Measurable Cardinals
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Let « be an infinite cardinal. A k-complete nonprincipal ultrafilter, or, for
short, a k- ultrafilter on a set A is a (nonempty) family U of subsets of A

satisfying (i) Sc U & |S|! <k =S € U (k-completeness) (ii) X € U &
XcYcA=YelU, (i) VXcA[Xe UorA-Xe U (iv) {&4 ¢ Ufor any a
e A. Notice that, if these conditions are satisfied, then every member of U
has cardinality > k, U contains the complement of every subset of A of

cardinality < k, and, for any Sc PA2 if |S| <k and US € U, then Sn U=

.

The cardinal «k is said to be measurable if k > No and there exists a
k-ultrafilter on any set of cardinality «k, or, equivalently, on « itself.
Henceforth, we fix a measurable cardinal ¥ and a k-ultrafilter U on «.

Now let @ = (V, €) be the universe of sets and write V" for the

collection of all functions with domain k. Define the equivalence relation
~on V* by stipulating, for f, g € V", that

f~g & £<xfle) =9} e U
For each f e V" let o5 be the least rank of an element g € V* for which f~ g
and define

f/U ={geV": rank(g) = or& f~ g
Evidently f/U =g/U < f~ g. Now define
Ve /U = {f/U: fe V}.
And define the relation Eon V* /U by

(f/UE(g/U) < & < «: flg) € g€); € U.
(Observe that

(7UE(g/U) = f/U e {h/U: h e(Urange(g))"}
so that { f/U: (f/UE(g/U)} is a set.)

The structure
B /U=(V"/U, E)
is then the ultrapower of BV over U. This being the case, we have

Lo$§’s Theorem for ¥“/U. Let o¢(vo,..., vn) be a formula of the
language of set theory and let fo,..., fn € V*. Then we have

B/ UE oo/ U,..., fa/ U) < {& <x: @(fo(§)..., fal))} € U W

1 We write | X| for the cardinality of a set X.
2 For any set X, PX denotes the power set of X.



For each x € V, let X be the map on k with constant value x, and
define d: V— V* /Uby

dx) = x/U.
Putting )?l for fiin Los’s theorem, we get
B/ Uk o(d(x0),..., d(xn) < ¢(xo,..., Xn).
Thus d is an elementary embedding of B into B*/U. In particular
B*/ Uk ZFC.

Next, we show that E is well-founded on V" /U. For suppose that
fo, fi,... is a sequence of members of V* such that (fu+1/U)E(fn/ U) for all
n € o. Then

Xn=1{€ < x: fur1(€) € ful§)} € U
for all n, so that ﬂ X, € U by k-completeness of U. In particular U= &, so

new

we may choose & € ﬂXn. In that case fn+1(80) € fulo) for all n,

nemw

contradicting the well-foundedness of €. Therefore is well-founded.
Accordingly ¥*/ U is isomorphic to a (unique) transitive e-structure
M= (M, €),
where the isomorphism e is given by
e(f/U) = {elg/ U): (9/ UE(f/ U);.
Since d is an elementary embedding of B into B*/ U, the composite
j=eod
is an elementary embedding of B into M.
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We now note the following fact: for a < k, we have
(*) (7 UEd() < 3B<alf/U =d(B)].
For
(/UEd(0) < {£<x:fl§)eajeU
= JE:fe)=preU

B<a

< [@P<a)§: ) =peU
= & IB<alf/U = d)).

Lemma 1. j(&) = € for all & < k.
Proof. By induction on &. Suppose & < x and (Vn<§) j(n) = n. Then



JE) = e(d(€))={e(f/ U): (f/UEA(E)} ={e(dn)):n <& (by () ={n):n<g=¢E ™
Now let ORD be the class of all ordinals.

Lemma 2.
(i) j|ORD is an order preserving map of ORD into itself.

(ii) o < jo for all a.
(iii) ORD c M.
Proof. (i) If o € ORD, then since jis elementary,
M E jo is an ordinal,
so jo really is an ordinal. Similarly, o < f = MF ja < jB = jo < jB.
(ii) follows immediately from (i).
(iii) We have o < ja € M, so a € M by transitivity of M. ®

Lemma 3. « < jk.
Proof. Let id be the identity map on k. By Los’s theorem, we have
B*/UE id/ U is an ordinal,
whence
M E e(id/ V) is an ordinal,
And therefore a = e(id/ U) actually is an ordinal. If § < k, then
m<w &m) <idm) e U,
so that d(§)E(id/ U), whence & = j& < a. Hence « < a. On the other hand,
we have
m<xidm) < xm)} e U,
so that by Los’s theorem (id/ U)Ed(k), whence a < jk. The result follows. H

We have therefore proved

Theorem 1. Let x > No be a measurable cardinal. Then there is an
elementary embedding j of the universe of sets @ into a transitive e-

structure M = (M, e) (containing ORD) such that jk > x and j€ = & for all
E<k. N

The converse of this result also holds.

Theorem 2. Suppose that ¥k > No and there is an elementary
embedding j of B into a transitive e-structure M = (M, €) such that jk > «
and j€ = ¢ for all & < k. Then «k is measurable. In fact, the set

U={xcxk: ke jxg
is a k-ultrafilter on k.



Proof. (i) U;jis “ultra”. If x c x, then since jis elementary and M is
transitive, we have: jlk — x) = jk — jx. Thus since k € j, either k € jxor x €
Jjik—x). Hence x € U ork —x € U;.

(ii) xe U &xcycxk = ye U. Similar to (i).

(iii) U; is nonprincipal. If < k, then

Vn<kn e & =n =g,
so
vn<jk[n € f& < n =€ =gl
Hence j{&} = {£} and consequently {&} ¢ U;.

(iv) U;is x-complete. Suppose a < x and g: o —» U;j. We want to

show that ﬂ g(&) e U;. For this it suffices to establish
<o
(*) J(gE)=1Jge).
E<a £<a
Writing b = ﬂ g(&), we have

E<a

vnn € b < (VEé<a)n € g(§)],
SO
vnn € jb < (V&<an € (jg)(§)]-
Since jg = &, we have (j(g)(€) = (jg)(€) = j(g(€)), so that
Vnn € jb < (V&<a)n € j(g(d))],
which is (*). H®

Theorem 3. If ¥ is measurable, it is inaccessible.
Proof. Suppose k measurable, and fix j, M to satisfy the conditions
of Theorem 1.
Were k singular, there would exist a < k and a map f: o > k with
range(f) cofinal in . In that case
M E jf: o > JjK,
and since Vé<kan<a(§ < f[n),

M = vE<jkIn<a(§ < (M)
Since k < jk, there is accordingly n < a for which k < (jfj(n). But f(n) < x, so
M) = (@) = jifin)) = fin) < x.

Contradiction. So « is regular.

Suppose now that a < k and k < 2% Let fbe an injection of k into
Po; then jfis an injection of jk into Pa. We show that:

(i) x =jx for all x < a. For

Eex=>8E=j € jx
and
Eejx=>fejxcjo=a=>>jE=Ee jx=>8 € x
(ii) range(jf) < range(f]. For if x € range (jf), then x < a and x = jx.



Also M= FE[(E, jx) € jfl, so that FE[(E, x) € f], whence FE[fE = x|, and so x €
range (f).
Finally, if £ < k, then, using (i),
N(E) = (GE) = JAS) = A).
From this it follows, using the injectivity of jf, that (jfj(x) ¢ range(f],
contradicting (ii). ®

A x-ultrafilter U on a measurable cardinal « is normal if whenever
f e " satisfies then there is a < k for which

fe<x: fle) = oy  U.

Los’s theorem immediately yields
Lemma 4. Uis normal iff e(id/U) =x. W

Lemma 5. If « is measurable, there is a normal ultrafilter on «.
Proof. Let j, M satisfy the conditions of Thm. 2 We show that U}, as
defined in the proof of that theorem, is a normal ultrafilter on «.
Suppose f e k" and
A={g< fle) <& e U
Then A € jA. Also, we have

Ve<k[§ € A= fiG) < &,
Ve[ € JA < ((©) < &}

Since k < jk and k € jA, it follows that (jfJ(x) < k. Hence there is < « for
which

() (iA(<) = B.

Putting B = {£<x: fi§) = B}, then, as before, since j} = 8, we have
VE<K[E € JB <= (/)(E) = B);

hence, by (*), x € jB,so Be U, R

and so

Lemma 6. Let U be a normal ultrafilter on the measurable cardinal
K, and let M be the transitive e-structure isomorphic to B*/U. Then, for
any formula ¢(vo) of the language of set theory,

ME o] <= {&=<x: o(E)} € U.
Proof. By Lemma 4 and Los§’s theorem, we have
M = ¢lx]
<SME ole(id/ U)]
< B/ UFE olid/ U]

o <k glid(E) e U
o<k g e U m



Theorem 4. If « is measurable and U is a normal ultrafilter on x,
then
{€<x: & is inaccessible} € U.
Proof. Write In(§) for “¢ is inaccessible”. We know that In(x) by

Theorem 3, so M F In|k}. The result now follows from Lemma 6. H

Lemma 7. Let k be measurable, U a normal ultrafilter on «, and let

M = (M, €) be the transitive e- structure isomorphic to B/ U. Then
Px € M.

Proof. It is enough to show that Px < M. For then, since M ZFC,
we have P™x € M and P®x = Px N M = Px.

As before, we let d : B° < B*/U and e: B/ U = M. Let a € Px; we
show that a € M. To do this, we define fe V* by

fl)=ang

a=-e(f/U) € M.
To do this it suffices to show:
() (9/VE(f/VU) < FJaedg/U = d(a)].

One direction is easy: indeed if a € a, then

< afg) e fE) U,

for & < k, and prove that

whence
do) = a/U E f/U.
Conversely, suppose that (g/U)E(f/U). Then

(8) 9 eang el
so that

€ g(6) <& e U
Since Uis normal, there is a < k such that
(88) 9@ =0 el
whence

g/ U =d(a).

But

£ gl eagniggle)=ocitaca,
and, by (§) and (8§), the intersection on the left of “<” is a member of U .
So therefore is the set on the right, which means that a € a. This proves
(*), and the Lemma. H

Theorem 5. Let «x be measurable, and let U be a normal ultrafilter
on k. If
fh<i: 28 =A% e T,
then
2" = k*.
Thus, if 2° > k*, then



| fh<ic: 2% > A1} = «.

Proof. Let M = (M, €) be the transitive e-structure isomorphic to
B*/ U. Suppose now that
fh<x: 28 =24 e U
Then by Lemma 6,

ME 2° = k*.
That is,
ME If[f: wr —22 Pk,
and hence
(*) 3 fo (K+)(ED?) onto P(%K],
Now, by Lemma 7, Px € M, so P?x = Px. Therefore, by (*)
(**) |Pic| < [(x)™].

But clearly (k)™ < x*, so |kY)®|< «*, and hence, by (**),|Px| < «x*.
Therefore 2“ =x*. M

Theorem 6. (Scott) If there is a measurable cardinal, then V= L.
Proof. Suppose that a measurable cardinal exists and let ko be the

least one. Let U be a k-ultrafilter on «, let M = (M, ) be the transitive

e-structure isomorphic to /U, and let j: M — BV*/ U be the associted
elementary embedding. If V = L, then then M = V since M is a transitive
model of ZFC containing ORD. (Accordingly j is an elementary self-
embedding of B.) Let ¢(x) be the formula expressing: x is the least
measurable cardinal. Then we have ¢(ko), so that

M E o[jko].
Since M =V, it follows that ¢(jko). Therefore jko would itself be the least
measurable cardinal, contradicting the fact (Lemma 3) that ko < jiko. ®

Corollary. If k¥ is measurable and U is a k-ultrafilter on x, then
Ueg L.
Proof. Suppose U € L. Then, since k € L,

(L, €) F x is measurable.
But, by Theorem 6,
ZFC - Jk(x is measurable) — V# L.

Since (L, €) F ZFC, it follows that
(L,e)F V=L,
a contradiction. H



For each set X write Fin(X) for the collection of all finite subsets of
X, and, for each n € o, X"l for the collection of all n-element subsets of X.

A cardinal « is a Ramsey cardinal if for each set I with |I| < k¥ and
each f: Fin(k) > Ithere is a subset Z c k such that |Z| =x and |f|[Z"]|=
1 for all n € o. Under these conditions Z is said to be homogeneous for f.
Equivalently k is Ramsey if for each partition {Ci i € I} of Fin(x) with
|I| < x there is a subset Z ¢ « with |Z| = « and a sequence i1, i,... € |
such that Z"' c C, for I=1,2,....

Theorem 8. Each measurable cardinal is Ramsey.
Proof. Let k > X0 be measurable and let U be a k-ultrafilter over «.
Now suppose |I| <k, f: Fin(k) > [, and X e «[". Define
Ai={y: iIX U (Y) =
for each i € I Then {A: i € I} forms a partition of k and consequently
exactly one of the A;is in U. We put
f4X) = that i for which A;e U.
Thus f* Fin(k)— I We now define fo = f, fi = fo*, ..., far1 = fn*, .... Let
S=Zcx: VnVX[Xc ZA | X| =n= VmM[fn(X) = fmnlD)]]}-
It is easy to see that S is closed under unions of chains, so it has a
maximal member Zp. It is clear that each member of S is homogeneous
for f, so to prove the Theorem it suffices to show that |Z| = k.
Suppose on the contrary that | Z| < k. We will show that Zy can be
extended to a larger member of S, contradicting the former’s maximality.
Let X € Fin(x) and |X| =n-1. Then for m € ® we have
Jn*(X) = frs1(X) = fmen(D),
and so, by definition of fi*,
DX, m) = {y: fu(X U {y}) = frmen(D)} € U.
Hence
D(X)= (| DX,m)eU,
and, since |Z| <k,
D, = (] DX) eU.
XeFin(x)

Clearly, if ye D, , X< Zo and |X| =n-1, we have forall m e o

JmlX W {Y)) = frmen(D),
so that Zo U {y} € Sforall ye D, . Since D, €U, | D, |=« and so there is

Yo € D, - Z,. Hence Zo U {yo} € Sis the required proper extension of Zo. ®

Now let U be a structure and let %4 be the language for U. Let p(%)
be the number of symbols in %, . We shall say that U is good if whenever
B is a substructure of U closed under the A-denotations of all Zterms,
then B < 9.



Fact. Each structure U has a good expansion B for which p(Q) =
1(B). (B may be obtained by expanding U to a Skolem structure.)

Lemma 8. Suppose that k is measurable . Let A =(A, R,...) be a
structure with p() = No, R< A, |A| = x and |R| < k. Then ¥ has an
elementary substructure B =(B, S,...) with |B| =k and | S| < No.

Proof. We may assume without loss of generality that U is good.
Let |R| = B < k. Choose a linear ordering < of A and an element a € A —
R. Let T be the set of all #-terms, and let

I=(Rv{a)".
Since |T| = Yo, |R| = B, and « is strongly inaccessible, we have |I| =
Yoo<k.

Now define a partition {Ci: i € I} of Fin(A) as follows. Call a term
t e T an n-term if all its free variables are among uy,...,Un, SO enabling t
to be written as t(vo,...,vr). Let

x ={ao,...,an-1} € Fin(4)

with ao <... <an-1. Then we put x € C; where i € Iis given by:

i(f) = aif tis not an nterm or tis an n-term and #(ao,...,an-1) ¢ R
i(f) = wif tis an n-term and (ao,...,an-1) ¢ R.

Since k is a Ramsey cardinal, there is a subset X ¢ A of cardinality
k and elements i, i,... € I such that
xX"MeccC ,n=1,2,..
Let B be the closure of X under the denotations in U of all £-terms, and
let B = (B, S, ...) be the restriction of A to B. Then | B| =« and since U is

good, B <. It remains to show that | S| < No.
Now each b € Sis of the form
b = #(xo,...,Xn1)
for some t € T and some xp <...< Xp-1 € X. Since
{x0,...,xn1} € X" C .,
we have i,(t) = b. Hence
b e U range(i,)

neo

and so
S c U range(i,).

new

Thus | S| < No.|T| = No. H

We conclude with
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Theorem 8. (Gaifman-Rowbottom). If a measurable cardinal exists,
then Po N L is countable, in particular, there are only countably many
constructible real numbers.

Proof. Suppose given a measurable cardinal k. Let R =

Po N L; then R c L.. Consider the structure U = (L, €, R). We have |L| =
k, and |R| < 2% < k. Hence, by Lemma 8, there is a structure B =
(B, €, S) suchthatB< 9, |B| =k and |S| < No. Then (B, €) = (L, €),
and so there is a unique & for which there is an isomorphism fof (B, €)

onto (L, €). Now we have
€] = |L| = |B| =,
whence & > . But every ordinal of (B, €) is an ordinal of (L, €) (the two
structures being isomorphic), so the ordinals of the former have order
type < k. It follows that & < k, so that £ = x, whence
f: (B, €)=(L, €).
Now let P be a unary predicate symbol; take P* = Rand P® = S. Since
the formula x € o is absolute, we have
AE VX[P(x) & VYyly € x> y € 0],
whence
BEVXPH) < Vyly € x> y € 0)].
Therefore, if b € b, we have
beS o BEVylye b—> ye )
< (L, €) FVyly € fib) > y € 0)]
< filb) e R

Accordingly fcarries S onto R, whence
|[PonL| = |R| < [S]| < No
as required. H



