t f f f t t 
f t f f t t 
f f f t t t 

B6. Show that the truth function h(A, B, C) determined by (A→B)→¬C is expressively 

complete. 

B7. Find disjunctive normal forms for the following statements: 

(a)  ¬(A →B) ∨ (¬A ∧ C)      (b)  A ↔ [(B ∧ ¬A) ∨ C] 
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B8.  (a) Explain why {f,→} must be an expressively complete set. 

 (b) Out of the 16 possible binary logical operators one could define, exactly how many 

can be expressed in terms of → alone? (This one’s moderately difficult!) 

Binary Representations and Venn Diagrams 

C1. (i) Find the binary representations of the following statements, (ii) using those 

representations classify each statement as valid, contradictory or contingent, and (iii) 

draw the Venn diagram corresponding to each statement: 

(a) A↓B (b) A∨B (c) A↔B      (d) (A→B) ∨ (B→A)       (e) (A∨¬A) ∧ (B∧¬B) 

C2. Find the binary representations of the following statements and draw their Venn 

diagrams: 

(a) A→(B→B)   (b) (A↓A)↓(A↓A)     

 (c) (A↔B)∧(¬A↔B)  (d) p→(q→r)     

 (e) [p→(q→r)]∧(s∨¬s)   (f) (C∨D)|(C∨D) 

C3. Find the binary representations of the following statements and draw their Venn 

diagrams: 

      (a) (A∧¬A)→(A∨¬A)   (b) ¬[(A|A)|(A|A)]     

      (c) ¬[(A↔B)∨(¬A↔B)]  (d) (p→q)→r     

      (e) [(p→q)→r]∨(s∧¬s)   (f) (C∨D)↓(C∨D) 

C4. Find the disjunctive normal forms, binary representations and Venn diagrams for 

the following statements: 

(a) A↔(B→¬A)  

(b) [(A→B)→A]∧¬C 
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III.  TRUTH TREES 

1. Introduction to Truth Trees 

To test an inference for validity it suffices to conduct an exhaustive search for 

counterexamples.  If none are found, then the inference is valid. Truth trees are an 

efficient and elegant device for unearthing counterexamples. 
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Consider, for example, the (valid) inference 

A ∨ B
¬A
B  

 

To obtain its tree form, we start by listing its premises and the negation of its conclusion:     

A ∨ B
¬A
¬B  

 

These statements will be true in exactly the cases in which there are counterexamples to 

the original inference.  Now we continue, generating a tree-like structure: 

 

   √  A ∨ B
¬A
¬B

  A                 B
  ×                  ×  

 
 

Here the statements A, B, ¬A, ¬B, A ∨ B occupy positions, or as we shall call them, 

nodes1in the tree. The statement occupying the top node is a disjunction and requires 

analysis: A ∨ B is true in all those cases in which A is true and all those cases in which B 

is true, and in no other cases.  We indicate this by writing A and B at the ends of a fork 

at the foot of the tree. At the same time we tick the statement A∨B, using “√”, to indicate 

                                                 
1 We shall often identify a node in a tree with the statement occupying it. 
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that all its t cases have been taken into account. Ticking a statement2 is, accordingly, 

equivalent to erasing it.  Finally we write "×" at the foot of each path through the tree in 

which a statement occupies one node and its negation another. Such paths are called 

closed.  In this particular tree all paths are closed; under these conditions the tree itself is 

said to be closed.  And, as we shall see, the inference is then valid.  

Why is this?  Because the procedure was designed so that when we ticked a 

statement, we displayed all the possible ways in which that statement can be true. The 

various paths then represent all the ways in which the initial statements (i.e., the 

statements with which we began the tree) could possibly be true; that is, each path 

represents a potential counterexample to the original inference.  In the case of a closed 

path, the possibility it represents does not really exist.  Accordingly, if all paths are 

closed, then it is impossible for all the initial statements of the tree to be 

(simultaneously) true, in other words, there are no counterexamples to the original 

inference and so it is valid. 

In contrast, observe what happens when we test an invalid inference, e.g.,  

A ∨ B
A
B  

 

In this case the tree looks like this: 

                                                 
2 We shall often use the locution"to tick a given node" as a synonym for "to tick the statement occupying 
the given node". 
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    √  A ∨ B
   A
¬B

A                 B
                    ×  

The left-hand path is not closed, that is, it is open and represents a genuine 

counterexample to the inference in question.  To describe it, note which statement 

letters, with or without ¬, occupy nodes in the path.  In this case they are A, ¬B, and the 

corresponding counterexample is that in which A is true and B is false: 

A    B    A ∨ B    A    B
t       f         t         t      f  

We next describe the various tree rules. 

 
2. The Tree Rules 
 
Disjunction 

   √  p∨q

    p         q  
Tick a disjunction occupying a node and write the disjuncts at the end of a fork drawn 

at the foot of each open path containing the ticked node. 
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Negated conjunction 

   √  ¬(p∧q)

    ¬p         ¬q
 

Tick a negated conjunction occupying a node and write the negations of the conjuncts at 

the end of a fork drawn at the foot of each open path containing the ticked node. (For: a 

conjunction is false exactly when some conjunct is false.  Notice that, by de Morgan’s 

law, this rule is nothing but the disjunction rule in disguise.) 

 
Conjunction 

√  p∧q

      p
     q

 
Tick a conjunction occupying a node and write the conjuncts in a column at the foot of 

each open path containing the ticked node. (Justification: a conjunction is true exactly 

when both conjuncts are true.) 
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Negated disjunction 

 √  ¬(p∨q)

       ¬p
       ¬q

 
Tick a negated disjunction occupying a node and write the negations of the disjuncts in 

a column at the foot of each open path containing the ticked node.  (Justification: a 

disjunction is false exactly when both disjuncts are false.) 

 
Implication 

  √  p→q

 ¬p         q  
Tick an implication occupying a node and write the negation of the antecedent and the 

consequent at the ends of a fork drawn at the foot of each open path containing the 

ticked node. (For: an implication is true exactly when the negation of the antecedent is 

true, or the consequent is true, or both.) 

Negated implication 

   √  ¬(p→q)

               p
            ¬q

 
Tick a negated implication occupying a node and write the antecedent and the negation 

of the consequent in a column at the foot of  each open path containing the ticked node.  

(For: an implication is false exactly when the antecedent is true and the consequent 

false.) 
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Bi-implication 

 √  p ↔ q

      p       ¬ p
      q       ¬ q   

Tick a bi-implication occupying a node and draw a fork at the foot of each open path 

containing the ticked node. At the ends of each of these write in columns the 

components, and, respectively, the negations of the components, of the ticked node. 

(For: a bi-implication is true exactly when both components are true, or both are false.) 

 
Negated bi-implication 

 √  ¬ (p ↔ q)

        p        ¬ p
     ¬q            q  

Tick a negated bi-implication occupying a node, and draw a fork at the foot of each 

open path containing the ticked node.  At the ends of these write in columns the first 

component and the negation of the second, and, respectively, the negation of the first 

and the second. (For: a bi-implication is false exactly when one component is true and 

the other false.) 

 

Double negation 

  √  ¬¬p

            p  
Erase double negations.  (For: the negation of a statement is false exactly when the 

statement is true.) 
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We summarize these rules as follows: 

 

                       Negation          Conjunction             Disjunction   

Affirmed               ¬p                 √  p ∧ q                   √  p ∨ q
                                   p               
                                   ×                        p                      p             q
                                                             q

Negated         √  ¬¬p               √  ¬(p ∧ q)             √  ¬(p ∨ q)

                                 p                  ¬p         ¬q                   ¬p
                                                                                           ¬q   

                                     Implication          Bi-implication

Affirmed               √  p → q                          √  (p ↔ q)

                               ¬p           q                          p            ¬p
                                                                           q            ¬q

Negated             √  ¬(p → q)                       √  ¬(p ↔ q)
               
                                        p                                  p           ¬p
                                      ¬q                               ¬q             q
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When applying a tree rule of the form       
 

 p

q
 r

 
 

p is called the premise, and {q,r} the list of conclusions, of the application.  Similarly, when 

applying a tree rule of the form  

p

q              q'
 r               r'  

 

p is called the premise, and {q,r}, {q',r'} the lists of conclusions, of the application. 

3. Tree Test for Validity   

To test an inference for validity, write its premises and the negation of its 

conclusion in a column and apply the tree rules to all unticked lines of open paths, 

ticking lines to which rules are applied, until the tree is finished, i.e. until the only 

unticked nodes in any remaining open paths are statement letters and their negations.  

A tree obtained in this way is called a [finished] tree associated with the given inference.  

If any such tree is closed, i.e. if all its paths are closed, the original inference is valid.    

We now give some examples of the use of this test. 
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    (A ∧ B) ∨ C                                    √   (A ∧ B) ∨ C
          ¬A                                                       ¬A
            C                                                         ¬C           

                                                       √  A ∧ B               C

                                                               A                  ×
                                                               B
                                                               ×

 
Tree closed, so inference valid. 
 

A ∨ B                                           √  A ∨ B
C ∨ A                                           √  C ∨ A
             ¬A                                                      ¬A
C ∧ B                                        √  ¬(C ∧ B)

                                               A                        B      
                                               ×
                                                                  C              A
                                                                                   ×
                                                       ¬C           ¬B
                                                         ×               ×  

Tree closed, so inference valid. 
 

  ¬(A ∧ B)                                    √  ¬(A ∧ B)
          A                                                     A
        ¬B                                                  ¬¬B

                                                      ¬A              ¬B
                                                        ×                 ×   

 
 Tree closed, so inference valid. 
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   A ∨ B                                                      √  A ∨ B
    C ∨ D                                                     √  C ∨ D
   ¬(B       ∨             D)                                                  √  ¬(B ∨ D)
   A ∨ C                                                 √  ¬(A ∨ C)

                                                                        ¬A
                                                                        ¬C

                                                                  A             B
                                                                  ×
                                                                         C               D           
                                                                         ×
                                                                                ¬B             ¬D
                                                                                  ×                 ×  

Tree closed, so inference valid. 
 

A → B                                                       √  A → B
   B        →             C                                                           √  B → C
A → C                                                   √  ¬(A → C)

                                                                           A

                                                                         ¬C

                                                                 ¬A            B

                       ×                        
                           ¬B           C  
                                                                            ×           ×  

Tree closed, so inference valid. 
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         A ↔ B                                                   √  A ↔ B
 (A ∨ C) ↔ (B ∨ C)                         √  ¬ [(A ∨ C) ↔ (B ∨ C)]
                                                               √  A ∨ C     ¬ ( A ∨ C)  
                                                          √ ¬ ( B ∨ C)           B ∨ C   

                                                                  ¬  B               ¬  A
                                                                  ¬  C               ¬  C

                                                     
    A         C       B         C

                                                                            ×                   ×
                                                         A    ¬  A          A     ¬  A
                                                         B     ¬  B           B     ¬  B
.                                                         ×         ×           ×         ×  

 
Tree closed, so inference valid. 
 
 
4. Further Applications of the Tree Method 

 

A.  Counterexamples from the associated tree.  Any open path remaining in a 

finished tree associated with an inference determines a counterexample to it (and so establishes 

its invalidity). And conversely, any counterexample is determined by an open path in any such 

tree. 

For example, here is an invalid inference: 

    A ∨ B
    C ∨ D

C  

Consider the following finished tree associated with this inference: 
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√  A∨B
√  C∨D

¬C

         A                    B

  C         D         C         D
 × ×  

Each open path in this tree determines a counterexample to the given inference.  For 

example, the left-hand open path, nodes of which are occupied by A, ¬C, D, but by 

neither B nor ¬B, determine as counterexamples all cases in which A, C, D are t, f, t 

respectively, regardless of the truth value of B. That is, we obtain two counterexamples 

A: t, B: t, C: f, D: t, and A: t, B: f, C: f, D: t.  Similarly, the right-hand open path 

determines as counterexamples all cases in which B, C, D are t, f, t respectively, 

regardless of the truth value of A.  In total we get the three distinct counterexamples  

 ABCD: ttft, tfft, ftft. 

These are all the counterexamples to the given inference. 

In this connection we observe that the open paths in the other finished tree 

associated with the above invalid inference, viz., 

               

  √  A ∨ B
  √  C ∨ D
       ¬C

   C          D
   ×
          A          B  

of course determine exactly the same counterexamples as were obtained before. 

Recall that a set of statements is satisfiable or consistent if there is at least one case 

in which all the members of the set are true. 
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B.  Tree test for satisfiability.  Given a set S of statements, start a tree with the 

members of S in a column. Then S is satisfiable precisely when there is an open path through the 

finished tree. Each open path determines a truth valuation that makes all the members of S true. 

We illustrate this by the following example.  Consider the set of statements 

{A ∨ B, ¬(A ∧ B)}. 

  The relevant finished tree is 

√  A∨B
         √  ¬ (A∧B)

           A                    B

 ¬A         ¬B   ¬A        ¬B
    ×                                    ×

 

There are two open paths in which the statement letters (negated or unnegated) A, ¬B; 

¬A, B respectively, occupy nodes. Thus the valuations making the given set of 

statements true are AB:tf or ft. 

C.  Tree test for logical validity. To determine whether a given statement is logically 

valid, start a tree with its negation. Then the given statement is logically valid precisely when 

the resulting finished tree is closed. 

For example, consider the statement (A ∧ B) ∨ (¬A ∨ ¬B). To test for logical 

validity, we construct the following tree: 
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√  ¬ [(A∧B) ∨ (¬A∨¬B)]

        √  ¬ (A∧B)

     √  ¬ (¬A ∨ ¬B)

               ¬¬A

                ¬¬B

         ¬A             ¬B
            ×                 ×  

Since this (finished) tree is closed, the statement in question is logically valid. 

 

     D.  Tree test for contradictions.  To test whether a given statement is a 

contradiction, start a tree with the (unnegated) statement.  Then the statement is a 

contradiction precisely when the resulting finished tree is closed. 

 

For example, to test whether the statement A ∧ (A → B) ∧ (A→¬B) is a 

contradiction, construct the following tree: 
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√  A ∧ [(A→B) ∧ (A→¬B)]

                      A

      √  (A→B) ∧ (A→¬B)

               √  A→B

              √  A→¬B

          ¬A                  B
             ×
                      ¬A             ¬B
                        ×                ×  

Since this (finished) tree is closed, the given statement is a contradiction. 

 

5. Correctness and Adequacy of the Tree Method 

We conclude this chapter with some arguments designed to justify the claims we 

have made concerning the use of trees in establishing validity and satisfiability. 

 First, let us call a tree rule R correct if whenever the premise of R is true under a 

given valuation, then all the statements in at least one of R's lists of conclusions are also 

true under the valuation. And let us call R complete if the converse holds, that is, the 

premise of R is true under a given valuation whenever all the statements in at least one 

of R's lists of conclusions is true under the valuation. 

Clearly, all the tree rules we have introduced are correct and complete in the above 

senses. 

Next, we observe that the process of constructing a finished tree always 

terminates.  For the tree starts with a finite number of statements, each of which has 

finite length (taking the length of a statement to be the total number of symbols in it), 

and it grows ‘downward’ by a process of choosing an unticked statement occupying a 
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node of an open path, ticking it and adding at the foot of the path some finite number of 

statements, each of which is shorter than the ticked one.  Eventually the point must be 

reached at which all unticked statements occupying nodes of open paths have lengths 1 

or 2 (i.e., are statement letters or their negations) and the process ends. 

Given a set S of statements, let us say that a tree starts with S if it has S as its 

initial set of statements. Now we can establish the 

 

Correctness of the tree method.  If a set S of statements is satisfiable, there will be an 

open (complete) path through any tree that starts with S. 

 

To prove this, observe first that, if all the statements occupying nodes in a path P 

of a tree are true under a given valuation, then P is open.  For if there is a valuation 

making all statements occupying nodes in P true, then both a statement and its negation 

cannot both occupy nodes in P, otherwise the (alleged) valuation would have to make 

both a statement and its negation true—impossible.  It follows that P cannot contain 

both a statement and its negation, which is just to say that path P is open. 

Now suppose that under some valuation V all the members of S are true.  

Consider the following property of a tree T. 

 

(*)    T starts with S and contains a (complete) path P such that all statements 

occupying nodes of P are true under V. 

 

By the observation above, any tree satisfying (*) contains an open path. 
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We claim that, if T has property (*), so does any tree T* obtained from T by 

applying a tree rule.  For suppose that (a) all the statements occupying nodes in a 

certain path P through T are true under V and (b) we extend T to T* by applying a tree 

rule to one of its statements.  Clearly we may assume that this statement is in P, for if 

not, then P is unaffected and is a complete path of T*.  Accordingly in the transition 

from T to T* the path P is extended to a new path, or extended and split into two new 

paths, by applying some tree rule.  Since any tree rule is correct, all the statements 

occupying nodes in the new path, or all those occupying nodes in at least one of the 

new paths (each of which extends the path P), are true under V.  But this shows that T* 

has property (*), as claimed. 

It follows that any tree T starting with S has property (*), and hence contains an 

open path.  For any tree T starting with S can be ‘built up’ (or rather, down!) by starting 

first with the tree with a single path consisting of the statements in S—which has 

property (*) by definition—and then applying tree rules, one after another (finitely 

many times), until tree T results.  By the argument of the previous paragraph, at each 

stage of the ‘tree building’ process, property (*) is preserved, therefore the end result—

the tree T—will have that property too (and so must contain an open path, which is 

what we needed to show).  

As an immediate consequence of this, we obtain the 

Inference correctness of the tree method. If a finished tree associated with an 

inference is closed, then the inference is valid. 

Now we prove the converse of the above correctness result, that is, the 

Adequacy of the tree method.  If there is an open path through a finished tree 

starting with a given set S of statements, then S is satisfiable. 

To prove this, let T be a finished tree starting with S and containing an open path 

P.  We are going to show how to define a truth valuation V on the statement letters that 
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figure in tree T such that the sentences in set S all come out true under V.  Consider the 

single statement letters that occur in path P (not negated statement letters, just the non-

negated elementary statements in P).  Let V be the valuation that assigns all those 

statement letters value t, and all the statement letters that do not occur in path P (i.e. that 

occur somewhere else in the tree T) the truth value f.  (If there are any other statement 

letters left out of this assignment, let them take any truth value you want.) We claim 

that all statements occupying nodes of P are true under V, not just the nodes containing 

statement letters. 

To show this first notice that all statements of lengths 1 or 2 occupying nodes of P 

are true under V.  For those of length 1 are statement letters and are accordingly true 

under V by definition. And any one of length 2 is a negation ¬A of a statement letter A; 

since P is open, A cannot occupy a node of P, and so is false under V. Thus ¬A is true 

under V. 

Now suppose that, if possible, some statement occupying a node of P is false 

under V.  Let p be such a statement of shortest length. Then by the above the length of p 

must be at least 3, so a tree rule, R say, may be applied to p.  Since T is finished, some 

list L of conclusions obtained by applying R to p is already part of P.  But each 

statement in L is shorter than p, and so must be true under V.  Since R is complete, it 

follows that the premise p of the specified application of R is also true under V.  

Therefore the falsity of p is refuted, and the claim above follows.  

Given the (now established) truth of the claim that all statements occurring in 

path P are true under V, it follows (in particular) that the initial statements in the set S 

are true under V (since that set clearly lies in all paths of the tree, P included).  It 

follows, then, that the set S is satisfiable, and hence the tree method is adequate in the 

sense spelled out above. 
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As an immediate consequence, we obtain the converse of validity correctness, 

that is, the 

 

Inference adequacy of the tree method.  If an inference is valid, then any finished 

tree associated with it is closed.  

6. Exercises 

Tree Test for Validity 

A1. Use the tree method to determine whether the following arguments are valid.  In 

the invalid cases, find all counterexamples: 

(a) (A∧B)→C          (b) A∨¬(B∧C)    (c)  (B↔¬A)→¬C 

 ¬A→D       (A↔C)∨B  (¬B∧D)∨(A∨E) 

 B→(C∨D)    (D∨E)→C 

     A→B 

(d) If Holmes has bungled or Watson is windy, Moriarty will escape.  Thus Moriarty 

will escape unless Holmes bungles. 

(e) Moriarty will not escape unless Holmes acts.  We shall rely on Watson only if 

Holmes does not act.  So if Holmes does not act, Moriarty will escape unless we rely on 

Watson. 

(f) Moriarty will escape only if Holmes bungles.  Holmes will not bungle if Watson's 

to be believed.  So if Watson's to be believed, Moriarty won't escape. 

A2. Use the tree method to determine which of the following inferences is valid.  In the 

invalid cases, supply all counterexamples. 

(a)     A ∧ (B ∨ C) 

    (A ∧ B) ∨ (A ∧ C) 
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(b) (¬A ∨ B) ∧ (A ∨ ¬B) 

                A ∨ B 

                A ∧ B 

(c) ¬ (A ∧ B) ∨C 

           A ∨ D 

       ¬B ∨ C ∨ D 

(d) ¬(A ∨ B) ∨ C 

             A ∨ C 

A3.  Use the tree method to determine which of the following inferences are valid.  In 

the invalid cases find all  counterexamples. 

(i) (A ∧ B) → C          (ii) A ∨ ¬(B ∧ C)            (iii )      (B ↔ ¬A) → ¬C 

      ¬A → D                     (A ↔ C) ∨ B                       (¬B ∧ D) ∨ (A ∨ E) 

    B → (C ∨ D)                                                                     (D ∨ E) → C 

                                                                                                  A → B 

A4.  Define the new logical operations [A, B, C] and A*B by  

 [A, B, C] = (A → B) → ¬C 

A*B = A → ¬B 

Devise the simplest tree rules you can for these operations and their negations.  Use the 

rules you have devised to determine which of the following inferences are valid: 

 (i) [A, B, C]                   (ii)  [A, B, C] 

       A*B                                 A*B 

                                                C*B 

A5.  Use the tree method to determine which of the following inferences are valid.  In 

the invalid cases find all counterexamples. 
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(i)  (A ∧ B) →C       (ii)     (A ∧ B) → C             (iii)   A ∨ ¬(B ∧ C) 

        ¬A →D         (A→C) ∨ (B→C)                (A ↔ C) ∨ B 

        B →(C∨D) 

A6.  Define the logical operations {A, B, C}, A*B, and A•B by 

{A, B, C} = (B →A) ∧ (¬B →C) 

A*B = A → ¬B 

A•B = ¬(¬A → B) 

Devise the simplest tree rules you can for these operations.  Use these rules to test the 

validity of the following inferences: 

(i)  A•B      (ii) A*B      (iii)       {A, B, C}         (iv)    {A, A•B, C} 

      A*B            A•B                      A•C                              A*C 

        B 

A7. Determine which of the following arguments are valid.  In the invalid cases, supply 

all counterexamples. 

(a) A→B             (b) (¬q∨r)↔¬p    (c)  ¬p↔(¬q∨r) 

 ¬B       q∨¬q  ¬q∧q 

 ¬A→C  ¬r↔p  p↔¬r 

 ¬C→B  ¬p∧(¬q→r)  (¬q→r)∧¬p 

A8. Determine which of the following arguments are valid.  In the invalid cases, supply 

all counterexamples. 

(a) A→B             (b) (¬q∨r)↔¬p    (c)  It's a duck if it walks  

 B→C       q∨¬q               and quacks like one. 

 C→D  ¬r↔p  Either it's a duck if it walks like one 

 A→D  p→p  or it's a duck if it quacks like one. 
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A9. Translate the following arguments into logical notation (indicating what elementary 

sentences your symbols refer to) and then determine whether each argument is valid.  If 

not, indicate the total number of counterexamples. 

(a) If Dumb knows that he’s dumb, then he’s dumb.  If he knows that he’s dumb, then 

he at least knows something.  If Dumb knows something, then he’s not dumb after all!  

Therefore, Dumb’s not dumb.     

(b) Canada’s economy will fail if Quebec does separate.  If Canada’s economy won’t 

fail, then the market will get the jitters if Quebec does separate.  The market will get the 

jitters even if Quebec doesn’t separate.  So, the market will get the jitters and Canada’s 

economy will fail. 

A10. Use the tree method to determine whether the following argument is valid; if not, 

supply one counterexample. 

  Either scientists don’t know what they are talking about, or the sun will eventually 

burn out and Earth will become dark and cold.  If scientists don’t know what they are 

talking about, then Mars is teeming with life.  If Earth becomes dark and cold, then 

either the human race will migrate to other planets or will die out.  Mars is not teeming 

with life, but the human race will not die out.  Therefore, the human race will migrate to 

other planets only if Mars is teeming with life. 

A11. Use the tree method to determine whether the following argument is valid.  If not, 

supply the exact number of counterexamples.     

It will not be the case that both the Representatives and the Senators will pass the 

bill.  If either the Representatives or the Senators pass it, the voters will be pleased; but 

if both pass it, the President won’t be pleased.  The President won’t be pleased if and 

only if Dole rejoices.  Therefore, Dole won’t rejoice.     

Further Applications of the Tree Method 
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B1.  Use the tree method to determine which of the following sets of statements are 

satisfiable.  In the latter cases, supply all the satisfying valuations. 

(a) A,B, ¬(A ∧ B) 

(b) A,¬B, ¬A ∨ B 

(c) A, ¬B, A ∨ B. 

B2.   Use the tree method to determine which of the following statements are 

tautologies. 

(a) ¬(A ∧ B) ∨ A 

(b) ¬A ∨ (A ∧ B) 

(c) ¬(A ∧ B) ∨ A ∨ B 

B3.  Use the tree method to determine which of the following statements are 

contradictions.  

(i) ¬[ [ (A → B) → A] → A]                  (ii) [ (A → B) → B] ∧ ¬A ∧ ¬ B 

B4.  In the land of knights and knaves, knights always state the truth and knaves 

falsehoods.  Punch and Judy are two inhabitants of this land.  From their assertions in 

each case use the tree method to deduce as much as you can about their statuses. 

(i) Punch:  Judy’s a knight 

     Judy:     We’re not both knaves. 

(ii) Punch:  If Judy’s a knave, we both are. 

      Judy:    Either he’s a knight, or I’m a knave. 

B5.  Use the tree method to determine which of the following pairs of statements are 

equivalent. 
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(i)       A → (B →C)                                    (A ∧ B) → C 

(ii)     (A ↔ B) ↔ C                                    A ↔ (B ↔ C) 

(iii) ¬(A ↔ B)                                             A ↔ ¬B 

(iv) ¬(A → (B → ¬C))                           ¬ A ∧ (B ↔ C) 

(v)    ¬A ∨ (B →C)                                     A ∧ ¬B ∧ ¬C 

B6. Classify each of the following statements as tautologous, contradictory or 

contingent. 

(a) ((A→B)→B)→A 

(b)  ¬(p ∧ q)∨ p 

(c) B↔(C∨¬C) 

(d) (p↔(p→q))→q 

B7. Knaves always lie, knights always tell the truth, and in Camelot, where everybody 

is one or the other, you encounter two people, one of whom says to you:  

(i) "He's a knight and I'm a knave."  What are they? 

(ii) What if that person had said: "If he's a knave, then so am I"? 

(iii) How about if that person had said: "I'm a knight, and, then again, I'm not; though 

he's a knave if I am" ? 

B8. Classify each of the following statements as tautologous, contradictory or 

contingent. 

(a) ((A→B)→B)→B 

(b)  ¬(p ∨ q) ∧ q   
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(c) (B∧¬B)↔(C∨¬C) 

(d) ¬[(p→q)↔p)]∨q 

B9. Knaves always lie, knights always tell the truth, and in Camelot, where everybody 

is one or the other, you encounter three people, Lancelot, Arthur and Merlin, who say to 

you: 

Lancelot: Merlin's a knave. 

Arthur: Either Lancelot or Merlin is a knave. 

Merlin: If I'm a knave, they are too. 

What are they? 

B10. Circle the tautologies that occur below:  

 (a) ¬¬A → A         (b) A → (B → A)         (c) A ↔ (B ∨ ¬A)      

(d) A ↔ (¬A ∧ A)         (e) (A → B) ∨ (B → A)        

B11. Circle the inconsistent sets of sentences that occur below:  

 (a) B → A , B , ¬A       (b)  A → ¬A , ¬A → A       (c) A ↔ (B ∨ ¬B) , ¬A       

(d) A → B , B → C , A ∧ ¬C       (e) ¬ (A → (B → C)) , C        

B12. In the land of knights and knaves, where knaves always lie, knights always tell the 

truth, and everybody is either one or the other (clearly no one can be both!), you 

encounter two people, Dumb and Dumber, both of whom speak to you.  In each case 

below, determine as much as you can about their individual identities. 

(a) Dumb: ‘If I’m a knave, we both are.’    Dumber: ‘He’s a knight or I’m not.’   

(b) Dumb: ‘Dumber is a knight if and only if 2+2 is 4.’    Dumber: ‘Come on, 2+2 is not 

4!’ 
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B13. These puzzles concern a land populated by saints and sinners.  Saints always tell 

the truth; sinners always lie.  You are a traveler in this strange land and must try to 

identify those you meet as saints or sinners.   

You encounter two people, Mutt and Jeff, one or both of whom speak to you.  

What can you deduce in each case, using the tree method, about whether they are saints 

or sinners?   

1. Mutt:  I’m a saint. 

2. Jeff:  Mutt is a saint. 

3. Mutt:  Jeff's a sinner. 

4. Jeff:  Either I’m a saint, or I’m not. 

5. Mutt:I’m a saint, and, then again, I’m not. 

6. Jeff: If Mutt is a sinner, so am I. 

7. Jeff: Neither of us is a saint. 

8. Mutt: We’re not both saints. 

9. Mutt: I’m a sinner if and only if Jeff's a saint. 

10. Jeff: Mutt is a saint, and I’m a sinner. 

11. Mutt: I’m a sinner unless Jeff's a saint. 

12. Mutt: If either of us is a sinner, I am. 

13. Mutt:  Jeff's a sinner. 

      Jeff: We’re not both sinners. 

14. Mutt: I’m a saint if and only if Jeff's a sinner. 

      Jeff: Mutt is a sinner. 
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15. Mutt: Jeff's a saint. 

      Jeff: At least one of us is a sinner. 

16. Mutt: I’m a saint if and only if Jeff is. 

      Jeff: Mutt is a saint. 

17. Mutt: If I’m a sinner, we both are. 

      Jeff: Either he’s a  saint, or I’m a sinner. 

18. Mutt: Jeff's a saint if and only if his brother is. 

      Jeff: Unfortunately, my brother's a sinner. 

19. Mutt: Jeff and his brother are both saints. 

      Jeff: Well, I’m a saint, but my brother isn’t. 

At this point, you meet three curious looking people in the land of knights and knaves.  

What can you deduce about their status? 

20. Curly: Larry’s a  sinner. 

      Moe: Either Curly or Larry is a sinner. 

      Larry: If I’m a sinner, they are too. 

            21. Curly: We’re all saints. 

      Moe: Well, I’m a saint, but Larry’s a sinner. 

      Larry: No, the other two are both sinners. 

22. Curly: ThatMoe’s a  saint. 

      Moe: No,we’re all  sinners. 

      Larry: Curly, Moe, and their cousins are all  sinners. 
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23. Curly: Well, at least we’re not all of us sinners. 

      Moe: Curly is. 

      Larry: If Curly is, Moe is too. 

24. Curly: If Moe’s a saint, Larry is too. 

      Moe: Well, Larry’s a  sinner if Curly's one. 

      Larry: But Curly and Moe aren’t both sinners. 

25. Curly: If any of us are saints, Larry is. 

      Moe: But Larry’s a  sinner. 

      Larry: And I’m a sinner if and only if Moe's one. 

26. Curly: If Moe’s a sinner, Larry is too. 

      Moe: If Larry’s a sinner, so is Curly. 

      Larry: If Moe’s a saint, we all are. 

B14. Determine which of the following sets of statements are (jointly) satisfiable, in each 

case describing the satisfying valuations: 

a)  ¬A ∨ B                            (b)  ¬(¬B ∨ A)                              (c)  ¬D ∨ B 

        B ∨ ¬C                                       A ∨ ¬C                                      A ∨ ¬B 

     ¬B ∨ ¬(C ∨ D)                          ¬B ∨ ¬C                                  ¬(D ∧ A) 

                                                                                                              D 

B15.  Using the tree method, determine which of the following statements are 

tautologies.  In the non-tautologous cases, supply all the truth valuations that make the 

statement false. 

(i)  ((A →B) →B) →A 
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(ii)    A →(B→ (B→A)) 

B16. Using the tree method, determine which of the following sets of statements are 

satisfiable.  In the satisfiable cases, supply all the satisfying valuations. 

(i)   A →B, B ↔ C, (C ∨ D) ↔ ¬B 

(ii)  ¬(¬B ∨ A), A ∨¬C, B →¬C 

B17. Knaves always lie, knights always tell the truth, and in Camelot, where everybody 

is one or the other, you encounter three people, Lancelot, Arthur and Merlin, who say to 

you:  

Lancelot: Merlin's a knave. 

Arthur: Either Lancelot or Merlin is a knave. 

Merlin: If I'm a knave, they are too. 

Use the tree method to determine as much as you can about each person's identity. 

B18. We return for one last visit to the land of Camelot where everyone is either a 

knight (always speaking the truth) or a knave (always uttering falsehoods).  Sir Lancelot 

is searching for his mistress Queen Guinevere, and happens upon King Arthur and his 

band of merry men.  When Lancelot asks of Guinevere’s whereabouts, Arthur becomes 

jealous and is in no mood to give Lancelot a straight answer.  So he instructs Merlin to 

cast a spell upon his men so that each, in turn, responds to Lancelot as follows: 

Sir Karl the Pauper: Guinevere is in Camelot today. 

Sir Loin of Beef: Sir Karl is a knight, but Sir Rob is most certainly a knave.  

Sir Rob of Cliff Town: Hey, I’m a knave if and only if Sir Loin is! 

Sir Lee Fellow: Yah!  If any of us are knights, Sir Rob is. 
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Does Arthur succeed in hiding Guinevere’s present whereabouts, or do his men 

inadvertently disclose her location to Arthur’s rival in love?  Use the tree method to find 

out. 

B19. A certain island is populated entirely by heroes and scoundrels; the former always 

tell the truth, the latter invariably lie.  

(a)  You encounter four people on the island who say to you: 

Dean:  If I’m a hero, so is Stan. Stan: If I’m a hero, so is Jerry. 

Jerry: If I’m a scoundrel, Ollie isn’t. Ollie: Those others are all liars!  

Determine as much as you can about their individual identities. 

 (b) Believe it or not, I once went to the Island myself in search of buried treasure.  I 

don’t remember the details too clearly, but I do recall encountering Dean and Jerry.  

Dean, I remember, told me:  

“Jerry is a hero and there is buried treasure on the island”,  

but I can’t quite recall what Jerry said.  All I remember is that he said exactly one of the 

following:  

“ Dean is a scoundrel and there's no buried treasure on the island”  

or 

“Dean is a scoundrel and there is buried treasure on the island”. 

Nevertheless, I do remember being able to figure out whether treasure was buried on 

the island and the identity of both speakers.  What were their identities?  Was treasure 

buried on the island?                          

(c)  Suppose you were to go to the Island of Heroes and Scoundrels and wished to find 

out whether or not there is gold on the island.  You meet Dean (not knowing his 
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identity) and you are allowed to ask him only one question, which must be answerable 

by ‘Yes’ or ‘No’.  What question could you ask him that would allow you to figure out if 

there is buried treasure on the island?  (This one’s  tricky — and there may be more than 

one question that could do the job.) 

 
B.20  Finally, here's a  toughie. On a certain island, rumoured to contain buried treasure, 

live three gnomes, identical in appearance, of whom it is known that one invariably tells 

the truth, one always lies, and the third answers "yes" or "no" at random. You arrive on 

the island and, encountering the three gnomes, ask them a total of  two questions, each 

addressed to one gnome at a time, and to which the answer is a simple "yes" or "no".  

What questions would you ask that would allow you to figure out if there is buried 

treasure on the island? (Hint: the answer to the first question must enable you to 

"eliminate" the gnome who answers at random.) 
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IV. PREDICATE LOGIC 
 
1. Predicates, Relations and Quantifiers 

The concept of validity (which we shall call propositional validity) that we have 

employed up to now is restricted in that it does not cover a large class of arguments 

which are clearly logically correct.  Consider, for example, the following argument: 

1. All Cretans love all animals. 

2. All horses are animals. 

3. Epimenides is a Cretan. 

∴  4. Someone loves all horses. 

This argument, while patently not propositionally valid, is still, given the usual reading 

of the terms "all" and "some", logically correct. Its correctness also of course derives 

from our grasp of the grammatical structure of the statements constituting it, which 

involve in an essential way predicates —"(is a) horse", "(is an) animal", "Cretan"—and 

relations —"loves".  

In order to symbolize this argument and others like it we need to enlarge our 

logical vocabulary. Thus, as in algebra, it is natural to introduce variables x,y,z,... to refer 

to arbitrary individuals, and then to write, for example, "Ax" for "x is an animal", "Cx" 

for "x is a Cretan", "Hx" for "x is a horse", "Lxy" for "x loves y", and "e" for "Epimenides".  

The symbols A, C and H are predicate symbols, L is a relation symbol, and e a name. Finally 

we introduce two symbols ∀ and ∃ called the universal and existential quantifier, 
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respectively: the expression "∀x" will symbolize the phrase "for all (or any) x", and "∃x" 

the phrases "for some x", or, equivalently, "there exists x".  

To put our argument in symbolic form, we first write it in the following way: 

1'. For any individual x, if x is a Cretan, then for any individual y, if y is an animal, then x loves 

y. 

2'. For any individual x, if x is a horse, then x is an animal. 

3'. Unchanged. 

∴  4'. For some individual x, for all individuals y, if y is a horse, then x loves y. 

Now 1'- 4' can be symbolized directly in terms of our enlarged logical vocabulary thus: 

 1".  ∀x[Cx → ∀y(Ay → Lxy)] 

 2".  ∀x(Hx → Ax) 

 3".   Ce 

 4".   ∃x∀y(Hy → Lxy). 

The logical system associated with the enlarged vocabulary of variables, 

predicate and relation symbols, names, and quantifiers is called predicate or 

quantificational logic.  Statements formulated within this vocabulary will be called 

predicate or quantificational statements.  

2. Tree Rules for Quantifiers 

In order to be able to employ the tree method to test arguments within predicate 

logic (such as the one above) for validity we need to formulate new tree rules governing 

the quantifiers. In the case of ∀ we shall be guided by the usual meaning of generality, 

namely, that whenever we assert that all individuals under consideration have a certain 

property, then, given any individual, that individual has, or, as we shall sometimes say, 

instantiates the property. We call this the principle of universal instantiation.  The 

corresponding tree rule may be formulated thus: 
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In writing p(v) we have indicated that the statement p contains an occurrence of the 

variable v; this done, we have written p(n) for the result of substituting "n" for "v" at 

each occurrence of the  latter in p.�  

 Let us observe this rule in action. Consider the argument: 

 
      1. Juliet loves all who love Romeo. 

       2. Romeo loves himself. 

 ∴  3. Juliet loves herself. 
 

The argument may be symbolized as follows, using "r" as a name for Romeo, "j" for 

Juliet, and writing "L" for "loves": 

 
 1.  ∀x(Lxr → Ljx) 
 2.  Lrr 
       ∴  3.  Ljj. 

 

                                                 
� Strictly speaking, by "occurrence of v" here we mean free occurrence, that is, an occurrence of v not 
within a context of the form  "∀vq(v)" or "∃vq(v)".  We shall always tacitly assume that this is the kind of 
occurrence in question. 

UI.   Given a statement of the form ∀vp(v) occupying a node of an open path    
of a tree,  

(1) if a name n appears in the path, write p(n) at its foot unless that statement 
already occupies a node of the path (in which case, writing p(n) once more 
in the path would be redundant); 

(2) if no name appears in the path, choose some name n and write p(n) at its foot. 
 Do not tick the line ∀vp(v). 
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As usual, we start off with the premises of the argument followed by the negation of its 

conclusion, and then continue so as to obtain a closed tree in the following way: 

 1.                 ∀x(Lxr→Ljx)

 2.                            Lrr

 3.                         ¬Lj j

 4.                   √  Lrr→Ljr                (UI applied to 1)

 5.              ¬Lrr                Ljr          (from  4)

 6.                  ×          √  Ljr→Lj j   (UI applied to 1 again)

7.                          ¬Ljr                Lj j    (from  6)
 

      ×                    × 

In this example we used the UI rule twice to obtain lines 4 and 6: 

                1. ∀x(Lxr → Ljx)     ∀xp(x)      
                4. Lrr → Ljr              p(r)        
                6. Ljr → Ljj               p(j) 

Both applications were made to the same node, 1, and in both the variable v was "x", 

and p(v)—that is, p(x)—the statement "∀x(Lxr → Ljx)". The two applications differed, 

however, in respect of the name substituted for x: in the first case it was "r" and in the 

second "j". In the first case we obtained p(r) by substituting "r" for "x" in p(x), and in the 

second p(j) by substituting "j" for "x" in p(x). 

 From the fact that we had to apply UI twice to the same statement 1. it should 

now be apparent why we do not tick a statement to which UI has been applied.  Indeed, 

in this example we had to continue to apply it with every name actually appearing in 

the path in question before the path (and the tree) finally closed. 
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Let us now consider an example of an application of UI in which no names are 

initially given.  Here the tree method will be used to test satisfiability rather than 

validity.  Consider the conditions: 

All unicorns are fleet.                                No unicorns are fleet. 

Using the obvious notation, these apparently conflicting hypotheses concerning 

unicorns are expressible as the statements occupying the first two nodes of the 

following tree, which tests their joint satisfiability: 

                 ∀x(Ux→Fx)

                 ∀x(Ux→¬Fx)

                    √  Ua→Fa

                   √  Ua→¬Fa

          ¬Ua                          Fa

  ¬Ua          ¬Fa       ¬Ua        ¬Fa

                                                      ×  
The third node here results by applying UI to the first node, at the same time 

introducing the new name a. Once this name has been introduced into the path, it must 

be used in any subsequent application of UI in that path, in particular, in the 

application yielding the fourth line from the second.  

We note that the tree is finished since no further applications of UI can be made, 

and it has 3 open paths. Each of these open paths may be regarded as representing a 

possible domain or universe of discourse in which all the statements occupying lines in it 

are true. In general, the objects constituting the domain associated with an open path 

correspond to the names appearing in that path.  In our example, there is only one such 

name—"a"—present, so that each domain of discourse has exactly one element, which 

we take to be named by "a". Since the statement ¬Ua occurs in each path, the statement 
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"a is not a unicorn" holds in each domain of discourse. In the second open path the 

statement ¬Fa appears, so the statement "a is not fleet" holds in the associated domain 

of discourse. The third open path contains the statement Fa, so "a is fleet" holds in the 

associated domain of discourse.  On the other hand, the first path contains neither Fa 

nor ¬Fa, so in the corresponding domain of discourse a can be fleet or not indifferently. 

In fact, since the object named by "a" is the sole individual in each domain of discourse, 

we see that in each of these contexts the statement ¬Ua has the stronger meaning that 

nothing is a unicorn.  Thus each domain of discourse represents a "world" in which no 

unicorns exist, so that any assertion about all unicorns, including our two conditions 

above, automatically come out true, and are therefore jointly satisfiable there (contrary 

to what one might naively expect). 

We turn now to the existential quantifier ∃.  First, we note that there is a simple 

connection between ∃ and ∀. To see what it is, imagine that we have a domain of 

discourse consisting of three people, named by a, b, c, say.  Consider the two statements  

  
 Someone (in our domain of discourse) is Canadian           ∃xCx 
 Everyone (in our domain of discourse) is Canadian          ∀xCx 

 

It is clear that in our domain of discourse the statement ∃xCx is equivalent to the 

disjunction 

 Ca ∨ Cb ∨ Cc 

and the statement ∀xCx to the conjunction 

 Ca ∧ Cb ∧ Cc. 

Therefore the negated statement ¬∃xCx is equivalent to 

 ¬(Ca ∨ Cb ∨ Cc), 
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which by de Morgan's law is equivalent to  

 ¬Ca ∧ ¬Cb ∧ ¬Cc. 

But this last statement asserts that each, and so every, individual in our domain of 

discourse satisfies ¬C; in other words, it is equivalent to the statement ∀x¬Cx.  

It is evident that the correctness of this line of reasoning is independent both of 

the nature of the predicate C and of the number of indviduals in the domain of 

discourse. Thus we may draw the general conclusion that, for any statement p(v), 

writing ≡ for equivalence as usual, 

 ¬∃vp(v) ≡ ∀v¬p(v). 

An analogous argument shows that also 

 ¬∀vp(v) ≡ ∃v¬p(v). 

Thus, in our example above, negating the statement "someone is Canadian" is 

equivalent to asserting "everyone is nonCanadian" and negating the statement 

"everyone is Canadian" to asserting "someone is nonCanadian".  

 
 All this justifies the following 
 

 
  

 RULE FOR NEGATED QUANTIFICATION 
 
     If a statement beginning with ¬∀v (or ¬∃v)                       √  ¬∀v p(v)   √   ¬∃v p(v)  
     occupies a node of an open path, tick             |                       | 
     it and write at the feet of all open paths          ∃v¬ p(v)       ∀v¬ p(v) 
     containing that node the same statement 
     with ∃v¬ in place of ¬∀v (or with ∀v¬ in place 
     of ¬∃v) in front. 
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We now require a rule for the existential quantifier. This is the rule of existential 

instantiation: 

 
 

 

It is important to observe in applying this rule that the name n introduced not be already 

present in the path. This is imperative because we want n to name an individual about 

which we assume nothing except that it satisfy p; individuals that have already been named 

may have properties that conflict with this supposition. For example, consider the 

following (true) premises: 

 Someone is Canadian                   ∃xCx 
 Nixon is not Canadian                 ¬Cn. 

Were we allowed to use the old name n instead of being forced to introduce a new one, 

we would be able to generate a closed tree from these premises: 

     √  ∃xCx
¬Cn
Cn
×  

where we have (incorrectly!) applied EI to the first node to obtain the third.  This would 

mean that the premises are not jointly satisfiable, in other words, that from the assertion 

"someone is Canadian", we would be able to infer "Nixon is Canadian". Using the same 

EI Given an unticked statement of the form ∃vp(v) occupying a node of an open    
path, check to see whether it contains a node occupied by a statement of the form    
p(n). If not, choose a name n that has not been used anywhere in the path and write    
the statement p(n) at its foot. When this has been done for every open path in    
which the statement ∃vp(v) occupies a node, tick the node occupied by the given    
statement: 

√  ∃vp(v) 
|  

                                                                        p(n)     (n new) 
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line of reasoning, we would in fact be able to infer "everyone is Canadian".  Incorrectly 

applied, EI can lead to absurdities such as these. 

Correctly applied, on the other hand, EI leads in our example to 

   √  ∃xCx
¬Cx
   Ca  

where a is a new name, denoting, as it were, an "archetypal Canadian", whose identity is 
not further specified. 

Armed with these new rules for quantifiers, let us return to the argument with 

which this chapter began, and see if the associated tree closes.  Here it is: 
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∀x[Cx→∀y (Ay→Lxy)]

        ∀x(Hx→Ax)

                   Ce

       √  ¬∃x∀x (Hy→Lxy)

            √   Ce→∀y (Ay→Ley)

        ¬Ce                         ∀y (Ay→Ley)

           ×                      ∀x¬∀y (Hy→Lxy)

                                   √  ¬∀y (Hy→Ley)

                                     √  ∃y¬ (Hy→Ley)

                                         √  ¬ (Ha→Lea)

                                                    Ha

                                                 ¬Lea

                                              √  Ha→Aa

                                    ¬Ha                        Aa

                                        ×                √  Aa → Lea

                                                  ¬Aa                       Lea

                                                      ×                           ×  
It does close. 

3. Identity  

We frequently need to assert that two names refer to the same, or different, things, 

as, for instance, in the (correct) argument 

 
         1. Yesterday I was home 

       2. Monday I was out. 
∴   3. Yesterday was not Monday. 
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Writing "a" for "yesterday", "b" for "Monday", and "Hx" for "I was home on day x", we 

still lack a way of symbolizing statement 3. We rectify this by introducing the symbol 

"=" called the identity or equality symbol, which we agree is to be written in between 

variables or names, as in x = y, n = x or m = n.  Similarly, we introduce the diversity or 

inequality symbol ≠, so that the statements x ≠ y, n ≠ x, m ≠ n serve as abbreviations for 

¬(x = y), ¬(n = x), ¬(m = n), respectively. 

Now our argument may be symbolized 

Ha 
¬Hb 
a ≠ b 

If we negate the conclusion of this argument so as to investigate its validity in the 

customary arboreal fashion, we start off with 

   Ha 

¬Hb 

  a = b 

Now if a and b are truly identical, then any property possessed by a should be shared 

by b (and vice versa), so from the first and third of these statements it should be 

permissible to infer  

 

Hb 

× 

As a result the tree will close.                       

This idea leads us to introduce the following 
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It is also a characteristic feature of identity that every individual is self-identical.  

We formulate this idea as a tree rule by closing any path which terminates with a 

statement of the form n ≠ n.  Thus we introduce the 

 

 

These rules enable us to establish the four basic laws of identity, viz., substitutivity, 

reflexivity, symmetry, and transitivity.  

 
Substitutivity   

p(a) 
a = b 
p (b) 

 

The validity of this inference is confirmed by the fact that the following tree closes: 

RULE FOR IDENTITY 

If an open path contains a full line of the form m = n and also a full line p in which one 
of the names m, n appears one or more times, write at the foot of the path a statement q 
obtained by replacing one or more of the occurrences of that name in p by the other 
name, provided that q does not already appear in that path as a full line: 
 

m = n 
p 
| 
q 

 

RULE FOR NONIDENTITY (OR DIVERSITY) 

Close any path that contains a line of the form n ≠ n: 

   n  ≠  n 
   × 
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p(a) 
a = b  
¬p(b) 
p(b) 

× 
 
where we have used the rule for identity to obtain the fourth line from the first two. 
 
Reflexivity                                                                

    a = a 
 
The validity of this inference follows immediately from the rule for nonidentity. 
 
Symmetry 

a = b 
b = a 

 
The correctness of this inference follows from the closed tree 

a = b 
b ≠ a 
b ≠ b 

× 

in which the third statement is obtained from the first two by the rule for identity, and 

closure from the rule for nonidentity. 

 
Transitivity 

a = b 
b = c 
a = c 

 

The correctness of this inference results from the fact that the following tree is closed: 
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a = b 
b = c 
a ≠ c 
a ≠ b 

× 
 
where the last statement arises from the second and third by the rule for identity. 
 

4. Validity and Interpretations 

 The reader will observe that we have been calling an argument formulated in 

predicate logic valid, or correct, if the tree beginning with the argument's premises and 

negated conclusion closes.  In consonance with this, we call a predicate statement valid if 

the tree starting with its negation closes. Further, we say that a set of predicate 

statements is satisfiable or consistent if any tree starting with that set of statements 

contains an open path. Now these are, of course, purely formal definitions in which, by 

contrast with the corresponding definitions for propositional logic, the concepts of truth 

and falsity do not figure. Nevertheless, with a little insight it is possible to reformulate 

these definitions for predicate statements in terms of truth and falsity.  We give a brief 

outline. 

The key idea we require is that of an interpretation of the vocabulary of predicate 

logic, a concept which generalizes that of a valuation of statement letters. For this 

purpose we shall allow our logical vocabulary to include, in addition to names and 

predicate symbols, relation symbols linking an arbitrary number of individuals: thus 

relation symbols may be binary, ternary , ... , n-ary. An interpretation I of our logical 

vocabulary now consists of: 

(1) A nonempty set A called the universe of I; 

(2) an assignment, to each name, of a definite element of A (which we shall call the 

interpretation under I of that name); 
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(3) an assignment, to each n-ary relation symbol, of a definite n-ary relation among the 

elements of A (which we shall call the interpretation under I of that relation). 

Once an interpretation of our logical vocabulary has been fixed, it becomes possible to 

assign a definite truth value to each predicate statement based on that vocabulary by 

giving the identity symbol, the logical operators, and the quantifiers, their natural 

meanings. This is best conveyed by an example. 

Suppose our vocabulary contains one binary relation symbol L and one name a. 

Consider the interpretation I whose universe is the set of natural numbers {1,2,3,...}, a is 

interpreted as the number 1, and L is interpreted as the "less than" relation <.  Let us 

determine the truth values of the statements 

 (1)  ∃xLax    (2) ∀xLax    (3) ∀x∃yLxy 

 

under I.  To do this we use I to "translate" these statements into assertions possessing 

truth values as follows.  The "translation" of (1) is: 

 "There is a number x such that 1 < x" 

which is obviously true.  The interpretation of (2) is 

 "For all numbers x, 1 < x", 

which is clearly false since it is not the case that 1 < 1. Finally, the interpretation of (3) is 

 "For any number x, there is some number y such that x < y", 

which is obviously true. 

This example indicates the method by which any interpretation can be made to 

yield a definite truth value—truth or falsity—to each predicate statement p: we call this 

the truth value of p under I.   



 
 

81

Now we can define an argument A to be valid if, for any interpretation I, 

whenever all the premises of A are true under I, so is its conclusion. A statement p is 

valid if it is true under any interpretation. And a set of statements S is satisfiable if there 

is an interpretation under which all the statements in S are true. 

It can be shown that the two definitions of validity, that based on trees and that 

based on interpretations, are equivalent.  This is also the case for satisfiability. 

5. Many-Sorted Logic  

In English (and other languages) there are different quantifiers for different types 

of domain, for example, various universal quantifiers. 

 
Domain            Places              Times         People                              Things 

Quantifier    Everywhere      Always      Everyone                       Everything 
 

It is convenient to introduce similar devices into our formal logical notation. The 

method is best illustrated by an example.  

Consider the following vocabulary: 

  Px: x is a person 
  Qx: x is a politician 
  Tx: x is a time 
  Fxyz: x can fool y at (time) z 

Then the statement 

     There is someone who can fool only himself and all politicians all of the time. 

may be symbolized in our customary notation as 

∃x[Px ∧ ∀y[Py → [∀z(Tz → Fxyz) → (x = y∨ Qy)]]]. 
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This rather involved expression may be simplified by introducing different sorts of 

letter to indicate individuals satisfying P ("persons") or T ("times"). Thus, if we agree to 

use letters x,y for persons, and letters t,u for times, the statement above assumes the 

simpler "many sorted" form: 

∃x∀y[∀t[Fxyt → (x = y ∨ Qy)]]. 

The advantage here is that we no longer need to employ explicit predicates to 

restrict the "range" of the variables. Notice that in order to transcribe this many-sorted 

statement back into its original "one-sorted" form we need to replace "∃x" by "∃x(Px ∧ 

...)", "∀y" by "∀y(Py →...)" and "∀t" by "∀z(Tz → ...)". 

6. Functions 

Relationships such as motherhood or fatherhood have the property that each 

individual determines a specific, indeed unique, individual (one's mother or father, 

respectively) with respect to which it stands in that relationship. The introduction of 

devices called function symbols into our vocabulary will enable us to give symbolic 

expression to this fact. 

 Thus consider, for example, the relation M of motherhood on the domain 

of discourse consisting of all persons. We introduce the function symbol m to stand for 

"mother of", so that mx is to be read "mother of (person) x". Then there are two 

equivalent ways of expressing the statement "y is the mother of x", viz., 

 Mxy  and  y = mx. 

Thus, for example, if "a" names Liza Minnelli, then "ma" names Judy Garland. 

Names and variables are noun-like terms, and function symbols may be applied 

to terms of this sort to yield new terms. Thus we may write, for example,  

 mmx = mother of mother of x = maternal grandmother of x. 
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Similarly, if in addition we introduce the function symbol f for "father of", then 

 mfx = mother of father of x = paternal grandmother of x 

etc.  

In general, we may introduce a function symbol in connection with a relation R 

precisely when R has the two following properties: 

 
 Existence:   for any x, there exists y such that Rxy 
 Uniqueness:  for any x,y,z, if Rxy and Rxz, then y = z. 

 

When these conditions are satisfied, then for any x there is a unique y such that Rxy, and 

so we can introduce a function symbol f with the meaning that, for any x, fx denotes this 

uniquely determined y.  Thus, for any x and y, the following conditions are equivalent: 

y = fx  and   Rxy. 
 

Function symbols may also be employed in trees, where such terms as fa, fma, 

etc. are counted as names. However, in doing this we must at the same time insist that 

when the EI rule requires us to introduce a new name, it must be a simple one, i.e. a 

new letter not already used. To illustrate, we establish the validity of the inference 

∀x (fa = x) 
∀x (fx = a) 

 

(An example of this form of argument in English is: “Everybody’s Adam’s father”, 

therefore “Adam’s everybody’s father”.)  The tree for this inference is 

 
∀x (fa = x) 

            √  ¬∀x (fx = a)  
          √  ∃x (fx ≠ a)  

 fb ≠ a 
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fa = fb 
fa = a 
fb = a 

× 
 
The tree is closed and the inference valid. Notice that in the fourth line EI was applied 
to the third line, introducing a new letter "b".  Also notice that both the names fb and a 
have been substituted in for the variable x in the first line. 
 
7. Exercises 
 
Trees and Translations Involving Quantifiers 
 

A1. Using the tree method, determine which of the follwing inferences are valid. 

   (i)   ∀x(Px → Qx)           (ii)  ∀xPx → ∀xQx           (iii)  ∃x(Px ∧ Qx)   

        ∀xPx → ∀xQx                ∀x(Px → Qx)                    ∃xPx ∧ ∃xQx 

    (iv)  ∃xPx ∧ ∃xQx          (v)  ∀x(Px ∨ Qx)               (vi)  ∀xPx ∨ ∀xQx 

             ∃x (Px ∧ Qx)                ∀xPx ∨ ∀xQx                       ∀x(Px ∨ Qx) 

A2.  Symbolize the following arguments, and determine whether they are valid (always 

try to choose natural predicate letters and name letters!): 

(a) All logicians are neurotic.  No vegetarians are neurotic.  Therefore, no vegetarians 

are logicians. 

 (b) Every Greek who loathes a Trojan is feared by all.  Achilles loathes a Trojan, so, if 

Achilles is Greek, everybody fears him. 

(c) Alma has a brother who has no brother, so she's no one's brother. 

 (d) I'll be home before four o'clock.  Therefore there's a time before four o'clock that I'll 

be home before. 

A3. Use the tree method to determine whether the following argument is valid: 
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∀xFx→∀xGx     

∃x∀y(Fx→Gy) 

A4. Using the following translation key: 

       Ex = x is an epic        Sxy = x is shorter than y    Wxy = x wrote y 

       b = Beowulf         c = the Odyssey         d = Homer 

symbolize each of the following assertions: 

(i) The Odyssey is an epic. 

(ii) Homer didn’t write Beowulf. 

(iii) The Odyssey and Beowulf are not the same length. 

(iv) Homer wrote an epic which is longer than Beowulf. 

(v) Of all the epics that there are, Homer wrote the longest.  

A5.  Symbolize the following arguments (using the given symbols), and determine 

whether they are valid using any reliable method: 

(a) If anyone can learn physics, you can.  Anyone who can learn logic can learn physics.  

Dr. Rob can learn logic.  So you can learn physics!  [Use — Px: x can learn physics; u: 

you; Lx: x can learn logic; d: Dr. Rob] 

 (b) No acrobats are clumsy.  Therefore, if Alma is a waiter, then if all waiters are 

clumsy, Alma is no acrobat.  [Use — Ax: x is an acrobat; Cx: x is clumsy; Wx: x is a 

waiter; a: Alma] 

(c) All dogs are cats.  Therefore, whoever loves a dog loves a cat.  [Use — Dx: x is a dog; 

Cx: x is a cat; Lxy: x loves y] 

A6. Symbolize the sentences in the following arguments and, using the tree method, 

determine which ones are valid. 
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(i)  Everything has a cause.  If the world has a cause, then there is a God.  Hence, there is 

a God. 

(ii)  If everyone litters, the world will be dirty.  Hence, if you litter, the world will be 

dirty. 

(iii)  All love all lovers.  Romeo loves Juliet.  Therefore, I love you. 

(iv)  Any barber in Seville shaves exactly those men in Seville who do not shave 

themselves.  Hence, there is no barber in Seville. 

A7. Symbolize the following (sets of) sentences and, using the tree method, determine 

in each case whether they are jointly satisfiable. 

(i)  Any reasonable person can understand logic and is fit to vote.  But Joe doesn’t 

understand logic and yet is fit to vote. 

(ii)  There is a barber who shaves exactly those who do not shave themselves. 

(iii) Everybody loves all lovers.  You love yourself, but you don’t love me. 

(iv) There are at least three objects in this box, and exactly one out of every two is black. 

A8.  Translate into logical notation: 

(a) Some know all. 

(b) Some know all who know them. 

(c) Some know all who know themselves. 

(d) All who know some know some who know all. 

(e) No one who knows someone Alma knows, knows all who know Alma. 

(f) All who know everyone Alma knows know some who know Alma. 

A9. Using the tree method, determine which of the following arguments is valid: 
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 (a)  There is someone who is going to pay for all the breakages.  Therefore, each of the 

breakages is going to be paid for by someone. 

 (b)  No student in the statistics class is smarter than every student in the logic class.  

Hence, some student in the logic class is smarter than every student in the statistics 

class. 

(c)  Any person who is not mad can understand logic.  None of Wagner’s sons can 

understand logic.  No mad persons are fit to vote.  Therefore, none of Wagner’s sons is 

fit to vote. 

A10. Translate the following into logical notation (use:- Lxy = x likes y, m = me or I): 

(a) I like myself. 

(b) Someone likes me. 

(c) No one likes me.  

(d) Everyone likes someone. 

(e) I like myself and no one else. 

(f) Someone likes everyone who likes me. 

(g) I dislike anyone who dislikes me. 

(h) Someone likes everyone I dislike.  

 (i) Someone who likes me likes everyone. 

(j) Everyone who likes someone I like likes no one I dislike. 

A11.  Translate the following into logical notation  

[Assume the domain is persons, and use: Txy = x is taller than y, r = Rob): 

(a) Rob is taller than everyone. 
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(b) Everyone is taller than someone. 

(c) Noone’s taller than everyone.  

 (d) Everyone’s taller than everyone else. 

 (e) Rob is taller than no more than one person. 

 (f) No two people are taller than eachother. 

 (g) If anyone’s taller than Rob, Rob is. 

(h) Someone is taller than everyone Rob isn’t taller than.  

(i) Someone taller than Rob is taller than everyone taller than Rob. 

(j) Everyone taller than someone is taller than someone taller than everyone. 

A12. Demonstrate the validity or invalidity of each of the following two arguments by 

first translating them using the given symbols, and then doing their trees. 

For translation, use:  

Cx = x is a chimpanzee    Bx = x will get a banana   f = fred 

Sxy = x can solve y       Txy = x is trying harder than y   b = barney 

Px = x is a problem      

(i) Not all chimpanzees are trying equally hard.  No chimpanzee tries harder than 

himself.  Therefore there are at least two chimpanzees. 

 (ii) Fred and Barney can solve exactly the same problems.  If Fred can solve even one 

problem, then he will get a banana.  Fred will not get a banana.  Therefore Barney can't 

solve any of the problems, and he won't get a banana either. 

A13.  Using the tree method, determine which of the following pairs of statements are 

equivalent: 
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(i)  ∀x Px → ∀xQx          ∀x∃x (Px →Qy) 

(ii) ∃xPx→∃xQx               ∃y∀x (Px →Qy) 

A14.  Define ∃!x by writing ∃!xPx for ∃x[Px ∧ ∀y(Py →y=x)].  State, in simple language, 

the meaning of ∃!xPx. 

Determine which of the following inferences are valid: 

(i)  _________ 
       ∀x∃!y (x = y) 

(ii)       ∃!x Px        

    ∃x∀y(Py↔y=x) 

(iii)  ∃!x(Ax ∧ Bx) 

      ∃!xAx ∧ ∃!xBx 

(iv)   ∀x∀y (x = y) 

            ∃!x (x = x) 

A15.  Demonstrate the validity or invalidity of each of the three arguments below by 

first translating them using the given symbols, and then doing their trees.   

(a) Tweety bird despises cats.  No cats despise Tweety bird.  Sylvester is a cat.  

Therefore, Tweety bird despises someone who despises him.  (use:- Dxy: x despises y; t: 

Tweety bird; Cx: x is a cat; s: Sylvester) 

(b) Any good logic teaching assistant helps all and only those who don’t help 

themselves.  Hence there aren’t any good logic teaching assistants!  (use:- Gx = x is a 

good logic teaching assistant; Hxy = x helps y) 

(c) I'll finish this exam before four o’clock.  For any pair of times, one later than the 

other, there is a time in between them.  So there's a time before four o’clock that I'll 

finish this exam before.  (use:- Ex = I'll finish this exam at time x; x<y = time x is 

earlier than time y; f = four o’clock)  
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A16.  Translate the following into logical notation (use:- Lxy: x loves y): 

(a) Some love anyone. 

(b) No one loves all who love them. 

(c) Some love all who love themselves. 

(d) All lovers love some who love all. 

(e) Nobody who loves somebody loves somebody who loves nobody. 

(f) All who love all love all lovers.  

A17. Demonstrate the validity or invalidity of each of the three arguments below by 

first translating them using the given symbols, and then doing their trees.   

(a) Ben loves cats.  No cats love Ben.  Whitey is a cat.  Therefore, Ben loves someone 

who doesn’t love him.  (use:- Lxy: x loves y; b: Ben; Cx: x is a cat; w: Whitey) 

 (b) There’s a set containing all and only those sets which are not members of 

themselves.  Therefore, every set is a member of itself.  (use:- Sx = x is a set, x ∈ y = x is 

a member of y) 

 (c) Everyone loves lovers.  Romeo loves Juliet.  So Fred loves Wilma.  (assume domain 

= persons and use:- Lxy = x loves y x; r = Romeo; j = Juliet; f = Fred; w = Wilma)  

 
Interpretations and Counterexamples 
 

B1. Translate the following arguments into logical symbols and determine whether they 

are valid.  If not, specify one counterexample. 

(i) There’s something that’s tasty if it’s a chocolate bar.  So there’s a tasty chocolate bar.  

(ii) Some like it hot and some don’t.  Those who like it hot like Marilyn Monroe, and 

those who don’t don’t like her!  Therefore, everybody either likes her or doesn’t.  
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 (iii)  If anyone is taller than Rob, Gurpreet is.  If Gurpreet is taller than Rob, anyone is.  

So it isn’t the case that there’s someone taller than Rob and someone not. 

B2. Consider the domain consisting of points and straight lines in a given plane, with 

the following vocabulary for describing it: 

Px = x is a Point         Lx = x is a straight Line       Oxy = (point) x lies On (line) y 

Determine the truth value of each of the following statements, providing a brief 

justification of your answer in each case. 

(a) ∀x∀y[(Lx∧Ly)→∃z(Pz∧Ozx∧Ozy)] 

(b) ∀x∀y[(Px∧Py∧x≠y)→∃z∀w[(Lw∧Oxw∧Oyw)→z=w]]  

B3.  Knaves always lie, knights always tell the truth, and in Camelot, where everybody 

is one or the other, you encounter some people, among them King Arthur who says to 

you:  

"Exactly one out of every two of us is a knave" 

Choose names for any other people you might need to refer to and specify an 

interpretation (i.e. ‘case’) in which Arthur is a knight (if indeed it’s possible for him to 

be a knight, given what he says).  Also, specify an interpretation in which Arthur is a 

knave (again, only if that’s possible). 

B4. Consider the following scenario involving three objects, two predicates F and G, and 

a relation R: 

         Domain = {1,2,3}           F = {2,3}          G = {1}          R = {(1,1),(2,2),(1,3),(2,3),(3,3)} 

Which of the following is true, and which is false, under this scenario? 

(i) ∀x(Fx→Gx)                                                                      (iv) ∀x∃y¬Ryx 

(ii) ∃x(Fx→Gx)                                                                       (v) ∃y∀x(Rxy→Gx) 
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(iii) ∃x(Fx∨Gx) 

B5.  Consider the domain consisting of the positive whole numbers {1,2,3,...} with the 

following vocabulary for describing it: 

                 Ex: x is even                               Ox: x is odd                        x<y: x is less than y 

                 x>y: x is greater than y               x≠y: x is unequal to y   

Determine the truth value of each of the following statements, providing a brief 

justification of your answer in each case. 

(a) ∀x[Ox→∃z(Ez∧(x>z))] 

(b) ∃x∀y((x≠y)→(x<y)) 

B6. Using the tree method, or otherwise, determine whether the following sets of 

statements are satisfiable.  For each of the satisfiable sets, supply an interpretation in 

which all the statements are true. 

(a)  ∃x∀yPxy                        (b)  ∀x∃yPyx                            (c)  ∀x∀y∀z ((Pxy ∧ Pyz)→Pxz) 

      ∀x∀y∃z(Pxz ∧ Pxy)             ∀x∀y(Pxy → ¬ Pyx)               ∀x ¬Pxx 

                                                    ∀x∀y∀z((Pxy ∧Pyz) →Pxz)      ∃x∃y(Pxy ∧ Pyx) 

B7. Symbolize the following arguments, and determine whether they are valid using 

any reliable method.  If not, give a counterexample. 

(a) A person is famous if and only everyone has heard of him or her.  So, all famous 

people have heard of each other.   

(b) Tweety bird hates cats.  No cats hate Tweety bird.  Sylvester is a cat.  Therefore, 

Tweety Bird hates someone who hates him.  [use:- Hxy: x hates y; t: Tweety bird; Cx: x 

is a cat; s: Sylvester)   

 (c) Logic students are taller than business students.  Exactly one out of every pair of 

students is a logic student.  So some student is taller than some other. 
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B8.  Symbolize the following arguments, and determine whether they are valid using 

any reliable method.  If not, give a counterexample. 

(a) Exactly one professor lives in Talbot College.  Professor Bell lives in Talbot College.  

Professor Bell is a toposopher.  Therefore, every professor who lives in Talbot College is 

a toposopher.  [For translation, assume domain is professors and use: Cx = x lives in 

Talbot College, b = Bell, Tx = x is a toposopher.]   

(b) Exactly one out of every pair of balls is red.  Exactly one ball is red.  So exactly one 

ball isn’t red. [Assume domain is balls.]   

(c) Stallone can outgun everybody who can outgun anyone he can.  Therefore, Stallone 

can outgun himself and noone else!  [For translation, assume domain is persons.]  

B9. Here is a small world: 

 

 

and symbols for describing it (with any variables restricted to ranging over the above 

nine inhabitants): 

Domain = The shapes with names a, b, c, d, e, f, g, h, i 

Sx =  x is a square     Lxy = x is directly left of y    Cxy = x is in the same column as y 
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Tx = x is a triangle   Axy = x is directly above y    Rxy = x is in the same row as y 

Bx = x is black    

Interpreting each of the formulae below as a statement about this world, state whether 

it is true or false of the world, and, if it is false, briefly state why (referring to any of the 

shapes above by name, if you need to): 

(i) ∀xTx      

(ii) ¬∃xLxx      

(iii) ¬∃x¬(Tx∨Sx)      

(iv) ∀x(Tx→Bx)      

(v) ∀y∃xLxy    

(vi) ¬∃x∃y(Tx∧Ty∧Cxy)  

(vii) ∃x[Tx∧∀y((Rxy∧x≠y)→¬Ty)]   

(viii) ∀x((Sx∧∃yAxy)→¬Bx)  

(ix) ∀x∀y((Sx∧Sy∧x≠y)→(Cxy→(¬Bx∧¬By)))            

(x) ∀y∃x(Bx∧Sx∧x≠y) 

B10.  Using the indicated key: symbolize (1) through (4); translate (5) through (8) into 

clear English (not just logical jargon); and say whether each of these statements (1)-(8) is 

true or false, briefly justifying your answer. 

Key —            

Domain: statements     Ixy = x logically implies y    Exy = x is logically equivalent to y 

(1) Every statement implies some statement or other. 
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(2) Some statements are equivalent to anything that implies them. 

(3) Statements with the same implications are equivalent. 

(4) Some statements imply all and only what implies them. 

(5) ∀x∃y¬Ixy 

(6) ∀x∀y(Ixy∨Exy)  

(7) ∃x∀y(Ixy→Exy) 

(8) ∃x∀y(Ixy→∃z¬Iyz) 

B11. Here is a small world: 

← Left                       Right→ 

 

                 a                    b                    c                        d                  e 

and a vocabulary describing it (variables restricted to the five inhabitants): 

Fx :  x wears a feather   Lxy:  x is left of y 

Gx :  x wears glasses   Rxy:  x is right of y 

Hx:   x wears a hat               Txy:  x is taller than y 

Ixy:   x is identical to y 
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Which of the following quantified formulae are true and which are false of this small 

world?  If a formula is false, describe a minimal change of the world that would make it 

true (e.g. take somebody’s feather away, move people around, etc.. but don’t move 

anybody into or out of the world). 

1.  ∀x(Fx → ∃yRxy)   4.  ∀x(Gx →∃y(Gy ∧ Rxy) 

2.  ∃x∀y (¬Ixy→Lxy)  5.  ∀y(∃x (Fx ∧ Lyx) → Hy) 

3. ∀x∀y [¬Ixy → (¬Txy ∧ ¬Tyx)] 

B12.  Here is another small world: 

Domain = {Mum, Pop, Junior} 

F = {Pop, Junior} 

G = {Mum} 

R = {(Pop, Pop), (Mum, Mum), (Mum, Junior), (Pop, Junior)} 

Which of the following is true, and which false, when interpreted as assertions about 

this world: 

(a)  ∀x(Fx ↔ Gx) 

(b)  ∃x(Gx → Fx) 

(c)  ∃x∃y (Fx ∧ Gy) 

(d) ∀x[∃y Ryx → Fx] 

(e) ∃x[∀yGy ∨ Fx] 

(f) ∃x∀y ¬Rxy 

(g) ∀x(∃yRxy → ∃z¬Rxz) 

(h)∀x∀y(Fx ∨ Gy) 
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(i) ∃x(Fx ∧ ¬Gx ∧ ∃yRxy) 

(j) ¬∀x∀yRxy ∨ ∃x∃yRxy 

(k) ∃y∀x(Fx ∧ Gy) 

B13.  Using any method you like, provide, for each of the following statements, an 

interpretation (i.e. case, scenario) which makes it true, and one which makes it false., 

including the domain.   

(a) ∃x∀y∀z¬Rzyx  

(b) ∀x∃yRxy→∃y∀xRxy  

(c) ∀y∃z(Pz∧z≠y∧Qy) 

B14. Here is a small world (a quack optometrist’s eye chart!): 

D     e     f     e     D     f     D     E     d     F     e 

and symbols for describing it (with any variables restricted to ranging over the above 

eleven inhabitants): 

Dx:  x is the letter d (or D)    Cx: x is capitalized              Rxy: x is right of y 

Ex:  x is the letter e (or E)    Bx: x is bold-faced               Lxy: x is directly left of y 

Fx:  x is the letter f (or F)              Ux: x is underlined 

             Ix: x is italicized 

Interpreting each of the formulae below as a statement about this world, state whether 

it is true or false of the world: 

(i) ∀xUx 

(ii) ¬∃x(Bx∧Ix) 
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(iii) ∀x(Fx→Bx) 

(iv) ∀x[Bx→∃y(Ryx∧Uy)] 

(v) ∃x∃y[Lxy→(Ux∨Uy)] 

(vi) ∀x(¬Cx↔∃yLyx) 

(vii) ∃x(Ex∧Cx∧Bx∧∀y[(Ey∧Cy∧By)→y=x]) 

(viii) ∃x(Dx∧∀y[(Dy∧Ryx)→¬Cy]) 

B15.  Here is ANOTHER quack optometrist’s eye chart: 

f     h     E     d     F     E    D     e      f     e     d      

and symbols for describing it: 

Dx:  x is the letter d (or D)       Cx: x is capitalized         Rxy: x is somewhere right of y 

Ex:  x is the letter e (or E)        Bx: x is bold-faced           Lxy: x is directly left of y 

Fx:  x is the letter f (or F)      Ux: x is underlined 

      Ix: x is italicized 

Interpreting each of the formulae below as a statement about this world, state whether 

it is true or false of the world: 

(i) ∀xCx 

(ii) ¬∃x(Ux∧Ix) 

(iii) ∀x(Fx→Bx) 

(iv) ∃x∀y(Lyx→(Fy∧By)) 

(v) ∀x[Bx→∃y(Ryx∧Uy)] 
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(vi) ∃x∃y[Lxy→(Ux∨Uy)]  

(vii) ∀x(¬Cx↔∃yLyx) 

(viii) ∃x(Ex∧Cx∧Bx∧∀y[(Ey∧Cy∧By)→y=x]) 

 (ix) ∃x(Dx∧∀y[(Dy∧Ryx)→¬Cy]) 

(x) ∃x(∃yLxy∧∀zRxz) 

Functions 

C1.  Symbolize each of the following, using “f” as a function symbol for “the father of” 

and “m” as a function symbol for “the mother of”: 

(i) a is b’s paternal grandmother 

(ii) a is a father 

(iii) a is b’s full sibling 

(iv) a is b’s grandmother 

(v) a is a grandfather 

(vi) a is b’s first cousin. 

C2.  Let f and m be symbols for the functions "the father of" and "the mother of", and 

read xPy as "x is the parent of y" and Mx as "x is male".  For each of the statements 

below, explain the precise relationship asserted between a and b as concisely as you can 

in English. 

(a) a≠b ∧ fa=fb ∧ ma=mb           (b) aPfb              (c) a≠b ∧ faPb ∧ maPb ∧ Ma 

 (d) (fa=fb ↔ ma≠mb) ∧ ¬Mb      (e) Mb ∧ ∃x(xPa ∧ fb=fx ∧ mb=mx ∧ b=fa) 

(f) ¬Ma ∧ ∃x(xPa ∧ fbPx ∧ mbPx ∧ ¬bPa). 
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 V. THE PROPOSITIONAL CALCULUS 

In this chapter we describe a formal system—the propositional calculus—for 

proving propositional statements and as a result obtain a purely syntactical 

characterization of valid propositional inferences and tautologies.  To set up the system 

we choose certain tautologies as axioms and lay down a certain rule of inference which 

will enable us to construct deductions. 

In what follows we shall omit the logical operator  ↔  in forming statements, and the 

rules governing  ↔ in constructing trees. (Of course, we can always define ↔ by p ↔ q ≡ 

(p → q) ∧ (q → p) if we wish.) 

1. Axioms  

The propositional calculus (PC) has as axioms all statements of the form (1)–(10) 

below. 

 
(1)     p → (q → p) 
(2)     [p → (q → r)] → [(p → q) → (p → r)] 
(3)     (p ∧ q) → p 
(4)     (p ∧ q) → q 
(5)     p → (q →  p ∧ q) 
(6)     p → (p ∨ q) 
(7)     q → (p ∨ q) 
(8)     (p → r) → [(q → r) → (p ∨ q  →  r)] 
(9)     (p → q) → [(p → ¬q) → ¬p] 
(10)    ¬¬p → p. 
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The sole rule of inference for PC is called modus ponens (Latin: "affirming mood"): 

 
MP                      p, p → q   
                                q 

In words, from p, p → q, infer q. 

2. Deductions 

Let S be a set of statements.  A deduction from S is a finite sequence p1,...,pn of 

statements such that, for any i = 1,...,n, pi is either (a) an axiom, (b) a member of S, or (c) 

inferrable using MP from earlier members of the sequence, i.e., there are numbers j,k < i 

such that pk is pj → pi. 

A deduction from the empty set of statements is called simply a proof. A 

deduction (or proof) with last statement p is called a deduction  (or proof) of p. We write S 

|–  p to indicate that p is deducible from S, i.e. that there is a deduction of p from S.  If S is 

empty, so that p is provable, i.e. there is a proof of p, we write just  |–  p, and call p a 

theorem of PC. 

 
     Example. |–   p → p. 

The following is a proof of the statement p → p. 

1.   (p → ((p → p) → p)) → ((p → (p → p)) → (p → p))   (Ax.2) 
2.   p → ((p → p) → p)   (Ax.1) 
3.   (p → (p → p)) → (p→p)   (MP on 1,2) 
4.   p → (p → p)   (Ax.1) 
5.   p → p   (MP on 3,4) 
 
     We now prove the important  

 

Deduction Theorem  For any set S of statements and any statements p,q: 

 S,p |–  q  if and only if  S |–  p → q. 
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 Proof.  First suppose that S |–  p → q. Then there is a deduction D of p→ q from S.  
Clearly, if we add the sequence p,q to D, the result is a deduction of q from S,p.  
Therefore S,p |–   q. 

Conversely, suppose that S,p |–   q.  Then there is a deduction r1,...,rn of q from S,p 

(so that q is rn).  We claim that S |–   p → ri  for any i = 1,...,n. 

Suppose that the claim were false.  Then there is a least number k such that it is 

not the case that S |–     p → rk.  There are  then 4 possibilities: (1) rk is an axiom; (2) rk is in 

S; (3) rk  is p; (4) rk is deducible using MP from some ri and rj  with i,j < k, where rj is ri 

→ rk.  

We show that in each of these 4 cases we have S |–  p → rk.  This will contradict 

the assertion that the claim is false, and it must accordingly be true. 

Case (1).  rk is an axiom.  In this case the sequence of statements rk, rk → (p → rk), p → rk  

is a proof of p → rk, so that S |–   p → rk. 

Case (2).  rk is in S. In this case the same sequence of statements as in case (1) is a 

deduction of p → rk from S. 

Case (3).  rk is p.  Here we have |–   p → rk  by our Example above, so a fortiori  

S |–   p → rk. 

Case (4).  For some i,j < k rj is ri →rk.  Since k was assumed to be the least number for 

which it is not the case that S  |–     p → rk,  and i,j < k, we must have S |–      p → ri  and  

S |–     p → rj, i.e., S |–     p → (ri → rk).  By axiom 2, 

(p → (ri → rk)) → ((p → ri) → (p → rk)). 

Hence, applying MP, 

S |–   (p → ri) → (p → rk) 
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and applying it once more, 

S |–  p → rk. 

We have obtained a contradiction in each case, so the claim is true. In particular, taking i 

= n, we get S |–  p → rn, i.e. S |–  p → q.  This completes the proof. 

 
3. Soundness 

Our next result is the 

Soundness Theorem for the Propositional Calculus.   

Any theorem of PC is a tautology. 

Proof.  Note first that, if a valuation satisfies both p and p → q, then it satisfies q.  

Thus if both p and p → q are tautologies, so is q. In other words, MP leads from 

tautologies to tautologies. 

It is also not hard to show that any axiom of PC is a tautology.  For example, we 

may use the tree method to establish this for Axiom 8:  

 
    √  ¬[(p → r)→((q → r)→(p ∨ q→ r)]
                           √  p → r
             √  ¬[(q → r)→(p ∨ q→ r)]
                           √  q → r
                      √  ¬(p ∨ q→ r)
                             √  p ∨ q

¬r

¬p                r
                    ×

                 p               q
                  ×

  ¬q               r
    ×               ×  
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Hence any deduction in PC consists entirely of tautologies, and the theorem follows. 
 

As an immediate consequence of this, it follows that PC is consistent in the sense 

that for no statement p do we have both |–    p and |–   ¬p. 

We are next going to establish a strengthened version of the Soundness Theorem 

by employing the Deduction theorem.  

Strengthened Soundness Theorem for PC.        If S |–   p, then S |=   p. 

Proof.  Suppose S |–   p, where S = {s1, s2 ,..., sn}.  The trick is simply to apply the 

Deduction theorem to s1, s2 ,..., sn  |–  p and carry each of the statements in the sequence 

s1, s2 ,..., sn over to the right-hand side of the |– sign so that the (unstrengthened) 

Soundness theorem, which we’ve already proved, can be invoked.   

Thus, applying the Deduction theorem n times in succession to S |–   p yields: 

 |–  s1→(s2→(… (sn-1→(sn→p))…))         (*) 

(For example, if n=3 the first application of the Deduction theorem yields  

s1, s2 |–  s3→p,  

the next application yields 

 s1 |–  s2→(s3→p),  

and the final application yields 

 |–  s1→(s2→(s3→p)).  )    

But by the (unstrengthened) Soundness theorem, we can infer from (*) that: 

|=  s1→(s2→(… (sn-1→(sn→p))…))         (**) 
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(**) simply asserts that the nested conditional above that we have concocted by 

applying the Deduction theorem is a tautology.  But it is clear from the truth table for → 

that this could not be so unless there is never a case where all the statements in the set S 

= {s1, s2 ,..., sn} are true and p is false.  So (**) cannot be correct unless S |=   p, which is 

what we set out to prove. 

Our final task will be to prove the converse of the Strengthened Soundness 

theorem.  

 
4. Completeness 
 

Let us call a set S of statements formally inconsistent if S |–   p and S |–   ¬p for 

some statement p.  We now establish the following facts: 

Fact A.  S is formally inconsistent if and only if S |–   q for all statements q. 

Fact B.  S |–   p if and only if {S, ¬p} is formally inconsistent. 

Proof of A.  Clearly, if S |–   q for all statements q then S is formally inconsistent.  

To establish the converse, we begin by showing that  |–   ¬p → (p → q).  First, note that 

the following sequence qualifies as a deduction of q from  ¬p,p: 

 

¬p 
p 

p → (¬q → p) 
¬p → (¬q → ¬p) 

¬q → p 
¬q → ¬p 

(¬q → p) → ((¬q → ¬p) → ¬¬q)) 
(¬q → ¬p) → ¬¬q 

¬¬q 
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¬¬q → q 
q 

 

It follows that ¬p,p |–     q.  Two applications of the deduction theorem now give  

|–   ¬p → (p → q) as claimed.   

Now if S is formally inconsistent, we have S |–   p and S |–   ¬p.  Since  

|–   ¬p → (p → q),  

two applications of MP yield S |–   q.  This proves A. 

Proof of B.  If S |–   p, then S, ¬p |–   p and S, ¬p |–   ¬p, so S, ¬p is formally 

inconsistent. 

Conversely suppose that S, ¬p is formally inconsistent.  Then by Fact A,  

S,¬p |–   ¬¬p.  So by the deduction theorem S |–   ¬p → ¬¬p.  Now we have   

p → p,p → ¬p |–   ¬p  

as the following deduction shows: 

p → ¬p 
(p → ¬p) → ((p → ¬p) → ¬p) 

p → p 
(p → ¬p) → ¬p 

¬p 
 

Since |–   p → p, it follows that p → ¬p |–   ¬p.  So, substituting ¬p for p, we get 

¬p → ¬¬p |–   ¬¬p.  But ¬¬p → p is an axiom, so an application of MP yields  

¬p → ¬¬p |- p.  But we have already observed that S |–  ¬p → ¬¬p, so another application 

of MP yields S |–   p as required.  This proves B. 

We now sketch a proof of the  
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Theorem. The initial set of statements of any closed tree is formally inconsistent. 

Proof (sketch).  Let us define the depth of a tree to be the length of its longest 

path.  Suppose that the assertion of the theorem is false.  Then there is a closed tree with 

a formally consistent (i.e., not formally inconsistent) set of initial statements.  Among 

these choose one, T say, of least depth, d say.  Then T is a closed tree whose set S of 

initial statements is formally consistent. We shall derive a contradiction from this. 

There are two cases to consider. 

Case 1: d = 1.  In this case T is identical with S.  Since T is closed there must be some 

statement p for which both p and ¬p are in S.  Clearly S is then formally inconsistent. 

Case 2:  d > 1.  In this case, by assumption, the set of initial statements of any closed tree 

of depth < d is formally inconsistent.  Now examine the statements at level 2 of T.  We 

claim that however these statements were obtained, we can always conclude that S is 

formally inconsistent. 

For example, suppose that the statements at level 2 of T arise by applying the ∨-

rule to a statement in S of the form p ∨ q.  Then T starts thus: 

 S

p             q

 

If in T we fuse S with p and expunge q as well as all nodes following it, we get a closed 

tree (recall that T was assumed closed) of depth < d with S,p as its set of initial 

statements.  But then S,p is formally inconsistent. Similarly, S,q is formally inconsistent.  

Since p ∨ q is in S, it follows that S is formally inconsistent. For if r is any statement, we 

have S,p |–   r and S,q |–   r so that S |–   p → r and S |–   q → r.  Two applications of MP and 
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Axiom 8 now yield S |–   p ∨ q → r; but since p ∨ q is in S, MP yields S |–   r.  Since this 

holds for any statement r, S is formally inconsistent. 

Similar arguments work for the other rules; in all cases we are able to conclude 

that S is formally inconsistent. 

We have shown that assuming the theorem false leads to a contradiction.  So the 

theorem is proved. 

As a consequence of this, we finally obtain the 

Completeness Theorem for PC.   If S |= p then S |–   p. 

Proof.  If S |= p, then by inference adequacy any finished tree T associated with 

the inference of p from S is closed.  It follows from the previous theorem that the set S, 

¬p of initial statements of T is formally inconsistent.  Hence, by fact B , S |– p. 

 
5. Exercises 

The Propositional Calculus 

Axioms: 

1. p→(q→p) 6. p→(p∨q)  

2. [p→(q→r)]→[(p→q)→(p→r)] 7. q→(p∨q)  

3. (p∧q)→p 8. (p→r)→[(q→r)→((p∨q)→r)]  

4. (p∧q)→q 9. (p→q)→[(p→¬q)→¬p] 

5. p→(q→(p∧q)) 10. ¬¬p→p  

Rule of Inference:    p,..., p→q, ...,q    (Modus Ponens)   

A1. The following is a purported deduction of p from ¬¬p.  Verify that it is or is not by 

identifying the origin of each statement in the sequence. 

¬¬p, (¬p→((¬p→¬p)→¬p)), ¬p→(¬p→¬p), 
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 (¬p→((¬p→¬p)→¬p))→((¬p→(¬p→¬p))→(¬p→¬p)), ((¬p→(¬p→¬p))→(¬p→¬p)),  

(¬p→¬p), (¬p→¬p)→((¬p→¬¬p)→¬¬p), ¬¬p→p, (¬p→¬¬p)→¬¬p,  

¬¬p→(¬p→¬¬p), ¬p→¬¬p, ¬¬p, p 

Of course, there is a very simple deduction of p from ¬¬p.  What is it?          

A2. The sequence 1.-14. below (see over) allegedly establishes that: 

 ¬p→¬¬p, q |–  q∧p 

Check to see whether this is so by justifying each statement below with the words “in 

the initial set”, “modus ponens”, or “axiom # so-and-so” (filling in the relevant axiom 

number).  If a particular statement cannot be justified, say so! 

1. [¬p→((¬p→¬p)→¬p)]→[(¬p→(¬p→¬p))→(¬p→¬p)] 

2. ¬p→((¬p→¬p)→¬p) 

3. q 

4. (¬p→(¬p→¬p))→(¬p→¬p) 

5. ¬p→(¬p→¬p) 

6. q→(p→(q∧p)) 

7. ¬p→¬p 

8. ¬p→¬¬p 

9. (¬p→¬p)→[(¬p→¬¬p)→¬¬p] 

10. (¬p→¬¬p)→¬¬p 

11. ¬¬p 

12. ¬¬p→p 

13. p 

14. q∧p 

A3. There are two sequences of statements below (set aside in two separate columns), 

each purporting to be a deduction from the set of statements S = {p, q→r}.  Identify the 



 
 

110

origin of each statement in each sequence, and thus discern whether or not these 

sequences really are deductions from S. 

p  q→r  

q→r  p  

p→[(q→r)→(p∧(q→r))]  p→(r→p)  

(q→r)→(p∧(q→r))  r→p  

p∧(q→r)  q→p  

A4. By the Completeness and Strengthened Soundness theorems for the propositional 

calculus, each concept on the left below corresponds to one on the right and vice-versa.  

Match them up.  

 tautology deduction 

 unsatisfiable  theorem 

 valid argument proof 

 valid argument without premises formally inconsistent 

A5. State the theorems below first in symbols and then in your own words. 

(i) (Strengthened) Soundness Theorem 

(ii) Completeness Theorem 

(iii) What is the point of introducing the propositional calculus and proving these 

theorems? 

A6. Indicate whether each of the following statements is true or false. 

(a) A statement deducible from its negation cannot be a theorem. 

(b) Consistency of the propositional calculus follows from the completeness theorem. 

(c) If p |–  (q→¬p), then the pair {p,q} is formally inconsistent. 

(d) The conclusion of a proof cannot be formally inconsistent. 



 
 

111

(e) A theorem cannot be deduced from a formally inconsistent set of statements. 

(f) Assuming every tautology is a theorem, completeness of the propositional calculus 

follows from the deduction theorem.  

(g) a |–  c implies a,¬b |–   b → c for all statements a, b and c.    

(h) The propositional calculus would not be sound unless it employed the modus 

ponens rule. 

For the last two questions, call a set of statements maximally consistent if and 

only if it is formally consistent but not a subset of any other formally consistent set of 

statements. 

(i) No maximally consistent set of statements can contain all theorems.  

(j) Every maximally consistent set of statements must contain either p or ¬p, for any 

statement p. 

A7. Why does p |–  r imply p |–  (q→r) for any statements p, q and r? 

A8.  (a) Assuming the Completeness and Strengthened Soundness theorems, prove the 

Deduction theorem.   

(b) Use the Deduction theorem to show directly (i.e. without explicitly constructing a 

deduction sequence) that  |–  (p→p) and that ¬¬p |–  p.   

A9.  (i) For any statements p, q and set of statements S, S |–  p and p |–  q implies S |–  q.  

Why? 

(ii) Let S1, S2, ...,Sn  be n sets of statements, and let S be the set of statements {p1,p2,...,pn}.  

Show that if Si |–  pi for all i=1 to n and S |–  p for some statement p, then S1∪S2∪ ...∪Sn |–  

p. 
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(iii) Show that if S |–  p and S |–  q, then S |–  (p∧q).  (You are not allowed to assume the 

completeness theorem!) 

A10.  (a) By relying on the Completeness and Strengthened Soundness theorems, prove 

that a set S of statements is formally inconsistent if and only if S |–  p for all statements p.   

(b) Without relying on Completeness and Soundness, show that S |–  ¬p implies that the 

set T=S∪{p} is formally inconsistent. 
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APPENDIX A  
 

LOGIC AND THE FOUNDATIONS OF MATHEMATICS  
 

Mathematics, the traditional science of form and quantity, and logic, the 

traditional science of reasoning, are among the oldest of human intellectual endeavours.  

However, it is only in the last century or so that the connections between the two have 

been explicitly recognized and systematically developed, leading to the enrichment of 

both.  In this appendix, we shall take a look at how and why this came about, and 

describe the effect that logical analysis has had on the foundations of mathematics.   

Medieval scholars divided learning into two categories.  The first category was 

the quadrivium, or ‘fourfold way to knowledge’, comprising the mathematical arts 

arithmetic, geometry, astronomy and music.  The second was the trivium, or ‘threefold 

way of eloquence’, comprising the verbal arts grammar, rhetoric and logic.  Logic was 

thus regarded by the schoolmen as an essentially linguistic discipline, having little or no 

bearing on mathematics.  In any case, the official scholastic view was that logic had 

been perfected by Aristotle, so that any further contributions to the discipline could be 

no more than embellishments on the Aristotelian edifice.  Although in the seventeeth 

century Leibniz had expressed the desirability of transforming logic into a universal 

scientific language, little progress was made in this respect until the middle of the 

nineteenth century when the English mathematicians George Boole (1815-1864) and 

Augustus de Morgan (1806-1871) and the American philosopher Charles Sanders Peirce 

(1839-1914) took the first steps in extending logic beyond its Aristotelian horizons.  

Original as these contributions were, however, the major impetus behind the 

transformation of logic was furnished by the later appearance of difficulties in the 

foundations of mathematics. 

Towards the end of the nineteenth century, the German mathematician Georg 

Cantor (1845-1918), in the course of his mathematical research, had come to reject the 
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received idea that the actual infinite is an inadmissible concept in mathematics, and 

proceeded to build a mathematical theory of infinite totatilities—the so-called set theory.  

Cantor held that there is no difference in principle between finite and infinite sets, as is 

revealed in his 1895 definition of the set concept: 

By a ‘set’ we understand every collection to a whole of definite, well-differentiated 

objects of our intuition or thought. 

The problem, of course, is to determine exactly which collections consititute legitimate 

‘wholes’.  Traditionally, only finite collections were admitted to be ‘wholes’ in this sense, 

since, it was held, infinite collections fail to accord with the time-honoured dictum that 

a whole must always be greater than any of its (proper) parts. 

The curious way in which the principle that a whole must always exceed its parts 

is violated by infinite collections is strikingly conveyed by a fable attributed to the 

German mathematician David Hilbert (1862-1943).  In Hilbert’s tale, he finds himself the 

manager of a vast hotel, so vast, indeed, that it has an infinite number of rooms.  Thus 

the hotel has a first, second, ..., nth,... room, ad infinitum.  At the height of the tourist 

season, Hilbert’s hotel is full: each room is occupied.  (Note that we are tacitly assuming 

the existence of an infinite collection of occupants.)  Now a newcomer seeking 

accommodations shows up.  ‘Alas’, says Hilbert, ‘I have not a room to spare.’  But the 

newcomer is desperate.  At that point an idea occurs to Hilbert.  He telephones the 

occupant of each room and tells him to move to the next one; thus the occupant of room 

1 moves to room 2, that of room 2 to room 3, etc.  This leaves the original occupants 

housed (one to a room, as before), only now room 1 is vacant, and the relieved 

newcomer duly takes possession.  In this way we see that the whole set of rooms is in 

some sense no larger than the part obtained by removing the first room. 

The fable does not end here, however.  Hilbert is about to switch on the ‘no 

vacancy’ sign when a vast assembly of tourists desirous of accommodation descends on 
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the hotel.  A quick tally reveals that the assembly is infinite, filling Hilbert with dismay 

(and the reader, no doubt, with incredulity).  But now another idea occurs to him.  He 

tells each occupant that he is to move to the room assigned double the number of his 

present one: thus the occupant of room number 1 proceeds to room number 2, that of 

room number 2 to room number 4, etc.  This again leaves all the original occupants 

housed, only now each of the infinite set of rooms carrying odd numbers is vacant.  

Thus each newcomer can be accommodated: the first in room 1, the second in room 3, 

the third in room 5, etc.  Clearly this procedure can be repeated indefinitely, enabling an 

infinite number of infinite assemblies of tourists to be accommodated. 

Hilbert’s tale shows that infinite sets are intriguing paradoxical but not, be it 

noted, that they are contradictory.  (Indeed, if, for example, the physical universe 

happens to contain infinitely many stars—which is at least possible—then it can serve 

as ‘Hilbert’s hotel’, with the stars playing the role of ‘rooms’.)  Set theory as originally 

formulated does contain contradictions; however, they arise not from the admission of 

infinite totalities per se, but are rather the result of countenancing totalitites consisting of 

all entities of a given kind.  This is best illustrated by the infamous Russell paradox, 

discovered by Bertrand Russell (1872-1970) in 1901. 

Russell’s paradox arises in the following way.  It starts with the truism that any 

set is either a member of itself or not.  For instance, the set of all men is not a member of 

itself (since it is not a man), while the set of all possible sets is a member of itself (since it 

is, presumably, a set).  Now consider the set consisting precisely of all those sets which 

are not members of themselves: call this set ‘R’ (for Russell, of course).  Is R a member of 

itself or not?  Suppose it is.  Then it must satisfy the defining condition for inclusion in 

R, i.e., it must not be a member of itself.  Conversely, suppose R isn’t a member of itself.  

Then it fails to satisfy the defining condition for inclusion in R, i.e., it must be a member 

of itself.  We have thus arrived at the unsettling, indeed contradictory, conclusion that R 
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is a member of itself if and only if it isn’t.  We also note that whether R is finite or 

infinite is immaterial to this argument. 

Russell’s paradox has a purely linguistic counterpart due to Kurt Grelling (1886-

1941) which is, perhaps, even more unsettling since it appears to strike at the very fabric 

of language.  Call an (English) adjective autological if it is true of itself and heterological if 

not.  For instance, the adjectives ‘polysyllabic’, ‘English’ are autological while 

‘palindromic’, ‘French’ are not.  Now, mischievously, we enquire as to whether the 

adjective ‘heterological’ is autological or not.  A moment’s thought should reveal that 

‘heterological’ is autological if and only if it isn’t autological. 

Another principle of set theory which occasioned much dispute when first 

formulated is the so-called axiom of choice.  In its simplest form, the axiom asserts that, if 

we are given any collection S of sets, each of which has at least one member, then there 

is a set M containing exactly one member from each set in S.  We can imagine the set M 

as being formed by choosing one member from each set in S.  When there are only 

finitely many sets in S, or if S is infinite and we have a definite rule for choosing a 

member from each set in S, no difficulty is encountered.  The problem arises when S 

contains infinitely many sets, and we have no rule for choosing a member from each: 

how can we justify the procedure of making infinitely many arbitrary choices (and 

forming a set from the result)?  The difficulty is well illustrated by a Russellian 

anecdote.  A millionaire possesses an infinite number of pairs of shoes, and a 

corresponding number of pairs of socks.  In a fit of eccentricity, he requests his valet to 

select one shoe from each pair.  When the valet asks for instructions as to how to 

perform the selection, the millionaire suggests that the left shoe be chosen from each 

pair.  The following day the millionaire proposes that the valet select one sock from each 

pair.  When asked as to how this operation should be carried out, the millionaire is at a 

loss for a reply, since, unlike shoes, there is no intrinsic way of distinguishing one sock 
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of a pair from the other.  In other words, the selection of the socks must be truly 

arbitrary. 

One curious consequence of the axiom of choice is the so-called paradoxical 

decomposition of the sphere, formulated in 1924 by the Polish mathematicians Stefan 

Banach (1892-1945) and Alfred Tarski (1902-1983).  In its most striking form, this states 

that a solid sphere can be cut into finitely many (later shown to be reducible to 5) pieces 

which can themselves be rearranged to form two solid spheres of the same size as the 

original.  (Of course, the use of the phrase ‘can be cut’ is metaphorical, but this does not 

detract from the wierdness of the result.)  Note that this assertion, like the situation 

obtaining at Hilbert’s Hotel, and unlike Russell’s paradox, is counter-intuitive but not 

contradictory. 

The perplexities surrounding the foundations of set theory are collectively 

designated by historians of mathematics as the ‘third crisis’ in the foundations of 

mathematics.  (For the record, the first two were the Pythagorean discovery of irrational 

numbers c. 450 B.C. and the scandalously shaky state of the foundations of the calculus 

throughout the seventeenth and eighteenth centuries.)  Attempts to resolve this crisis 

took several different forms, but they all required the deployment of subtle kinds of 

logical analysis of mathematical concepts and reasoning, thereby occasioning the rise of 

mathematical logic as a powerful new discipline. 

Three principal tendencies were to emerge concerning the foundations of 

mathematics and the resolution of the ‘crisis’: Logicism, Intuitionism, and Formalism. 

Logicism, associated with (among others) Gottlob Frege (1848-1925), Russell and 

Alfred North Whitehead (1861-1947), pivots on an attempt to reduce mathematics (i.e. 

set theory) to pure logic, the former’s inconsistencies being dissolved (it was hoped) by 

proper formulation in terms of unimpeachable logical concepts.  In Russell and 

Whitehead’s approach, Cantor’s set theory is replaced by the theory of types, in which a 
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logical distinction is drawn between a set and its members, the former being, so to 

speak, of higher ‘type’ than the latter.  The paradoxes are avoided by scrupulous 

observance of the so-called vicious circle principle, according to which no totality can 

contain members defined in terms of itself.  (For example, the totality of all sets violates 

the vicious circle principle since it contains itself as a member and is therefore excluded 

as a legitimate totality.)  The logicist programme culminated in the publication in 1910 

of the monumental, and formidably recondite, Principia Mathematica of Russell and 

Whitehead.  That the term ‘recondite’ is apposite here may be deduced from the 

following extract from a review of the work which appeared in a 1911 number of the 

Spectator: 

It is easy to picture the dismay of the innocent person who out of curiosity looks 

into the later part of the book.  He would come upon whole pages without a single 

word of English below the headline; he would see, instead, scattered in wild 

profusion, disconnected Greek and Roman letters of every size interspersed with 

brackets and dots and inverted commas, with arrows and exclamation marks 

standing on their heads, and with even more fantastic signs for which he would 

with difficulty so much as find names.  

The complexity of Russell and Whitehead’s theory, allied with doubts that, despite their 

Herculean efforts, they had truly succeeded in reducing mathematics to pure logic, 

resulted in a certain lack of enthusiasm on the part of mathematicians for the logicist 

programme. 

Intuitionism, the creation of the Dutch mathematician L. E. J. Brouwer (1882-

1966), hinges on the conviction that a mathematical concept is admissible only if it is 

adequately grounded in intuition.  For Brouwer, the source of mathematical ideas is 

ultimately to be found, not in the external world, but in our own intuitive awareness.  

(In particular, Brouwer shares with Kant the view that the natural numbers arise from 

our intuitive grasp of temporal succession.)  As a result, for intuitionism a mathematical 
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object may be said to exist only if it can be constructed (in thought) in some definite 

way, the construction constituting the proof of existence.  Moreover, an infinite totality 

must never be treated as if it were a completed whole, but rather as if it were 

continually ‘growing’ in time.  These principles, if accepted, have profound implications 

for logic and mathematics.  For example, the first implies that the classical logical law of 

the excluded middle is no longer generally valid, that is, we can no longer assert, of any 

given proposition A, that either A or its negation not A holds.  According to the 

intuitionist view, in order to be able to correctly assert this disjunction, we must actually 

be in possession of a proof of A or a proof of not A: however, there are many 

mathematical assertions—for example the statement that every even number is the sum 

of two primes—for which we possess neither.  As for the second principle, it 

necessitates the outright rejection of Cantor’s theory and the reconstruction of 

mathematics along entirely different lines. 

The radical nature of the intuitionist program and the fact that it apparently 

entailed sacrifice of large parts of classical mathematics caused it to appear less than 

attractive to the majority of mathematicians. 

Formalism, the brainchild of David Hilbert, had as its aim the provision of a new 

foundation for mathematics by reducing it, not to logic, but to the manipulation of 

formal symbols.  Hilbert believed that the only completely reliable parts of mathematics 

are those which involve nothing more than mechanical reasoning about surveyable 

domains of concrete objects, in particular, mathematical symbols considered as marks 

on paper.  Propositions referring only to such parts of mathematics he regarded as real 

propositions while all other mathematical propositions are to be considered ideal 

statements, rather like ideal points or lines ‘at infinity’ in projective geometry.  (For 

example, ‘2+2=4’ is a real proposition, while ‘there exists an infinite set’ is an ideal one.)  

Thus Hilbert’s real propositions correspond to the ‘verifiable statements’ of the logical 

positivists, while the ideal statements are, strictly speaking, meaningless.  The central 
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objective of Hilbert’s formalist program was to show by strictly concrete and 

unimpeachable means that the classical use of ideal propositions—in particular, those of 

Cantor’s set theory (suitably adjusted to avoid the contradictions already mentioned)—

would never lead to falsehoods among the real propositions.  In short, the aim was to 

prove classical mathematics consistent.  Once this was achieved, mathematicians would 

be able to roam freely within ‘Cantor’s paradise’ (as Hilbert called it) without fear of a 

sudden descent into the inferno of contradiction. 

Hilbert intended to establish the consistency of classical mathematics by setting it 

out as a purely formal system of symbols, devoid of meaning, and then showing that no 

proof in the system leads to a false assertion, e.g., 0=1.  This, in turn, was to be done by 

replacing each (ideal) proof of a real proposition by a real concrete proof.  Since, clearly, 

there is no concrete proof of the real (false) proposition 0=1, this leads to the conclusion 

that classical mathematics is consistent. 

However, in 1931 the Austrian logician Kurt Gödel (1906-1976) shattered 

Hilbert’s program by demonstrating, through his famous Incompleteness Theorem, that 

there would always be real propositions provable by ideal means which are not 

provable by concrete means.  He achieved this by means of an ingenious modification 

of the ancient Liar paradox (attributed to the Greek philosophers Epimenides and 

Eubulides).  To obtain the Liar paradox in its most transparent form, one considers the 

sentence ‘This sentence is false’.  Calling this sentence A, an instant’s thought reveals 

that A is true if and only if A is false; in short, A asserts its own falsehood.  Now Gödel 

showed that, if in A one replaces the term “false” by the phrase “not concretely 

provable”, then the resulting statement B is true (i.e. provable by ideal means) but not 

concretely provable.  This is so because B actually asserts its own concrete unprovability.  

Gödel showed, moreover, that the consistency of arithmetic cannot be proved by concrete 

means.  Thus, the soundness of even such an apparently concrete and perspicuous part 
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of mathematics as arithmetic must in some sense remain an article of faith.  (See the next 

appendix for further discussion of Gödel’s theorems.) 

Although Logicism, Intuitionism and Formalism are unacceptable as complete 

accounts of the foundations of mathematics each one embodies an important partial 

truth concerning the nature of mathematics: Logicism, that mathematical truth is 

intimately connected with logical truth; Intuitionism, that mathematical activity 

proceeds by the performance of mental constructions; and Formalism, that the results of 

these constructions are presented symbolically. 

In practice, most mathematicians regard set theory as constituting an adequate 

foundation for their work.  This became possible when, in the first few decades of this 

century, set theory was axiomatized in such a way as to avoid the evident 

contradictions by suitably restricting the formation rules for sets.  (Any residual doubts 

concerning the acceptability of the axiom of choice were dispelled in 1938 when Gödel 

established its consistency with respect to the remaining axioms of set theory.)  

Mathematicians find set theory acceptable not solely for the pragmatic reason that it 

enables mathematics to be done but also because it accords with the unspoken belief of 

many of them that mathematical objects actually exist in some sense and mathematical 

theorems express truths about these objects.  This is a version of Realism, also termed, 

somewhat inaccurately, Platonism.   
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APPENDIX B 

HILBERT’S PROGRAM AND GODEL’S THEOREMS 

 

In response to the inconsistencies which had made their appearance in set theory 

(see Appendix A), Hilbert proposed to set up a precise formal language for 

mathematics and then prove that the resulting formalization is consistent, i.e. does not 

lead to contradiction.  To ensure that the consistency proof convinced the maximum 

possible number of mathematicians, it was supposed to involve only elementary 

mathematical notions, and ideally should not transcend school arithmetic. 

In 1931 Gödel showed that Hilbert’s program could not be carried out even for 

arithmetic!  He showed, in fact, that if arithmetic is consistent, then any consistency 

proof must transcend arithmetic itself.  And, a fortiori, this applies also to any branch of 

mathematics (such as set theory) which is stronger than arithmetic. 

We shall sketch proofs of Gödel’s result, obtaining along the way an important 

theorem of Tarski on the undefinability of mathematical truth. 

First we set up a precise formal language L for arithmetic as follows.  L has the 

following symbols: 

Numerical variables x1 , x2 , x3 , ... 

Numerical constants 0 , 1 , 2 , ... 

Numerical function symbols +, × 

Equality symbol = 

Logical operators ∧, ∨, ¬, →, ↔, ∀, ∃ 

Punctuation symbols. 

An expression of L is a finite sequence (string) of symbols of L.   
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Terms or noun-like expressions of L are obtained as follows. 

(i)     Any variable or constant symbol is a term. 

(ii)     If t,u are terms, so are t × u, t + u. 

(iii) An expression is a term if and only if it follows that it is one from  

finitely many applications of (i) and (ii). 

Examples of terms:  x1 + 2 , 6, x1 × x5 + 27. 

Formulas (or grammatical assertions) of L are obtained as follows. 

(a) If t,u are terms, then t = u is a formula. 

(b) If A and B are formulas, so are ¬A, A ∧ B, A ∨ B, A → B, A ↔ B, 

∀xA, ∃xA for any variable x. 

(c) An expression is a formula if and only if it follows from finitely 

 many applications of (a) and (b) that it is one. 

Examples of formulas:  x1 + 2 = 3, ∃x1[x1 + 2 = 3], ∀x1[x1 + 2 = 3]. 

Formulas assume truth values (truth or falsehood) when their constituents are 

interpreted arithmetically in the obvious way.  We observe that, e.g. the first formula in 

the examples above is true or false depending on the value assigned to the variable x1, 

while the second or third is simply true or false independently of the value assigned to 

the variables.  A formula of this latter kind in which each variable x occurring in it is 

governed by a quantifier ∀x or ∃x is called a sentence. 

We next assign code numbers to the expressions of L as follows.  Suppose that the 

symbols of L, excluding variables and constants, are k in number.  To these symbols we 

assign, in some arbitrary but fixed manner, the label 0, ..., k-1.  Then to each variable xn 

we assign the label k + 2n and to each numeral (i.e. constant) n the label k + 2n + 1.  Thus 
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each symbol s has been assigned a label which we shall denote by s*.  Now each 

expression s1...sn is assigned the code number   

   2s
1
*  . 3s

2
*  ... pn

s
n
*

 

where pn is the nth prime number.  It follows, by the fact that every natural number has 

a unique prime factorization, that distinct expressions are assigned distinct code 

numbers by this procedure.  The expression with code number n will be denoted by An. 

A property P(a1,...,an) of natural numbers is called expressible in L if there is a 

formula A(x1,...,xn) of L such that, for all numbers m1,...,mn, 

P(m1,...,mn) holds  ⇔  A(m1,...,mn) is true.     

A property of expressions of L is called expressible in L if the corresponding 

property of their code numbers is expressible.  It can be shown without much difficulty 

that the property of being a (code number of a) formula of L is expressible in L. 

But what about the property of being a true sentence of L?  We shall see that this 

property is not expressible! 

Since the assignment of code numbers to expressions of L is evidently effective, 

we should be able to compute, for a given expression Am(x1) with code number m, and 

any number n, the code number of the expression Am(n) obtained by substituting n for 

x1 in Am(x1).  Thus it is plausible to assume (and, indeed, provable) that this is 

expressible in L in the sense that there is a formula 

s(x1, x2) = x3 
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for some term s of L such that, for any numbers m, n, and p,  

(s (m,n) = p ) is true ⇔ p is the code number of the expression Am(n).  

Now let S be any collection of sentences of L: S that may be thought of as a set of 

true arithmetical  statements  in L. 

We can now prove: 

Theorem 1.  Suppose that S satisfies the following conditions: 

(1) Each member of S is true. 

(2)  The property “n is the code number of a member of S” is expressible in L. 

Then there is a true sentence G of L such that G ∉ S (and ¬ G ∉ S). 

 

Proof.   By (2) there is a formula T(x1) of L such that, for all n, 

T(n) is true ⇔ n is the code number of a sentence of S  

                                      ⇔ An ∈ S. 

Write B(x1) for ¬ T (s(x1, x1)) and let m be the code number of B.  Then 

B is Am . 

Next, let p be the natural number such that  

p = s(m, m) 

is a true sentence.  Then, by definition, p is the code number of the sentence Am(m).   

Now write G for Am(m).  Then p is the code number of G, so that  
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G is Ap. 

So we have 

G is true ⇔ Am (m) is true 

⇔ B(m) is true 

⇔ ¬ T(s(m, m)) is true 

⇔ T(p) is false 

⇔ Ap ∉ S 

⇔ G  ∉ S. 

(Thus G asserts “I am not in S”.)  It follows that G is true, for 

G is false ⇒ G ∈ S ⇒ G is true. 

So G ∉ S, and since G is true, ¬ G ∉ S also.  This completes the proof of the theorem. 

By taking S to be the collection of all true sentences in this theorem, we 

immediately obtain: 

Tarski’s Theorem in the Undefinability of Truth.  The property of being a true sentence of 

L is not expressible in L. 

Notice that the appropriate sentence G in Tarski’s theorem asserts “I am not in 

the set of true sentences,” i.e., “I am false.”  So Tarski’s theorem is closely connected 

with the well-known Liar Paradox. 

Now one can introduce the notion of a proof from S and that of a formula provable 

from S in such a way that: 

• if each member of S is true, so is each sentence provable from S, 

• if the property of being a member of S is expressible in L, so is the property of being 

a formula provable from S. 
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One now obtains immediately from Theorem 1 

Godel’s 1st Incompleteness Theorem (weak form).  Let S be a set of true sentences of L 

such that the property of being a member of S is expressible in L.  Then S is incomplete, i.e. there 

is a (true) sentence G of S such that neither G nor ¬ G is provable from S. 

Here the sentence G asserts “I am unprovable.” 

By refining the argument it is possible to strengthen this result as follows.  Let us 

call S consistent if no formula of the form A ∧ ¬ A is provable from S. Let P(x1,...,xn) be a 

property expressible by a formula A(x1,...,xn).  P is said to be S-definite if, for any natural 

numbers m1, . . . , mn 

P(m1,...,mn) holds ⇔ A(m1,...,mn) is provable from S 

P(m1,...,mn) fails ⇔ ¬A(m1,...,mn) is provable from S. 

Let Q(m1,m2,m3) be the substitution property of natural numbers, i.e. 

Q(m1,m2,m3) holds ⇔ s(m1, m2) = m3 is true. 

Then one can prove 

Godel’s 1st Incompleteness Theorem (strong form).  Suppose that S is consistent, the 

property of being a member of S is expressible and the property Q and that of being an S-

provable formula are both S-definite.  Then S is incomplete. 

 

Sketch of proof.  As before, we take G to be a sentence of L which asserts its 

own unprovability from S.  For any A, let us write S |–     A for “A is provable from S”. 



 
 

128

Suppose that S |–     G.  Then because of the assumptions on S, 

S |–  “G is provable from S”. 

But the assertion “G is provable from S” is just ¬ G, so we get  

S |–      ¬ G, 

contradicting the supposed consistency of S.  Therefore, not (S |–      G). 

Now suppose that S |–      ¬ G.  Then since S is consistent, we get not (S |–      G) and 

by the assumptions on S it follows that 

S |–  “G is unprovable from S”. 

But G is the assertion “G is unprovable from S,” so we get 

 S |–       G, 

again contradicting the consistency of S.  Hence not (S |–     ¬ G).  This completes the 

proof. 

In the proof of this last theorem we showed that  

                                          S is consistent ⇒ not (S |–     G).    (*) 

Now the assertion on the left-hand side of (*) can be expressed as a sentence ConS of L 

as follows.  Let no be the code number of the sentence 0 = 1 and let P(x1) be the formula 

of L expressing “x1 is the code number of a sentence provable from S”.  Then ConS may 

be taken to be the sentence ¬ P(no). 

The implication (*) can now be formalized in S yielding a proof in S of the 

implication 

ConS→G 
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(observing that G is essentially the formalization in S of the assertion not (S |–      G)). 

Now suppose that  

S |–     ConS . 

Then since, as we have seen,  

S |–      ConS → G, 

it follows that S |–    G.  But, by the 1st incompleteness theorem, if S is consistent, then not 

(S |–    G).  Accordingly, we have 

Godel’s Second Incompleteness Theorem.  Under the same conditions as the strong form of 

the first incompleteness theorem, the sentence ConS formalizing “S is consistent” is not 

provable from S. 

 

Conclusion: if we classify as theological any domain of thought which rests on 

faith, i.e. on unproved assumptions, then mathematics is a branch of theology which 

contains a rigorous demonstration that it must be so classified! 
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APPENDIX C 
 

SOLUTIONS TO EXERCISES  

 

CHAPTER I 

 

Truth Tables and Testing Validity 

A1. (a) invalid; (c), (e), (g), (i), (k), (m), (o) all valid 

A2.  (a) K ∨ F     (c) F → O     (e) R → W         (g)    (W ∧ Q) →D                (i) F → T 

                  K                  O             W →¬R           ∴ (W → D) ∨ (Q →D)         F ∧ ¬T 

             ∴¬F              ∴ F              ∴ ¬R                                                                ∴  L 

          invalid         invalid           valid                         valid                             valid! 

A3. Both knights 

A4. With 'I'm right' = IR, 'You're a fool' = YF, and 'I'm a fool' = IF, the argument 

symbolized is: 

IR→YF  

 IF→¬IR 

YF→IR 

IF ∨ YF 

To check for counterexamples, and hence validity, we only need look at the cases in the 

truth table where the conclusion comes out false.  That means we only look at cases 

where both IF and YF are false (otherwise IF ∨ YF comes out true!), and that can happen 

in two ways according to what the truth value of IR is.  So the truncated truth table for 

this argument looks like: 
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IF YF IR IR→YF IF→¬IR YF→IR          IF ∨ YF 

f f t | f t   t |         f 

f f f | t t t | f 

The second row exhibits a case where the premises are all true but conclusion false, so 

the argument is invalid. 

A5.  With 'The witness was not intimidated' = W, 'Flaherty committed suicide' = F, and 

'A note was found' = N, the set of sentences is {W ∨ (F→N), W→¬F, N→F}.  Fairly 

quickly one can see that W = true, F = false, and N = false is a satisfying truth valuation! 

A6. (a) Y ∧ [I ∨ (¬Y ∧ ¬I)], therefore (Y ∧ I) ∨ (¬Y ∧ ¬I).  valid 

A7. Both knaves.   

A8. I = can’t tell!  He = taxpayer for sure. 

A9. (a) valid; (c) valid 

A10. NO.  The argument’s certainly valid, and its second premise is true.  But 

supposing premise one is true (i.e. ‘for its conclusion is false’) leads to a contradiction: 

for since we would then have a sound argument, the conclusion would have to be true, 

contradicting premise one’s truth (and also the argument’s soundness!).  So premise one 

can’t be true! So in fact the conclusion is true, and therefore the argument is unsound (as 

its conclusion claims!).     

Tautologies, Contradictions and Satisfiability 

B1. (a), (c) tautologous 

B2.  (a) correct; (c) incorrect; (e) correct; (g) incorrect;   

        (i), (k) correct; (m) incorrect 
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B3. (a) Correct. If a statement is not contingent it is either a tautology or contradiction, 

therefore its negation is either a tautology or contradiction, hence its negation can't be 

contingent.  

(c) Correct.  For a conjunction to be a tautology, it must come out true under all possible 

valuations; and since it's a conjunction, that means each of its conjuncts has to come out 

true under all possible valuations, otherwise the entire conjunction will come out false 

under some valuation.  Hence all the conjuncts must also be tautologies. 

 (e) Correct.  If p→q is valid that means it's a tautology, which means there is never any 

case where it comes out true.  By the truth-conditions for '→', that means there can 

never be any case where p comes out true and q false (otherwise p→q would be false).  

But if there is never any case where p is true and q false, the argument from p as 

premise to q as conclusion faces no counterexamples, and so must be valid.  Conversely, 

suppose the argument from p to q is a valid one.  Then there is never any case where p 

is true and q is false (otherwise we'd have a counterexample!).  But since p→q is false 

only in such a case, there is never any case where p→q comes out false, which means 

that it is a tautology, i.e. valid. 

B4. (a) (ii); (c)  (iii) 

B5.  (a) If there were a case where a conjunct comes out false, the conjunction would 

have to come out false in that case too, and so couldn’t be valid! 

B6. (a) (iv); (c) (iv); (e) (iii) 

B7. (a) false; (c) false; (e) false; (g) true 

B8. (a) true; (c) true; (e) false;  

(g) false - tautologies only imply tautologies!; (i) false - just add a contradiction! 

B9. (a) satisfiable; (c) unsatisfiable; (e) satisfiable 
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B10. (a) false; (c) false; (e) false. 

B11. (a) Not valid 

 

CHAPTER II 

 

Equivalence 

A1. (a), (c), (e) equivalent; (g) inequivalent; (i) equivalent 

A2. (a) (ii), (iii), (v), (vii)-(ix) are all valid, the rest invalid. 

(b) Just the tautologies, which are of course all equivalent to each other. 

Expressive Completeness 

B1.   (1) ≡ ABC∨ABC∨ABC∨ABC     (3) ≡ ABC∨ABC∨ABC∨ABC 

B2. (a) p ∨ q ≡ ¬(p ↔ q)  

   (c) Use the facts: {∧, ¬} is expressively complete and ¬A ≡ A ∨ t 

B3. (a) Just use the fact that p∨ q ≡ ¬p → q and that {¬, ∨ } are expressively complete. 

B4. (a) To prove the hint: show that if p and q are statements in the letters A and B 

taking value t in at least one case where A and B have opposite truth values, then p → 

q has exactly the same property (i.e. it too takes value t in a case where A and B have 

opposite truth values).  Using the hint, any statement using just A, B and → takes 

value t in a case where A and B have opposite values.  But in such a case, A↔B is 

false!  So you could never express it using just A, B and →.   

(c) Use: if p(A, B), q(A, B) both are true in at least two cases, p(A, B) → q(A, B) has the 

same property.  Then, since A ∧ B only takes value t in one case, you’re done! 
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B5.  f: ABC ∨ ABC ∨ ABC       h: ABC ∨ ABC ∨ ABC ∨ ABC  

B6.    h(A, A, A) ≡ ¬A,     h(A, h(A, A, A), h(C, C, C)) ≡ A ∨ C 

B7.  (a) ABC ∨ ABC ∨ ABC ∨ ABC 

B8. (a)  Since the set {¬,∨}  is expressively complete and those logical operators can be 

expressed in terms of {f,→} as:  ¬A ≡ A→f,   A ∨ B ≡ (A→B) → B  

 

Binary Representations and Venn Diagrams  

C1. 
 (i) (ii) (iii) 
(a) 1 + A + B + A . B contingent 

BA

 
(c) 1 + A + B contingent 

BA

 
(e) 1 tautology 

BA

 

C2.    
 Binary Venn 

(a) 1 
BA

 
(c) 0 

BA

 
(e) 1 + pq + pqr 

 (only the 
indicated space is empty) 

 
 
C3. 
 Binary Venn 
(a) 1 

A

 
(c) 0 

BA

 
(e) r+p+pr+pq+pqr 

 
....shade everything except the 
region inside of q and outside 
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note: this = 0 exactly 
when q=1 and r=0 so.... 

of r! 

C4. (a) AB; A+AB; shade only what’s inside circle A and outside circle B.  

 

CHAPTER III 

Tree Test for Validity 

A1.  (a) valid  (c) invalid;  counterexample:  A=t, B=C=D=E=f 

(e) ¬E ∨ A,  R → ¬A   ∴ ¬A →(E ∨ R)   invalid, counterexample: A=E=R=f 

A2. (a) valid; (c) valid 

A3. (i) valid  (iii) invalid  c.examples: A true, all other statement letters false 

A6.  Rules: 

                 {A, B, C}                    A*B                        A•B 

   

           A      A    ¬B       ¬A            ¬B                 ¬A 

               B      C       C                                                ¬B 

 (i) valid; (iii) invalid 

A7. (a) valid; (c) valid 

A8. (a) valid; (c) valid 

A9. (a) K → D            Invalid, one counterexample 

A4. [A, B, C]            ¬[A, B, C]           A * B         ¬(A * B)        (i) valid 

 

   A       ¬C            ¬A         B     ¬A       ¬B              A 

¬B                          C            C                                      B 

A5. (i) valid; (iii) invalid, c. examples: A=t, B=C=f 
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          K → S            [Note that the argument fails simply because Dumb could 

         S → ¬D           be so dumb that he doesn’t even know it!] 

             ¬D 

 

A10.  

S = scientists don’t know what they are talking about 

B = the sun will eventually burn out 

E = Earth will become dark and cold 

M = Mars is teeming with life 

H = the human race will migrate to other planets 

D = the human race will die out 

Argument has H=E=B=true, S=M=D=false for a counterexample 

A11.  Invalid, exactly 4 counterexamples 

 

Further Applications of the Tree Method 

B1. (a) unsatisfiable; (c) satisfiable, A=t, B=f  

B2. (a) tautology; (c) tautology 

B3.  (i) contradiction 

B4. (i) P & J are both Knights or both Knaves. 

B5. (i), (iii) equivalent; (v) inequivalent 

B6. (a) contingent; (c) contingent 

B7. (i) Both knaves; (iii) I=knave, He=can’t tell! (this one’s tricky) 

B8. (a) contingent; (c) contradiction 



 
 

137

B9. Lancelot is a knave, Arthur a knight and Merlin a knight. 

B10. (a), (b) and (e) are the tautologies, the others aren’t. 

B11. They’re all inconsistent! 

B12. (a) Both knights. 

B13.  

            1. No information derivable. 

3. M is a saint if and only if J is a sinner. 

5. M is a saint. 

7. M is a saint and J a sinner. 

9. J is a sinner. 

11. M and J are both saints. 

13. M is a sinner and J a saint. 

15. Inconsistent. 

17. M and J are both saints. 

19. M is a sinner and J and his brother are not both saints. 

21. C is a sinner and the others aren’t both saints. 

23. C and L are saints and M a sinner. 

25. M is a saint and the others are sinners.   

B14. (a) Satisfiable in 4 ways: 

A B C D 
f t f f 
f f f f 
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f f f t 
t t f f 

 
(c) Unsatisfiable 
 
B15. (i) Non-tautologous; A=f, B=t only way to make false. 
 
B16. (i) Satisfiable in one way: 

A B C D 
f f f t 

 
B17.   L=Lancelot a knight 

       A=Arthur a knight 
       M= Merlin a knight 
 

√ L ↔ ¬ M 
√ A ↔ (¬L ∨ ¬M) 

√  M ↔ [¬M → (¬L ∧ ¬ A)] 
 

                         L                                ¬L 
                  ¬M                                 M  

 
                                         A                 ¬A          A                  ¬A 
                             √ ¬L∨¬M           √ L ∧M     √ ¬L∨¬M      √L ∧ M 
 
                          ¬L            ¬M              L         ¬L           ¬M        L 
                             ×                                M                           ×          M     
                                      M       ¬M        ×    M             ¬M             × 
                               \ 
        ¬M → (¬L ∧ ¬A)                         √¬M→(¬L∧¬A)   √¬[¬M→(¬L∧¬A)] 
                      ×                                                                                       ¬M 
               √¬[¬M→(¬L∧¬A)]           M         ¬L∧¬A                       L ∨ A 
                                                                            ¬L                                 × 
                         ¬M                                            ¬A 
                      √L ∨ A                                             × 
                

                     L                A 
 
From 3 open branches we see: A is true and M and L have opposite truth values. 

B18. Guinevere is in Camelot today - Lancelot is not deceived! 
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B19. (a) Dean, Jerry, Stan are heroes, and Ollie is a scoundrel. 

(c) One question you could ask is “Is it the case that you’re a knight if and only if there 

is no buried treasure on the island?”  It is easy to verify (with the tree method) that if 

Dean answers Yes, there’s no gold on the island; and if he answers No, there is! 

 
 
 

CHAPTER IV 

Trees and Translations Involving Quantifiers  
 

A1. (i) valid; (iii) valid; (v) invalid 

A2.  (a) ∀x(Lx → Nx), ¬∃x(Vx ∧ Nx) ∴¬∃x(Vx ∧ Lx), valid. 

        (c) ∃x(Bxa ∧ ¬∃yByx) ∴¬∃Bax, invalid. 

A3. valid 

A4. (i) Ec; (iii) Sbc ∨ Scb; (v) ∃x(Ex ∧ Wdx ∧ ∀y(Ey→Syx)) 

A5. (a) ∃xPx→Pu, ∀x(Lx→Px), Ld ∴ Pu; valid. 

 (c)∀x(Dx→Cx) ∴ ∀x(∃y(Dy∧Lxy)→∃z(Cz ∧ Lxz)); valid. 

A6.     (i) ∀xCx   (iii) ∀w[∃xLwx →∀zLzw] 

       Cw→G    valid                            Lrj                       valid 

             G                                                                Liy 

A7.   (i) {∀x[Rx→(Lx ∧ Vx)], ¬Lj ∧ Vj} satisfiable 

          (iii) {∀w[∃xLwx→∀zLzw], Lyy, ¬Lym} unsatisfiable 

A8.   (a) ∃x∀y Kxy 

   (c) ∃x∀y[Kyy→Kxy] 
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   (e) ¬∃x[∃y(Kxy ∧ Kay) ∧ ∀y(Kya→Kxy)] 

A9. (a) ∃x[Hx ∧ ∀y[By→Pxy]]                                    (c) ∀x(Sx →Ux) 

       ∀y[By→∃x(Hx∧ Pxy)]                                        ¬∃x(Wx ∧ Ux) 

                valid                                                           ¬∃x(¬Sx ∧ Vx) 

                                                                                     ¬∃x(Wx ∧ Vx) 

                                                                                            valid 

A10. (a) Lmm; (c) ¬∃xLxm; (e) Lmm ∧ ∀x(Lmx →x=m); (g) ∀x(¬Lxm→ ¬Lmx);  

   (i) ∃x(Lxm ∧ ∀yLxy) 

A11. (a)∀xTrx; (c) ¬∃x∀yTxy; (e) ∀x∀y((Trx ∧Try) → x=y); (g) ∃xTxr→Trr;  

(i) ∃x(Txr ∧ ∀y(Tyr →Txy)) 

A12. (i) ¬∀x∀y (( Cx ∧ Cy ∧ x ≠ y) → (¬Txy ∧ ¬Tyx)) 

                                 ¬∃x(Cx ∧ Txx)     

                           ∃x∃y (Cx ∧ Cy ∧ x ≠ y)            Valid. 

A13. (i) equivalent 

A14. ∃!xPx means there’s exactly one thing with property P.  (i) valid; (iii) invalid 

A15. (a)   ∀x(Cx→Dtx)        (c)           ∃x(x < f ∧ Ex) 

              ¬∃x(Cx ∧ Dxt)      ∀x∀y(x<y → ∃z(x <z ∧ z <y)) 

                         Cs          ∴  ∃x(x <f ∧ ∃y(y < x ∧ Ey)) 

           ∴ ∃x(Dtx ∧ Dxt)  NOT Valid.            Valid. 

A16. (a)  ∃x∀yLxy; (c) ∃x∀y(Lyy→ Lxy); (e) ¬∃x(∃yLxy ∧ ∃z(Lxz ∧ ¬∃wLzw)) 
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A17. (a) ∀x(Cx → Lbx)            (c)  ∀x∀y (∃zLyz → Lxy) 

    ¬∃x(Cx ∧ Lxb)                                Lrj    

               Cw                  ∴  Lfw  

  ∴ ∃x(Lbx ∧ ¬ Lxb)                          Valid. 

            Valid. 

 

Interpretations and Counterexamples 

B1.          (i) ∃x (Cx → Tx) 

              ∃x (Tx ∧ Cx)     Not valid. Counterex: Domain = {1}, C= { }, T = { } 

        (iii) ∃x Txr → Tgr 

               Tgr → ∀y Tyr 

        ¬(∃x Txr ∧ ∃x ¬Txr)     Valid.  No counterex. 

B2. (a) False, because parallel lines don’t intersect. 

B3. For the knight case, you can take:  

Domain={Arthur, Lancelot}, Knaves={Lancelot}, Knights={Arthur} 

For the knave case, you can take:  

Domain={Arthur, Lancelot}, Knaves={Lancelot, Arthur}, Knights={  } 

B4. (i) false; (iii) true; (v) true 

B5. (a) False, because the number 1 is odd but there are no positive even numbers less 

than it! 

B6. (a) With Domain = {1} and Pxy taken to mean x=y, trivially satisfiable!  

(c) unsatisfiable 

B7.  (a) ∀x(Fx ↔ ∀yHyx) ∴ ∀x∀y((Fx ∧ Fy) → Hxy), valid. 
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  (c) ∀x∀y((Lx ∧ By) →Txy), ∀x∀y(x≠y → (Lx ↔¬Ly)), ∴ ∃x∃y(x≠y ∧ Txy) not valid.  

Counterex: Domain = {a}, L={ }, B={ }, T={ }  

 (always shoot for a simple counterexample by trial and error first!!!) 

B8. (a) ∃x(Sx ∧ ∀y(Cy→y=x)), Cb, Tb∴∀x(Cx→Tx), valid. 

 (c) ∀x(∀y(Osy→Oxy)→Osx) ∴  Oss ∧ ∀x(Osx → x=s), not valid,  

     counterex: Domain ={s,a}, O ={(s,s), (a,s), (s,a)}  

B9. (i) False, because shape a is not a triangle. 

(iii) False, because g is neither a triangle nor square. 

(v) False, because g has nothing left of it. 

(vii) True  ;  (ix) True 

B10. (1) ∀x∃yIxy, which is true because every statement implies itself! 

   (3) ∀x∀y(∀z(Ixz ↔ Iyz) → Exy), which is true because if x and y have the same 

implications, then since x implies itself, y must imply x too, and also (by the same 

argument) x must imply y, which means x and y must be equivalent. 

   (5) This says: ‘Every statement fails to imply some statement’, which is equivalent 

to saying: ‘No statement implies all statements’.  But contradictions do!  So the 

stated claim is false. 

   (7) This says: ‘Some statements are equivalent to anything they imply’— Yes, that’s 

right: just consider any tautology! 

B11.  1. False.  To make it True, remove a’s feather.   

3. False.  To make it True, increase a’s and c’s heights to the second line. 

5. False.  To make it True, give d’s hat to b and remove d’s feather. 
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B12. (a) false; (c) true;  (e) true; (g) true;  (i) true; (k) false 

B13. (a) Case where true:  Domain = {1}, R = { };  

              Case where false: Domain = {1}, R= {(1,1,1)} 

         *Note: These are obviously not the only possible answers! 

  (c) Case where true: Domain = {1,2}, P = {1,2}, Q = {1,2};  

       Case where false: Domain = {1}, P= { }, Q = { } 

 B14. (i) False; (iii) True; (v) True; (vii) True 

B15. (i) false  (iii) false  (v) false  (vii) false  (ix) true  

 

Functions 

C1. (i) a=mfb;  (iii) fa=fb  ∧  ma=mb  ∧  a≠b; (v) ∃x (a=fmx ∨ a=ffx)   

C2. (a) a and b are siblings 

(c) a is b’s brother;  (e) b is a’s father        

 

CHAPTER V 

 

The Propositional Calculus 

A1. Justification for the sequence:  in initial set, Axiom 1, Axiom 1, Axiom 2, Modus 

Ponens, Modus Ponens, Axiom 9, Axiom 10, Modus Ponens, Axiom 1, Modus Ponens, 

in initial set, Modus Ponens. 

So, Yes ⇒ a legit deduction of ¬¬p |– p.  Simple deduction is:  ¬¬p,   ¬¬p →p,    p   ! 

                                                                                              In initial set    Ax.10       MP 
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A2. 1. axiom 2; 2. axiom 1; 3. in initial set; 4. modus ponens; 5. axiom 1; 6. axiom 5; 7. 

modus ponens; 8. in initial set; 9. axiom 9; 10. modus ponens; 11. modus ponens; 12. 

axiom 10; 13 modus ponens; 14. You ain’t foolin’ me!  

A3. For first sequence, justification is: in S, in S, Axiom 5, MP, MP; so the sequence is 

indeed a legitimate deduction from S. 

A4. tautology goes with theorem 

  unsatisfiable goes with formally inconsistent 

  valid argument goes with deduction 

  valid argument, no premises goes with proof 

A5. (i) S |– p ⇒  S |=  p.   Every deduction in the propositional calculus generates a valid 

argument! 

(iii) To show that logic (at least propositional logic without quantifiers) can be 

completely captured through formal rules of symbol manipulation without any 

reference to the external (and potentially problematic) notion of ‘truth’ or ‘meaning’.  

A6. (a) false; (c) true; (e) false; (g) true; (i) false 

A7. Because if p |–  r, then clearly p,q |–  r for any q, from which it follows by the 

deduction theorem that p |–  (q→r). 

A8.  (a) The Deduction theorem says: S, p |–  q if and only if S |–  p → q. 

Assuming completeness and soundness, all we have to show is:  

S, p |=  q iff S |=  p → q  (*) 

because we could then argue as follows:  

S, p |–  q   ⇔   S, p |=   q  ⇔  S |=   p → q   ⇔   S |– p → q. 
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Argument for (*).  Assuming S, p |=  q, it follows that {S, p, ¬q} is unsatisfiable.  So if all 

statements in S are true, p → q can't be false; because if it were, both p and ¬q would 

have to be true as well, contradicting the unsatisfiability of {S, p, ¬q}.  So if all 

statements in S are true, so is p → q, which is just to say that S |=   p → q.  Now we need 

to argue the other way around.  If S |=   p → q, then there’s never a case where all the 

statements in S are true and p → q is false, i.e. p true, ¬q true.  So {S, p, ¬q} is 

unsatisfiable, which implies S, p |=  q.  

A9. (i) If S |–  p→q then there is a legitimate deduction sequence of form S, …, p.  

Similarly, if p |–  q then a legitimate sequence p, …, q exists.  So now just concatenate 

these 2 sequences to yield the following legitimate sequence:  S, …, p, p, …, q which 

justifies S |– q ! 

(iii)  First note that p,q  |–  p ∧ q which is justified by the sequence: p, q, p → (q → (p ∧ 

q)), q→ (p ∧ q), p ∧ q.  Now suppose S |–  p, i.e. S, …, p is a legitimate deduction 

sequence, and S |–  q, i.e., S, …,q is legitimate.  Since p,q, …, p ∧ q is legitimate (as we've 

just shown), concatenating these three sequences gives S, …, p, S, …, q, p, q,…, p ∧ q, 

which also is a legitimate deduction sequence, thus establishing S |–  (p∧q). 

A10. (a) By completeness and (strengthened) soundness, all you have to argue is that:                        

∃q: S  |=   q  and  S  |=   ¬q    if and only if     ∀p:  S  |=   p 

But that’s clear: if the left-hand side is true, then S can’t be satisfiable, which means that 

the right-hand side is true.  (The argument from right to left is trivial.) 

 
 


