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Abstract. 

In this paper a number of oppositions which have haunted mathematics and philosophy are 

described and analyzed. These include the Continuous and the Discrete, the One and the Many, 

the Finite and the Infinite, the Whole and the Part, and the Constant and the Variable.  

 

Underlying the evolution of mathematics and philosophy has been the 

attempt to reconcile a number of interlocking oppositions, oppositions which 

have on occasion crystallized into paradox and which continue to haunt 

mathematics to this day. These include the Continuous and the Discrete, the 

One and the Many, the Finite and the Infinite, the Whole and the Part, and the 

Constant and the Variable. 

Let me begin with the first of these oppositions—that between continuity 

and discreteness. Continuous entities possess the property of being indefinitely 

divisible without alteration of their essential nature. So, for instance, the water 

in a bucket may be continually halved and yet remain wateri. Discrete entities, 

on the other hand, typically cannot be divided without effecting a change in 

their nature: half a wheel is plainly no longer a wheel. Thus we have two 

contrasting properties: on the one hand, the property of being indivisible, 

separate or discrete, and, on the other, the property of being indefinitely 

divisible and continuous although not actually divided into parts.  
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 Now one and the same object can, in a sense, possess both of these 

properties. For example, if the wheel is regarded simply as a piece of matter, it 

remains so on being divided in half. In other words, the wheel regarded as a 

wheel is discrete, but regarded as a piece of matter, it is continuous.  From 

examples such as these we see that continuity and discreteness are 

complementary attributes originating through the mind's ability to perform acts 

of abstraction, the one obtained by abstracting an object’s divisibility and the 

other its self-identity. 

 In mathematics the concept of whole number, of integer, provides an 

embodiment of the vision of pure discreteness, that is, of the idea of a collection 

of separate individual objects, all of whose properties—apart from their 

distinctness—have been refined away. The basic mathematical representation of 

the idea of continuity, on the other hand, is the geometric figure, and more 

particularly the straight line. By their very nature geometric figures are 

continuous; discreteness is injected into geometry, the realm of the continuous, 

through the concept of a point, that is, a discrete entity marking the boundary 

of a line.  

Continuity and discreteness are united in the process of measurement, in 

which the continuous is expressed in terms of separate units, that is, numbers. 

But these separate units are unequal to the task of measuring in general, 

making necessary the introduction of fractional parts of the individual unit. In 

this way the humble fraction issues from the interaction between the 

continuous and the discrete.  

 A most striking example of this interaction—amounting, one might say, 

to a collision—was the Pythagorean discovery of incommensurable magnitudes. 
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The remarkable advances in mathematics made by the Pythagoreans had led 

them to the belief that mathematics (they are said to have coined the term from 

a root meaning “learning”  or “knowledge”) and more especially number, lies at 

the heart of all existence—the first “mathematical” philosophy. For the 

Pythagoreans the structure of mathematics took the form of a bifurcating 

scheme of oppositions: 

 

 

Mathematics 
 

splitting into 
              
 

          The discrete                                                   The continuous 
 
 

in turn splitting into                         
           
 
          The absolute       The relative        The static         The moving 
                                                                           

 
                                                corresponding to 
         
             
           Arithmetic         Music                Geometry             Astronomy 
 

 

This last is, of course, the so-called quadrivium, which served as the basis for 

Western pedagogy up to the Middle Ages. It was a fundamental principle of 

Pythagoreanism that all is explicable in terms  of properties  of, and  relations  

between,  whole numbers—that  number, indeed, forms the very essence of the 

real. So it must have come as a great shock to the Pythagoreans to find, as they 

did, that this principle cannot be upheld within geometry itself. This followed 
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upon the shattering discovery, probably made by the later Pythagoreans before 

410 B.C., that ratios of whole numbers do not suffice to enable the diagonal of a 

square or a pentagon to be compared in length with its side. They showed that 

these line segments are incommensurable, that is, the impossibility of choosing 

a unit of length sufficiently small so as to enable both the diagonal of a square 

(or a pentagon) and its side to be measured by an integral number of the 

chosen units. Pythagorean geometry, depending as it did on the assumption 

that all line segments are commensurable (i.e., measurable by sufficiently small 

units), and with it the whole Pythagorean philosophy, was dealt a devastating 

blow by this discovery. The Pythagorean catastrophe shows how risky it can be 

to base a world outlook on a literal interpretation of mathematics: the exactness 

of mathematics may be used to undermine it!  

 The opposition between the continuous and the discrete may also be 

identified in the ancient Greek physicists’ account of the nature of matter, or 

substance. This opposition first appeared in the third century B.C. with the 

emergence of two rival physical theories, each of which became the basis of a 

fully elaborated physical doctrine. One is the atomic theory, due to Leucippus 

and Democritus. The other—the continuum theory—is the creation of the Stoic 

school of philosophy and is associated with the names of Zeno of Cition and 

Chrysippus.  

 The continuum of Stoic philosophy is an infinitely divisible continuous 

substance which was presumed to furnish the ultimate foundation for all 

natural phenomena. In particular the Stoics held that space is everywhere 

occupied by a continuous invisible substance which they called pneuma (Greek 

for “breath”). This pervasive substance—which was regarded as a kind of 
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synthesis of air and fire, two of the four basic elements, the others being earth 

and water—was conceived as being an elastic medium through which impulses 

are transmitted by wave motion. All physical occurrences were taken to be 

linked through tensile forces in the pneuma, and matter itself was held to 

derive its qualities from the “binding” properties of its indwelling pneuma.  

 The atomists, on the other hand, asserted that material form results 

from the arrangement of the atoms—the ultimate building blocks—to be found 

in all matter, that the sole form of motion is the motion of individual atoms, and 

that physical change can only occur through the mutual impact of atoms. 

 A major problem encountered by the Stoic philosophers was that of the 

nature of mixture, and, in particular, the problem of explaining how the pneuma 

mixes with material substances so as to “bind them together”. The atomists, 

with their granular conception of matter, did not encounter any difficulty in this 

regard because they could take a mixture of two substances to be a 

combination of their constituent atoms into a complex —a kind of lattice or 

mosaic. But the idea of a mixture posed difficulties for the Stoic conception of 

matter as continuous. For in order to mix fully two continuous substances, the 

substances would either have to interpenetrate in some mysterious way, or, 

failing that, they would each have to be subjected to an infinite division into 

infinitesimally small elements which would then have to be arranged, like finite 

atoms, into some kind of discrete pattern.  

 This controversy over the nature of mixture shows that the idea of 

continuity is inextricably entangled with the puzzles of infinite divisibility and of 

the infinitesimally small. The mixing of particles of finite size, no matter how 

small they may be, presents no difficulties. But this is no longer the case when 
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dealing with a continuum, whose parts can be divided ad infinitum. The Stoic 

philosophers were confronted with what was, in the last analysis, a 

mathematical problem. 

 As is well-known, the problem of infinite divisibility had already been 

posed in a dramatic, yet subtle way more than a century before the rise of the 

Stoic school, by Zeno of Elea, a pupil of the philosopher Parmenides, who taught 

that the universe was a static unchanging unity. Zeno's arguments take the 

form of paradoxes which are collectively designed to discredit the belief in 

motion, and so in any notion of change. These paradoxes embody not only the 

opposition between the continuous and the discrete, but also that between the 

finite and the infinite. Let us review three of them in modern formulation. The 

first two, both of which rest on the assumption that space and time are 

continuous, purport to show that under these conditions continuous motion 

engenders, per impossibile, an actual infinity.  

 The first paradox, the Dichotomy, goes as follows. Before a moving body 

can reach a given point, it must first traverse half of the distance; before it can 

traverse half of the distance, it must traverse one quarter; and so on ad 

infinitum. So, for a body to pass from one point A to another, B, it must traverse 

an infinite number of divisions. But an infinite number of divisions cannot be 

traversed in a finite time, and so the goal cannot be reached. 

 The second paradox, Achilles and the Tortoise, is the best known. Achilles 

and a tortoise run a race, with the latter enjoying a head start. Zeno asserts 

that no matter how fleet of foot Achilles may be, he will never overtake the 

tortoise. For, while Achilles traverses the distance from his starting-point to 

that of the tortoise, the tortoise advances a certain distance, and while Achilles 
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traverses this distance, the tortoise makes a further advance, and so on ad 

infinitum. Consequently Achilles will run forever without overtaking the tortoise.  

 This second paradox is formulated in terms of two bodies, but it has a 

variant involving, like the Dichotomy, just one. To reach a given point, a body in 

motion must first traverse half of the distance, then half of what remains, half 

of this latter, and so on ad infinitum, and again the goal can never be reached. 

This version of the Achilles exhibits a pleasing symmetry with the Dichotomy. 

For the former purports to show that a motion, once started, can never stop; 

the latter, that a motion, once stopped, can never have started. 

 The third paradox, the Arrow, rests on the assumption of the 

discreteness of time. Here we consider an arrow flying through the air. Since 

time has been assumed discrete we may “freeze” the arrow’s motion at an 

indivisible instant of time. For it to move during this instant, time would have to 

pass, but this would mean that the instant contains still smaller units of time, 

contradicting the indivisibility of the instant. So at this instant of time the 

arrow is at rest; since the instant chosen was arbitrary, the arrow is at rest at 

any instant. In other words, it is always at rest, and so motion does not occur. 

Let us review the current solutions to these paradoxes as provided by the 

mathematicians. In the case of the Dichotomy, the presentation may be 

simplified by assuming that the body is to traverse a unit spatial interval—a 

mile, say—in unit time—a minute, say. To accomplish this, the body must first 

traverse half the interval in half the time, before this one-quarter of the interval 

in one-quarter of the time, etc. In general, for every subinterval of length 1/2n  

(n = 1, 2, 3,…), the body must first traverse half thereof, i.e. the subinterval of 

length 1/2n+1. In that case both the total distance traversed by the body and the 
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time taken is given by a convergent series which sums to 1 as expected. So, 

contra Zeno, the infinite number of divisions is indeed traversed in a finite time. 

 More troubling, however, is the fact that these divisions, of lengths  

1 1 1
2 4 8, , ,...  (in reverse order) constitute an infinite regression which, like the 

negative integers, has no first term. Zeno seems to be inviting us to draw the 

conclusion that it cannot be supplied with one, so that the motion could never 

get started. However, from a strictly mathematical standpoint, there is nothing 

to prevent us from placing 0 before all the members of this sequence, just as it 

could be placed, in principle at least, before all the negative integers. Then the 

sequence of correlations  1 1 1 1 1 1
2 2 4 4 8 8( , ),( , ),( , ),... (in reverse order) between the 

time and the body’s position is simply preceded by the correlation (0, 0), where 

the motion begins. There is no contradiction here. 

 In the case of the Achilles, let us suppose that the tortoise has a start of 

1000 feet and that Achilles runs ten times as quickly. Then Achilles must 

traverse an infinite number of distances—1000 feet, 100 feet, 10 feet, etc.—and 

the tortoise likewise must traverse an infinite number of distances—100 feet, 10 

feet, 1 foot, etc.—before they reach the same point simultaneously. The distance 

of this point in feet from the starting points of the two contestants is given, in 

the case of Achilles, by a convergent series summing to 1
91111  feet. In the case 

of the tortoise the corresponding distance is a convergent series summing to 

1
9111  feet. And, assuming that Achilles runs 10 feet per second, the time 

taken for him to overtake the tortoise is given, in seconds, by a convergent 

series summing to 1
9111  seconds. Thus, again contra Zeno, Achilles overtakes 

the tortoise in a finite time. 



 9

 Although the use of convergent series does confirm what we take to be 

the evident fact that Achilles will, in the end, overtake the tortoise, a nagging 

issue remains (pointed out by Bertrand Russell in his entertaining essay 

Mathematics and the Metaphysiciansii). For consider the fact that, at each 

moment of the race, the tortoise is somewhere, and, equally, Achilles is 

somewhere, and neither is ever twice in the same place. This means that there 

is a biunique correspondence between the positions occupied by the tortoise 

and those occupied by Achilles, so that these must have the same number. But 

when Achilles catches up with the tortoise, the positions occupied by the latter 

are only part of those occupied by Achilles. This would be a contradiction if one 

were to insist, as did Euclid in his Elements, that the whole invariably has more 

terms than any of its parts. In fact, it is precisely this principle which, in the 

nineteenth century, came to be repudiated for infinite sets such as the ones 

encountered in Zeno’s paradoxes. Once this principle is abandoned, no 

contradiction remains.   

 The paradox of the Arrow can be resolved by developing a theory of 

velocity, based on the differential calculus. By definition, (average) velocity is 

the ratio of distance travelled to time taken. It will be seen at once that in this 

definition two distinct points in space and two distinct points in time are 

required. Velocity at a point is then defined as the limit of the average velocity 

over smaller and smaller spatiotemporal intervals around the point. According 

to this definition, a body may have a nonzero “velocity” at each point, but at 

each instant of time will not “appear to be moving”. 
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  While Zeno’s paradoxes can be resolved from a strictly mathematical 

standpoint, they present difficulties for understanding the nature of actual 

motion which have persisted to the present day. 

 The opposition between the continuous and the discrete resurfaced with 

renewed vigour in the seventeenth century with the emergence of the differential 

and integral calculus. Here the controversy centred on the concept of 

infinitesimaliii. According to one school of thought, the infinitesimal was to be 

regarded as a real, infinitely small, indivisible element of a continuum, similar 

to the atoms of Democritus, except that now their number was considered to be 

infinite. Calculation of areas and volumes, i.e., integration, was thought of as 

summation of an infinite number of these infinitesimal elements. An area, for 

example, was taken to be the “sum of the lines of which it is formed”. Thus the 

continuous was once again reduced to the discrete, but, with the intrusion of 

the concept of the infinite, in a subtler and more complex way than before.  

  Infinitesimals enjoyed a considerable vogue among seventeenth and 

eighteenth century mathematicians. As the charmingly named “linelets” and 

“timelets”, they played an essential role in Isaac Barrow’s (who was Newton’s 

teacher) “method for finding tangents by calculation”, which appears in his 

Lectiones Geometricae of 1670. As “evanescent quantities” they were 

instrumental (although later abandoned) in Newton's development of the 

calculus, and, as “inassignable quantities”, in Leibniz’s. The Marquis de 

l'Hôpital, who in 1696 published the first treatise on the differential calculus 

(entitled Analyse des Infiniments Petits pour l'Intelligence des Lignes Courbes), 

invokes the concept in postulating that “a curved line may be regarded as being 
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made up of infinitely small straight line segments,” and that “one can take as 

equal two quantities differing by an infinitely small quantity.” 

However, the conception of infinitesimals as actual entities was 

somewhat nebulous and even led, on occasion, to logical inconsistency. 

Memorably derided by Berkeley as “ghosts of departed quantities” and later 

condemned by Bertrand Russell as “unnecessary, erroneous, and self-

contradictory”, this conception of infinitesimal gave way to the idea—originally 

suggested by Newton—of the infinitesimal as a continuous variable which 

becomes arbitrarily small. By the start of the nineteenth century, when the 

rigorous theory of limits was in the process of being created, this revised 

conception of infinitesimal had been accepted by the majority of 

mathematicians. Now a line, for instance, was understood as consisting not of 

“points” or “indivisibles”, but as the domain of values of a continuous variable, 

in which separate points are to be considered as locations. At this stage, then, 

the discrete had given way to the continuous. 

 But the development of mathematical analysis in the later part of the 

nineteenth century led mathematicians to demand still greater precision in the 

theory of continuous variables, and above all in fixing the concept of real 

number as the value of an arbitrary such variable. As a result, in the latter half 

of the 19th century a theory was fashioned in which a line is represented as a 

set of points, and the domain of values of a continuous variable by a set of real 

numbers. Within this scheme of things there was no place for the concept of 

infinitesimal, which accordingly left the scene for a time. Thus, yet again, the 

continuous was reduced to the discrete and the properties of a continuum 

derived from the structure of its underlying ensemble of points. This reduction, 
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underpinned by the development of set theory, has met with almost universal 

acceptance by mathematicians.   

 The creators of set theory contrived to avoid the continuous/discrete 

opposition through the radical expedient of banishing the continuous 

altogether. But in so doing they left themselves open to the irruption of two 

other oppositions—that of the one and the many, and the finite and the infinite. 

As a result set theory was itself initially the breeding ground of paradox. 

Cantor, the visionary creator of set theory, held that there was no difference in 

principle between finite and infinite sets, as is revealed in his famous 1895 

definition of the set concept: 

 

By a set we understand every collection to a whole of definite, well-

differentiated objects of our intuition or thought. 

 

The problem, of course, is to determine exactly which collections constitute 

legitimate “wholes”. Traditionally, only finite collections were admitted to be 

“wholes” in this sense, since, it was held, infinite collections fail to accord with 

the time-honoured dictum (enunciated in Euclid’s Elements as Axiom 5) that a 

whole must always be greater than any of its (proper) parts.   

 The curious way in which the principle that a whole must always exceed 

its parts is violated by infinite collections is strikingly conveyed by a fable 

attributed to the German mathematician David Hilbert. In Hilbert's tale, he 

finds himself the manager of a vast hotel, so vast, in fact, that it has an infinite 

number of rooms. Thus the hotel has a first, second,...,nth,... room, ad infinitum. 

At the height of the tourist season, Hilbert’s hotel is full: each room is occupied. 
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(We are of course assuming the existence of an infinite number of occupants.) 

Now a newcomer seeking accommodation shows up. “Alas,” says Hilbert, “I have 

not a room to spare.” But the newcomer is desperate, and at that point an idea 

occurs to Hilbert. He asks the occupant of each room to move to the next one; 

thus the occupant of room 1 is to move to room 2, that of room 2 to room 3, 

and so on up the line. This leaves the original occupants housed (one to a room, 

as before), only now the first room is vacant, and the relieved newcomer duly 

takes possession.  

 This is not the end of the fable. A vast mob of tourists desiring 

accommodation suddenly descends on the hotel. A quick tally by Hilbert shows 

that the mob is infinite, causing him some consternation. But now he has 

another idea. This time he requests each original occupant of his hotel to move 

to the room with double the number of the one presently occupied: thus the 

occupant of room 1 is to proceed to room 2, that of room 2 to room 4, etc. The 

result is again to leave all the original occupants housed, only now each 

member of the infinite set of rooms carrying odd numbers has become vacant. 

Thus each newcomer can be accommodated: the first in room 1, the second in 

room 3, the third in room 5, etc. It is clear that this procedure can be repeated 

indefinitely, enabling an infinite number of infinite assemblies of tourists to be 

put up.  

Hilbert’s fable shows that infinite sets have intriguingly counterintuitive 

properties, but not that they are contradictory. Indeed if, for example, the 

physical universe contains infinitely many stars—a proposition which Newton, 

for one, seems to have been perfectly happy to accept—then it can assume the 

role of “Hilbert’s Hotel,” with the stars (or orbiting planets) as “rooms”.  
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 While infinite sets are not contradictory in themselves, set theory itself, 

however, as originally formulated, does contain contradictions, which result not 

from admitting infinite totalities per se, but rather from countenancing totalities 

consisting of all entities of a certain abstract kind, “manies” which, on pain of 

contradiction, cannot be regarded as “ones”. So it was in truth not the 

finite/infinite opposition, but rather the one/many opposition, which led set 

theory to inconsistency. This is well illustrated by the infamous Russell 

paradox, discovered in 1901. 

 Russell’s paradox, it will be recalled, arises in the following way. It starts 

with the truism that any set is either a member of itself or not. For instance, the 

set of all cats is not a member of itself since it is not a cat, while the set of all 

non-cats is a member of itself since it is a non-cat. Now consider the set 

consisting precisely of all those sets which are not members of themselves: call 

this, the Russell set, R. Is R a member of itself or not? Suppose it is. Then it 

must satisfy the defining condition for inclusion in R, i.e. it must not be a 

member of itself. Conversely, suppose it is not a member of itself. Then it fails 

to satisfy the defining condition for inclusion in R, that is, it must be a member 

of itself. We have thus arrived at the unsettling, indeed contradictory, 

conclusion that R is a member of itself precisely when it is not. We note that 

whether R is finite or infinite is irrelevant; the argument depends solely on the 

defining property for membership in R.  

 The paradox also appears when we consider such bizarre entities as, for 

instance, the bibliography of all bibliographies that fail to list themselves: such 

a bibliography would, if it existed, list itself precisely when it does not. In this 

case, however, it may simply be inferred that the entity in question does not 
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exist, a conclusion that cannot be drawn in the case of the Russell set without 

bringing into question the very basis on which sets have been introduced.  

 Russell's paradox has a purely linguistic counterpart known as the 

Grelling-Nelson paradox. Call an (English) adjective autological if it is true of 

itself and heterological if not. For instance, the adjectives “polysyllabic”, 

“English” are autological, and “palindromic”, “French” are heterological. Now  

consider the adjective “heterological”. Is it autological or not? A moment’s 

thought reveals that it is precisely when it is not. 

 Another principle of set theory whose enunciation in 1904 by Ernst 

Zermelo occasioned much dispute is the so-called axiom of choiceiv. In its 

simplest form, the axiom asserts that, if we are given any collection S of sets, 

each of which has at least one member, there is a set M containing exactly one 

element from each set in S. No difficulty is encountered in assembling M when 

there are only finitely many sets in S, or if S is infinite, but we possess a definite 

rule for choosing a member from each set in S. The problem arises when S 

contains infinitely many sets, but we have no rule for selecting a member from 

each: in this situation, how can the procedure be justified of making infinitely, 

perhaps even nonenumerably, many arbitrary choices, and forming a set from 

the result? 

 The difficulty here is well illustrated, as so often, by a Russellian 

anecdote. A millionaire possesses an infinite number of pairs of shoes, and an 

infinite number of pairs of socks. One day, in a fit of eccentricity, he summons 

his valet and bids him select one shoe from each pair. When the valet, 

accustomed to receiving precise instructions, asks for details as to how to 

perform the selection, the millionaire suggests that the left shoe be chosen from 
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each pair. Next day the millionaire proposes to the valet that he select one sock 

from each pair. When asked as to how this operation is to be carried out, the 

millionaire is at a loss for a reply, since, in contrast with a pair of shoes, there 

is no intrinsic way of distinguishing one sock of a pair from the other. In other 

words, the selection of the socks must be truly arbitrary. 

 An odd consequence of the axiom of choice is the so-called paradoxical 

decomposition of the spherev, formulated in 1924 by the Polish mathematicians 

Stefan Banach and Alfred Tarski. An extreme form of the “paradox” is that, 

assuming the axiom, a solid sphere can be cut up into five pieces which can 

themselves be reassembled exactly to form two solid spheres, each of the same 

size as the original! Another version is that, given any two solid spheres, either 

one of them can be cut up into finitely many pieces which can be reassembled 

to form a solid sphere of the same size as the other. Thus, for example, a sphere 

the size of the sun can be cut up and reassembled so as to form a sphere the 

size of a pea! Of course, the phrase “can be cut up” here is to be taken in a 

metaphorical, not practical, sense; but this does not detract from the 

counterintuitiveness of these results. Strange as they are, however, unlike 

Russell's paradox, they do not constitute outright contradictions: sphere 

decompositions become possible in set theory only because continuous 

geometric objects have been analyzed into discrete sets of points which can 

then be rearranged in an arbitrary manner. This is really another instance of 

the opposition between the one and the many. 

 The finite/infinite and one/many oppositions play an important role in 

Kant’s philosophy. His First Antinomy embodies the finite/infinite opposition: 

here the Thesis is the assertion that the world has a beginning in time, and is 
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also limited as involves space; while the Antithesis asserts that the world has 

no beginning, and no limits in space—it is infinite as regards both time and 

space. And his second Antinomy embodies the one/many opposition: in this 

case the Thesis asserts that composite substances are made up of simple parts, 

while the Antithesis is that no composite thing is made up of simple parts.  

 Kant’s First Antinomy has been the focus of a great deal of philosophical 

discussion. As far as the temporal aspect of the First Antinomy is concerned, 

Kant conceives of the world’s past as a series, and he presents the following 

argument for the finiteness of that past: 

 

The infinity of a series consists in the fact that it can never be completed 

through successive synthesis. It thus follows that it is impossible for an 

infinite world-series to have passed away.  

 

I think we can take “successive synthesis” here to mean “temporal succession”. 

But in that case, what does it mean to say that the series P of past events is 

“completed” through temporal succession? The natural meaning would appear 

to be that P is “generated in the algebraic sense” that is, there is a class E of 

past events such that every past event is obtained by temporal succession from 

the events in E. Even granting this, however, one can infer that P is finite only if 

one assumes that E is also finite. In fact it is easy to see that these two 

assertions are actually equivalent, and, assuming either of them, one can take E 

to consist of a single “initial” event: the origin of time. But it is obviously 

consistent for E, and hence also P, to be infinite, and so Kant’s argument, 

construed in this way, fails. 
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 The situation boils down, it seems, to this. If the past were actually 

finite, it is of course generated by temporal succession from an initial event. But 

if it is infinite, although it grows by temporal succession, it is not generated or 

completed by temporal succession from any finite set of events. In this case the 

infinite past must be conceived at any instant as being given as a whole, and 

only finite parts of it as being “completed” by temporal succession. 

  In his thought-provoking paper, The Age and Size of the Worldvi, 

Jonathan Bennett sums up the First Antinomy as follows: 

 

Although Kant denies that the world can be infinitely old or large, he 

thinks that it cannot be finitely large or old either. 

 

In explicating this assertion, Bennett concludes that what Kant means by “the 

world is not finite in size” is “no finite amount of world includes all the world 

there is”, or “every finite quantity of world excludes some world”. Bennett 

submits that this last statement “seems to Kant to be a weaker statement than 

the statement that there is an infinite amount of world.” More generally, 

Bennett suggests that  

 

  Kant is one of those who think that  

 

Every finite set of F’s excludes at least one F,  (1) 

 

though it contradicts the statement that there are only finitely many  F’s, is 

nevertheless weaker than  
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There is an infinite number of F’s   (2). 

 

Bennett implies that Kant is simply mistaken here, that in fact (1) and (2) are 

equivalent. But is this right? Let us investigate the matter a little.  

 Call a set A finite if for some natural number n, all the members of A can 

be enumerated as a list a0, …, an; potentially infinite if it is not finite, that is, if, 

for any natural number n, and any list of n members of A, there is always a 

member of A outside the list; actually infinite if there is a list a0, …, an, …(one 

for each natural number n) of distinct members of; and Kantian if it is 

potentially, but not actually infinite, that is, if it is neither finite nor actually 

infinite. Now it is possible for a set to be Kantian, just as Kant (according to 

Bennett) thought the world was. 

 For suppose that we are given a potentially infinite set A, and we attempt 

to show that it is actually infinite by arguing as follows. We start by picking a 

member a0 of A; since A is potentially infinite, there must be a member of A 

different from a0; pick such a member and call it a1. Now again by the fact that 

A is potentially infinite, there is a member of A different from a0, a1—pick such 

and call it a2. In this way we generate a list a0, a1, a2, … of distinct members of 

A; so, we are tempted to conclude, A is actually infinite. But clearly the cogency 

of this argument hinges on our presumed ability to “pick”, for each n, an 

element of A distinct from a0, …, an—an ability enshrined in the axiom of 

choice. Now the axiom of choice is, as Gödel showed in 1938, a perfectly 

consistent mathematical assumption. But, as Paul Cohen showed in 1964, it is 

also consistent to deny it. In fact, it can be denied in such a way as to prevent 



 20

the argument just presented from going through, that is, to allow the presence 

of potentially infinite sets which are not at the same time actually infinite. That 

is, the existence of Kantian sets is consistent with the axioms of set theory as 

long as the axiom of choice is not assumed.  

 Another, more direct way of obtaining a Kantian set is to allow our “sets” 

to undergo variation, to wit, variation over discrete time (that is, over the 

natural numbers). For consider the following universe of discourse1 U . Its 

objects are all sequences of maps between sets: 

 

 0 1 2
0 1 2 1

nf ff f
n nA A A A A +→ → →⋅⋅⋅ → →⋅⋅⋅  

 

Such an object may be thought of as a set A “varying over (discrete) time”: An  is 

its “value” at time n.  Now consider the temporally varying set 

 

K =  ( → → ⋅ ⋅ ⋅ → →⋅ ⋅ ⋅{0} {0,1} {0,1,2} {0,1,..., }n ) 

 

in which all the arrows are identity maps. In U  K “grows” indefinitely and so is 

certainly potentially infinite. On the other hand at each time it is finite and so is 

not actually infinite. In short, in the universe of “sets through time”, K is a 

Kantian set. 

 Thus, I contend, Kant’s vision of the universe as being “potentially 

infinite without being actually infinite” is, it seems to me, coherent after all.  

 I conclude with a few words on the last of our oppositions: the constant 

and the variable.  
                                                 
1 Those “in the know” will recognize U  as the topos of sets varying over the natural numbers. 



 21

 The world as we perceive it is in a perpetual state of flux. But the objects 

of mathematics are usually held to be eternal and unchanging. How, in that 

case, is the phenomenon of variation given mathematical expression? Consider, 

for example, a fundamental and familiar form of variation: change of position, or 

motion, a form of variation so basic that the mechanical materialist 

philosophers of the 18th and 19th centuries held that it subsumes all forms of 

physical variation. Now motion is itself reducible to a still more fundamental 

form of variation—temporal variation. (It may be noted here that according to 

Whitehead even this is not the ultimate reduction: cf. his notion of “passage of 

nature”.) But this reduction can only be effected once the idea of functional 

dependence of spatial locations on temporal instants has been grasped. Lacking 

an adequate formulation of this idea, the mathematicians of Greek antiquity 

were unable to produce a satisfactory analysis of motion, or more general forms 

of variation, although they grappled mightily with the problem. The problem of 

analyzing motion was of course compounded by Zeno’s paradoxes, which, as we 

know, were designed to show that motion was impossible.  

It was not in fact until the 17th century that motion came to be conceived 

as a functional relation between space and time, as the manifestation of a 

dependence of variable spatial position on variable time. This enabled the 

manifold forms of spatial variation to be reduced to the one simple fundamental 

notion of temporal change, and the concept of motion to be identified as the 

spatial representation of temporal change. (The “static” version of this idea is 

that space curves are the “spatial representations” of straight lines.) 

Now this account of motion (and its central idea, functional dependence) 

in no way compels one to conceive of either space or time as being further 
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analyzable into static indivisible atoms, or points. All that is required is the 

presence of two domains of variation—in this case, space and time— correlated 

by a functional relation. True, in order to be able to establish the correlation 

one needs to be able to localize within the domains of variation, (e.g. a body is 

in place xi at “time” ti, i = 0, 1, 2, …) and it could be held that these domains of 

variation are just the “ensemble” of all conceivable such “localizations”. But 

even this does not necessitate that the localizations themselves be atomic 

points—in this connection there comes to mind Whitehead’s method of 

“extensive abstraction” and, latterly, the rise of the amusingly named “pointless 

topology”. 

The incorporation of variation into mathematics in the 17th century led, 

as is well known, to the triumphs of the calculus, mathematical physics, and 

the mathematization of our understanding of nature. But difficulties surfaced in 

the attempt to define the instantaneous rate of change of a varying quantity—

the fundamental concept of the differential calculus. Like the ancient 

Pythagorean effort to reduce the continuous to the discrete, the endeavour of 

the mathematicians of the 17th century to reduce the varying to the static 

through the use of infinitesimals led to outright contradictions.  

The response of their successors was, effectively, to replace variation by 

completed infinity. Cantor in particular abandoned the concept of a varying 

quantity in favour of a completed, static domain of variation, itself to be 

regarded as an ensemble of atomic individuals—thus, like the Pythagoreans, at 

the same time replacing the continuous by the discrete. He also banished 

infinitesimals and the idea of geometric objects as being generated by points or 

lines in motion.  
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Mathematicians, such as Brouwer and Weyl, and philosophers, such as 

Brentano and Peirce, raised objections to the idea of “discretizing” or 

“arithmetizing” the linear continuum. Peirce, for example, rejected the idea that 

a true continuum can be completely analyzed into a collection of discrete 

points, no matter how many of them there might be.  

It was with Brouwer at the start of the 20th century that logic itself enters 

the argument. Rejecting the Cantorian account of the continuum as discrete, 

Brouwer identified points on the line as entities “in the process of becoming”, 

that is, as embodying a certain kind of variation. Brouwer saw that the variable 

nature of these entities would cause them to violate certain laws of logic which 

had been affirmed since Aristotle, in particular, the law of excluded middle or 

bivalence—“each statement is either true or false”. This revolutionary insight led 

to a new form of logic, intuitionistic logic—a “non-Aristotelian” logic in which the 

law of excluded middle is no longer affirmed. It was later shown that the 

intuitionistic logic of Brouwer embraces a very general concept of variation, 

embracing all forms of continuous variation, and which is in particular 

compatible with the use of infinitesimals.  

Certain philosophers—notably Hegel and Marx—believed that achieving a 

true understanding of the phenomenon of change would require the fashioning 

of a dialectical logic or “logic of contradiction”, in which the law of 

noncontradiction— “no statement can be both true and false”—is repudiated. It 

is a striking fact that, so far at least, more light has been thrown on the 

problem of variation by challenging the law of excluded middle rather than 

questioning the law of non-contradiction. 
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