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Let κ be an infinite cardinal. A κ-complete nonprincipal ultrafilter, or, for 
short, a κ- ultrafilter  on a set A is a (nonempty) family U of subsets of A 
satisfying (i) S ⊆ U & |S|1 < κ ⇒ ∩S ∈ U  (κ-completeness) (ii) X ∈ U &       
X ⊆ Y ⊆ A ⇒ Y ∈ U,  (iii) ∀X ⊆ A [X ∈ U or A – X ∈ U]  (iv) {a} ∉ U for any a 
∈ A. Notice that, if these conditions are satisfied, then every member of U 
has cardinality ≥ κ, U contains the complement of every subset of A of 

cardinality < κ, and, for any S ⊆ PA2, if |S| < κ and ∪S ∈ U, then S ∩ U ≠ 
∅. 

The cardinal κ is said to be measurable if  κ > ℵ0 and there exists a 
κ-ultrafilter on any set of cardinality κ, or, equivalently, on κ itself. 
Henceforth, we fix a measurable cardinal κ and a κ-ultrafilter U on κ.   
 Now let V = 〈V, ∈〉 be the universe of sets and write V κ  for the 
collection of all functions with domain κ. Define the equivalence relation 
∼ on Vκ  by stipulating, for f, g ∈ V κ , that 

f ∼ g  ⇔  {ξ < κ: f(ξ) = g(ξ)} ∈ U. 
For each f ∈Vκ let σf be the least rank of an element g ∈Vκ

 for which f ∼ g 
and define 

f/U  = {g ∈V κ : rank(g) = σf &  f ∼ g}. 
Evidently f/U  = g/U   ⇔  f ∼ g. Now define  

V κ /U  =  {f/U: f ∈ Vκ }. 
And define the relation E on  V κ  /U  by  

(f/U)E(g/U)  ⇔ {ξ < κ: f(ξ) ∈ g(ξ)} ∈ U. 
(Observe that  

(f/U)E(g/U)  ⇒  f/U  ∈ { h/U: h ∈(∪range(g))κ} 
so that { f/U:  (f/U)E(g/U)}  is a set.)  
 The structure  

Vκ/U = 〈V κ /U , E〉  
is then the ultrapower of V over U. This being the case, we have 
 
 Łoś’s Theorem for Vκ/U.  Let ϕ(v0,…, vn) be a formula of the 
language of set theory and let f0,…, fn ∈ V κ . Then we have 

Vκ/U  ϕ(f0/U,…, fn/U)  ⇔  {ξ < κ: ϕ(f0(ξ)…, fn(ξ))} ∈ U.   

                                               
1 We write |X| for the cardinality of a set X. 
2 For any set X, PX denotes the power set of X. 
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 For each x ∈ V, let lx  be the map on κ with constant value κ, and 
define d: V → V κ /U by  

d(x) = lx/U. 
Putting lix for fi in Łoś’s theorem, we get 

Vκ/U  ϕ(d(x0),…, d(xn)  ⇔ ϕ(x0,…, xn).  
Thus d is an elementary embedding of V into Vκ/U.  In particular 

Vκ/U  ZFC.    
 Next, we show that E is well-founded on V κ /U. For suppose that   
f0, f1,… is a sequence of members of Vκ such that (fn+1/U)E(fn/U) for all    
n ∈ ω. Then  

Xn = {ξ < κ: fn+1(ξ) ∈ fn(ξ)} ∈ U 
for all n, so that 

∈ω

∈∩ n
n

X U by κ-completeness of U. In particular U ≠ ∅, so 

we may choose ξ0 ∈ 
∈ω
∩ n
n

X . In that case fn+1(ξ0) ∈ fn(ξ0) for all n, 

contradicting the well-foundedness of ∈. Therefore is well-founded.  
 Accordingly Vκ/U is isomorphic to a (unique) transitive ∈-structure 

M = 〈M, ∈〉,  
where the isomorphism e is given by 

e(f/U) = {e(g/U): (g/U)E(f/U)}. 
Since d is an elementary embedding of V into Vκ/U, the composite  

j = e  d 
is an elementary embedding of V into M.  
 
 
  
 
 
 
 
We now note the following fact: for α < κ, we have  
(*)                                  (f/U)Ed(α)  ⇔  ∃β<α[f/U = d(β)]. 
For 

(f/U)Ed(α)  ⇔  {ξ < κ: f(ξ) ∈ α} ∈ U 
                                                    ⇔  

β<α

ξ ξ = β ∈∪ { : ( ) }f U  

                                                 ⇔  (∃β<α){ξ : f(ξ) = β} ∈ U 
�                                               ⇔   ∃β<α[f/U = d(β)]. 
 

Lemma 1. j(ξ) = ξ for all ξ < κ. 
Proof. By induction on ξ. Suppose ξ < κ and (∀η<ξ) j(η) = η. Then 

V  →d Vκ/U 
 
           j                e   
 
                   M 
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j(ξ) = e(d(ξ))= {e(f/U): (f/U)Ed(ξ)} = { e(d(η)): η < ξ} (by (*)) = {j(η): η < ξ} = ξ.  
Now let ORD be the class of all ordinals.  

 
 Lemma 2.  

(i)  j|ORD is an order preserving map of ORD into itself. 
(ii)  α ≤ jα for all α. 
(iii)  ORD ⊆ M. 
Proof. (i)  If α ∈ ORD, then since j is elementary,  

M  jα is an ordinal, 
so jα really is an ordinal. Similarly, α < β ⇒ M  jα < jβ ⇒ jα < jβ.  
(ii) follows immediately from (i).  
(iii) We have α ≤ jα ∈ M, so α ∈ M  by transitivity of M.    
 
 Lemma 3.  κ < jκ. 
 Proof. Let id be the identity map on κ. By Łoś’s theorem, we have  

Vκ/U  id/U is an ordinal, 
whence  

M  e(id/U) is an ordinal,  
And therefore α = e(id/U) actually is an ordinal. If ξ < κ, then  

{η < κ: ξ η�( ) < id(η)} ∈ U, 
so that d(ξ)E(id/U), whence ξ = jξ < α. Hence κ ≤ α. On the other hand, 
we have 

{η < κ: id(η) < �κ η( ) } ∈ U, 
so that by Łoś’s theorem (id/U)Ed(κ), whence α < jκ. The result follows.   
 
 We have therefore proved 
 
 Theorem 1.  Let κ > ℵ0 be a measurable cardinal. Then there is an 
elementary embedding j of the universe of sets V into a transitive ∈-
structure M = 〈M, ∈〉 (containing ORD) such that jκ > κ and jξ = ξ for all   
ξ < κ.    
 
 The converse of this result also holds. 
 
 Theorem 2. Suppose that κ > ℵ0 and there is an elementary 
embedding j of V into a transitive ∈-structure M = 〈M, ∈〉 such that jκ > κ 
and jξ = ξ for all   ξ < κ. Then κ is measurable. In fact, the set  

Uj = {x ⊆ κ: κ ∈ jx} 
is a κ-ultrafilter on κ.  
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 Proof. (i) Uj is “ultra”. If x ⊆ κ, then since j is elementary and M is 
transitive, we have: j(κ – x) = jκ – jx. Thus since κ ∈ j, either κ ∈ jx or κ ∈ 
j(κ – x). Hence x ∈ Uj  or κ – x ∈ Uj . 
 (ii)  x ∈ Uj  & x ⊆ y ⊆ κ   ⇒  y ∈ Uj . Similar to (i). 
 (iii) Uj is nonprincipal.  If ξ < κ, then  

∀η<κ[η ∈ {ξ} ⇔ η = ξ], 
so 

∀η<jκ[η ∈ j{ξ} ⇔ η = jξ = ξ]. 
Hence j{ξ} = {ξ} and consequently {ξ} ∉ Uj . 

(iv) Uj is κ-complete. Suppose α < κ and g: α → Uj . We want to  
show that 

ξ<α

ξ∩ ( )g ∈ Uj . For this it suffices to establish 

(*)                                       
ξ<α ξ<α

ξ = ξ∩ ∩( ( )) ( ( )).j g j g  

Writing  b = 
ξ<α

ξ∩ ( )g , we have 

∀η[η ∈ b  ⇔ (∀ξ<α)η ∈ g(ξ)], 
so 

∀η[η ∈ jb  ⇔ (∀ξ<α)η ∈ (jg)(ξ)]. 
Since jξ = ξ, we have (j(g)(ξ) = (jg)(jξ) = j(g(ξ)), so that 

∀η[η ∈ jb  ⇔ (∀ξ<α)η ∈ j(g(ξ))], 
which is (*).    
 
 Theorem 3. If κ is measurable, it is inaccessible. 
 Proof. Suppose κ measurable, and fix j, M  to satisfy the conditions 
of Theorem 1.  
 Were κ singular, there would exist α < κ and a map f : α → κ with 
range(f) cofinal in κ. In that case 

M  jf: α → jκ, 

and since ∀ξ<κ∃η<α(ξ ≤ f(η),  

M  ∀ξ<jκ∃η<α(ξ ≤ (jf)(η)). 

Since κ < jκ, there is accordingly η < α for which κ ≤ (jf)(η). But f(η) < κ, so 
(jf)(η) = (jf)(jη) = j(f(η)) = f(η) < κ. 

Contradiction. So κ is regular. 
 Suppose now that α < κ and κ ≤ 2α. Let f be an injection of κ into 
Pα; then jf is an injection of jκ into Pα. We show that: 
 (i) x = jx for all x ⊆ α. For  

ξ ∈ x ⇒ ξ = jξ ∈ jx 
and  

ξ ∈ jx ⇒ ξ ∈ jx ⊆ jα = α ⇒ jξ = ξ ∈ jx ⇒ ξ ∈ x. 
(ii) range(jf) ⊆ range(f). For if x ∈ range (jf), then x ⊆ α and x = jx.   
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Also  M  ∃ξ[〈ξ, jx〉 ∈ jf], so that ∃ξ[〈ξ, x〉 ∈ f], whence ∃ξ[fξ = x], and so x ∈ 
range (f). 

Finally, if ξ < κ, then, using (i), 
(jf)(ξ) = (jf)(jξ) = j(f(ξ)) = f(ξ). 

From this it follows, using the injectivity of jf, that (jf)(κ) ∉ range(f), 
contradicting (ii).   
 
 A κ-ultrafilter U on a measurable cardinal κ is normal if whenever    
f ∈ κκ satisfies then there is α < κ for which 

{ξ<κ: f(ξ) = α} ∈ U. 
Łoś’s theorem immediately yields 
 
 Lemma 4. U is normal iff  e(id/U) = κ.    
 
 Lemma 5. If κ is measurable, there is a normal ultrafilter on κ. 
 Proof. Let j, M satisfy the conditions of Thm. 2 We show that Uj, as 
defined in the proof of that theorem, is a normal ultrafilter on κ.  
 Suppose f ∈ κκ and  

A = {ξ<κ: f(ξ) < ξ} ∈ Uj. 
Then A ∈ jA. Also, we have 

∀ξ<κ[ξ ∈ A ⇔ f(ξ) < ξ}, 
and so 

∀ξ<jκ[ξ ∈ jA ⇔ (jf)(ξ) < ξ}. 
Since κ < jκ and κ ∈ jA, it follows that (jf)(κ) < κ. Hence there is β < κ for 
which  
(*)                                                  (jf)(κ) = β. 
Putting B = {ξ<κ: f(ξ) = β}, then, as before, since jβ = β, we have  

∀ξ<jκ[ξ ∈ jB ⇔ (jf)(ξ) = β}; 
hence, by (*), κ ∈ jB, so B ∈ Uj.    
 
 Lemma 6. Let U be a normal ultrafilter on the measurable cardinal 
κ, and let M be the transitive ∈-structure isomorphic to Vκ/U. Then, for 
any formula ϕ(v0) of the language of set theory,  

M  ϕ[κ]  ⇔  {ξ<κ: ϕ(ξ)} ∈ U. 
 Proof.  By Lemma 4 and Łoś’s theorem, we have 

M  ϕ[κ]  

⇔ M  ϕ[e(id/U)]  
⇔ Vκ/U  ϕ[id/U] 
⇔ {ξ<κ: ϕ(id(ξ))} ∈ U  
⇔ {ξ<κ: ϕ(ξ)} ∈ U.   
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 Theorem 4. If κ is measurable and U is a normal ultrafilter on κ, 
then 

{ξ<κ: ξ is inaccessible} ∈ U. 
 Proof.  Write In(ξ) for “ξ is inaccessible”. We know that In(κ) by 
Theorem 3, so M  In[κ}. The result now follows from Lemma 6.    
 
 Lemma 7. Let κ be measurable, U a normal ultrafilter on κ, and let 
M = 〈M, ∈〉 be the transitive ∈- structure isomorphic to Vκ/U. Then 

Pκ ∈ M. 
Proof.  It is enough to show that Pκ ⊆ M. For then, since  M  ZFC, 

we have P(M)κ ∈ M and P(M)κ = Pκ ∩ M = Pκ.  
As before, we let d : Vκ  Vκ/U and e: Vκ/U ≅ M. Let a ∈ Pκ; we 

show that a ∈ M. To do this, we define f ∈ Vκ by  
f(ξ) = a ∩ ξ 

for ξ < κ, and prove that 
           a = e(f/U) ∈ M. 

To do this it suffices to show: 
(*)                            (g/U)E(f/U)  ⇔  ∃α∈a[g/U = d(α)]. 
 One direction  is easy: indeed if α ∈ a, then 

{ξ<κ: l( ) ( )}f Uα ξ ∈ ξ ∈ , 
whence 

d(α) = l/Uα  E  f/U. 
 Conversely, suppose that (g/U)E(f/U). Then  
(§)                                      {ξ: g(ξ) ∈ a ∩ ξ} ∈ U, 
so that  

{ξ: g(ξ) < ξ} ∈ U. 
Since U is normal, there is α < κ such that 
(§§)                                       {ξ: g(ξ) = α} ∈ U, 
whence 

g/U = d(α). 
But  

{ξ: g(ξ) ∈ a} ∩ {ξ: g(ξ) = α} ⊆ {ξ: α ∈ a},  
and, by (§) and (§§), the intersection on the left of “⊆” is a member of U . 
So therefore is the set on the right, which means that α ∈ a. This proves 
(*), and the Lemma.    
 

Theorem 5. Let κ be measurable, and let U be a normal ultrafilter 
on κ. If 

{λ<κ: 2λ = λ+} ∈ U, 
then 

2κ = κ+. 
Thus, if  2κ > κ+, then 
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|{λ<κ: 2λ > λ+}| = κ. 
 

Proof.  Let M = 〈M, ∈〉 be the transitive ∈-structure isomorphic to 
Vκ/U. Suppose now that 

{λ<κ: 2λ = λ+} ∈ U. 
Then by Lemma 6, 

M  2κ = κ+. 
That is, 

 
   M  ∃f [f : κ+ onto→Pκ], 

and hence 
(*)                                    ∃f [f : (κ+)(M) onto→P(M)κ], 
Now, by Lemma 7, Pκ ∈ M, so P(M)κ = Pκ. Therefore, by (*) 
(**)                                           |Pκ| ≤ |(κ+)(M)|. 

But clearly (κ+)(M) ≤ κ+, so |(κ+)(M)|≤ κ+, and hence, by (**),|Pκ| ≤ κ+. 
Therefore 2κ = κ+.    
 
 Theorem 6. (Scott)  If  there is a measurable cardinal, then V ≠ L. 
 Proof.  Suppose that a measurable cardinal exists and let κ0 be the 
least one. Let U be a κ-ultrafilter on κ, let M = 〈M, ∈〉 be the transitive    
∈-structure isomorphic to Vκ/U, and let j : M → Vκ/U be the associted 
elementary embedding. If V = L, then then M = V since M is a transitive 
model of ZFC containing ORD. (Accordingly j is an elementary self-
embedding of V.) Let ϕ(x) be the formula expressing: x is the least 
measurable cardinal. Then we have ϕ(κ0), so that 

M  ϕ[jκ0]. 
Since M = V, it follows that ϕ(jκ0). Therefore jκ0 would itself be the least 
measurable cardinal, contradicting the fact (Lemma 3) that κ0 < jκ0.   
 
 Corollary.  If κ is measurable and U is a κ-ultrafilter on κ, then     
U ∉ L.   
 Proof.  Suppose U ∈ L. Then, since κ ∈ L,   

〈L, ∈〉  κ is measurable. 
But, by Theorem 6,  

ZFC  ∃κ(κ is measurable) → V ≠ L. 

Since 〈L, ∈〉  ZFC, it follows that 

〈L, ∈〉  V ≠ L, 
a contradiction.    
 



 8

 For each set X write Fin(X) for the collection of all finite subsets of 
X, and, for each n ∈ ω, X[n] for the collection of all n-element subsets of X. 
 A cardinal κ is a Ramsey cardinal if for each set I with |I| < κ and 
each f : Fin(κ) → I there is a subset Z ⊆ κ such that |Z| = κ and |f[Z[n]]|= 
1 for all n ∈ ω. Under these conditions Z is said to be homogeneous for f. 
Equivalently κ is Ramsey if for each partition {Ci: i ∈ I} of Fin(κ) with     
|I| < κ there is a subset Z ⊆ κ with |Z| = κ and a sequence i1, i2,… ∈ I 
such that Z[n] ⊆ 

ni
C for I = 1,2,…. 

 
 Theorem 8. Each measurable cardinal is Ramsey.  
 Proof. Let κ > ℵ0 be measurable and let U be a κ-ultrafilter over κ. 
Now suppose |I| < κ, f : Fin(κ) → I, and X ∈ κ[n]. Define 

Ai = {y: f(X ∪ {y}) = i}  
for each i ∈ I. Then {Ai: i ∈ I} forms a partition of κ and consequently 
exactly one of the Ai is in U. We put 

f*(X) = that i for which Ai ∈ U. 
Thus f*: Fin(κ)→ I. We now define f0  = f, f1 = f0*, …, fn+1 = fn*, …. Let 

S = (Z ⊆ κ: ∀n∀X[X ⊆ Z ∧ |X| = n ⇒ ∀m[fm(X) = fm+n(∅)]]}. 
It is easy to see that S is closed under unions of chains, so it has a 
maximal member Z0. It is clear that each member of S is homogeneous 
for f,  so to prove the Theorem it suffices to show that |Z0| = κ. 
 Suppose on the contrary that |Z0| < κ. We will show that Z0 can be 
extended to a larger member of S, contradicting the former’s maximality.  
 Let X ∈ Fin(κ) and |X| = n –1. Then for m ∈ ω we have  

fm*(X) =  fm+1(X) = fm+n(∅), 
and so, by definition of fm*, 

D(X, m) = {y: fm(X ∪ {y}) = fm+n(∅)} ∈ U. 
Hence  

D(X) = ( , ) ,
m

D X m U
∈ω

∈∩  

and, since |Z0| < κ, 
 

0
( )

( )Z
X

D D X
∈ κ

=
Fin
∩   ∈ U . 

Clearly, if 
0Zy D∈ , X ⊆ Z0 and |X| = n –1, we have for all m ∈ ω 

fm(X ∪ {y}) = fm+n(∅), 
so that Z0 ∪ {y} ∈ S for all 

0Zy D∈ . Since 
0ZD U∈ , 

0
| |ZD = κ and so there is 

00 0Zy D Z∈ − . Hence Z0 ∪ {y0} ∈ S is the required proper extension of Z0.   
 
 Now let A be a structure and let L A be the language for A. Let µ(A) 
be the number of symbols in L A . We shall say that A is good if whenever 
B is a substructure of A closed under the A-denotations of all L-terms, 
then B  A.  
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Fact. Each structure A has a good expansion B for which µ(A) = 
µ(B). (B may be obtained by expanding A to a Skolem structure.) 

 
Lemma 8.  Suppose that κ is measurable . Let A =〈A, R,…〉 be a 

structure with µ(A) = ℵ0, R ⊆ A, |A| = κ and |R| < κ. Then A has an 
elementary substructure B =〈B, S,…〉 with |B| = κ and |S| ≤ ℵ0.  

Proof. We may assume without loss of generality that A is good. 
Let |R| = β < κ. Choose a linear ordering < of A and an element a ∈ A – 
R. Let T be the set of all L – terms, and let  

I = (R ∪ {a})T. 
Since |T| = ℵ0, |R| = β, and κ is strongly inaccessible, we have |I| = 

0ℵβ < κ . 
 Now define a partition {Ci: i ∈ I } of  Fin(A) as follows. Call a term    
t ∈ T  an n-term if all its free variables are among v0,…,vn, so enabling t  
to be written as t(v0,…,vn). Let  

x = {a0,…,an–1} ∈ Fin(A) 
with a0 <… <an–1. Then we put x ∈ Ci where i ∈ I is given by: 
 

i(t) = a if t is not an n-term or t is an n-term and tA(a0,…,an–1) ∉ R 
i(t) = u if t is an n- term and  tA(a0,…,an–1) ∉ R . 

 
 Since κ is a Ramsey cardinal, there is a subset X ⊆ A of cardinality 
κ and elements i1, i2,… ∈ I such that  

[ ]
n

n
iX C⊆ , n = 1, 2, … 

Let B be the closure of X under the denotations in A of all L –terms, and 
let  B = 〈B, S, …〉 be the restriction of A to B. Then |B| = κ and since A is 

good, B  A. It remains to show that |S| ≤ ℵ0.  
 Now each b ∈ S is of the form  

b = tA(x0,…,xn–1) 
for some t ∈ T and some x0 <…< xn–1 ∈ X. Since  

{x0,…,xn–1} ∈ [ ]
n

n
iX C⊆ , 

we have in(t) = b. Hence  
( )n

n

b range i
∈ω

∈∪  

and so  
( )n

n

S range i
∈ω

⊆ ∪ . 

Thus |S| ≤ ℵ0.|T| = ℵ0.    
 
We conclude with  
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 Theorem 8. (Gaifman-Rowbottom). If a measurable cardinal exists, 
then Pω ∩ L is countable, in particular, there are only countably many 
constructible real numbers. 

 Proof. Suppose given a measurable cardinal κ. Let R =       
Pω ∩ L; then R ⊆ Lκ. Consider the structure A = 〈Lκ, ∈, R〉. We have |Lκ| = 

κ, and |R| ≤ 02ℵ < κ. Hence, by Lemma 8, there is a structure B =             

〈B, ∈, S〉   such that B   A, |B| = κ and |S| ≤ ℵ0. Then 〈B, ∈〉 ≡ 〈Lκ, ∈〉, 

and so there is a unique ξ for which there is an isomorphism f of 〈B, ∈〉 

onto 〈Lκ, ∈〉. Now we have  
|ξ| = |Lξ| = |B| = κ, 

whence ξ ≥ κ. But every ordinal of 〈B, ∈〉 is an ordinal of 〈Lκ, ∈〉 (the two 
structures being isomorphic), so the ordinals of the former have order 
type ≤ κ. It follows that ξ ≤ κ, so that ξ = κ, whence 

f : 〈B, ∈〉 ≅ 〈Lκ, ∈〉. 
Now let P be a unary predicate symbol; take P A = R and P B = S. Since 
the formula x ∈ ω is absolute, we have 

A  ∀x[P(x) ↔ ∀y(y ∈ x → y ∈ ω)], 
whence 

B  ∀x[P(x) ↔ ∀y(y ∈ x → y ∈ ω)]. 
Therefore, if b ∈ b, we have 

b ∈ S  ⇔  B  ∀y(y ∈ b → y ∈ ω)] 

                     ⇔  〈Lκ, ∈〉  ∀y(y ∈ f(b) → y ∈ ω)] 
⇔ f(b) ∈  R. 

 
Accordingly f carries S onto R, whence 

|Pω ∩ L| = |R| ≤ |S| ≤ ℵ0 
as required.   

 
 
 

 
 
 
 
 
 

 
 
 

 


