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ABSTRACT 
The centrality of the whole/part relation in mathematics is demonstrated through the 
presentation and analysis of examples from algebra, geometry, functional analysis, logic, 
topology and category theory.  
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 The relationship between whole and part—what I shall call mereosis—has 

played a central role in the development of mathematics. Perhaps its first 

explicit appearance is in the fifth axiom (as opposed to postulate) laid down by 

Euclid in his immortal “Elements”, to wit, the whole is greater than the part. 

Cantor’s repudiation of this thesis more than 2000 years later was a pivotal 

element in his transfinite set theory. 

 A classic example of mereosis is to be found in analytic geometry. Here 

arbitrary points or vectors in n-dimensional Euclidean space n are represented 

as linear combinations of n basis vectors {e1, ..., en}. Here the "whole" n is 

completely determined ("coordinatized") by its (very small) part {e1, ..., en}. This 

example has, of course, been extended to the concept of a basis for a vector 

space, and to the general idea of a mathematical structure being generated by 

a part, in much the same way as a written language is generated by an 

alphabet. 

                                                           
1 Revised and expanded version of a paper delivered at the conference “Wholes and their Parts” 
held in Bolzano, Italy, in June 1998. I am most grateful to Alberto Peruzzi and Roberto Poli for 
organizing a truly memorable meeting. 
 

 A related example arises with the observation that any point in a convex 

polygon or polyhedron P is the centre of mass or barycentre of a unique 
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distribution of masses placed at the vertices of P. This fact is generalized to 

Choquet's theorem, an important result of functional analysis (see, e.g. Edwards 

1965). This theorem asserts that any point of a compact convex subset C in a 

normed space is the barycentre (in a suitably extended sense) of a measure 

living on the set E of extreme points of C. (Here an extreme point of C is any 

point not contained in the interior of a line segment in C.) An important 

consequence of this is the Krein-Milman theorem: C is the least closed convex 

set containing E. Both of these theorems show that the "whole" C is completely 

determined in a suitable sense by its small part E.   

 A "part" of a mathematical whole may be obtained by ignoring some aspect 

of its structure. In this sense, for example, the additive group of integers is part 

of the ring of integers. Sometimes a part taken in this sense may determine a 

whole. For instance, the purely algebraic part of the ordered field of real 

numbers uniquely determines its ordering (r ≤ s iff s – r is a square) and 

thereby the whole structure. This obvious fact has a nontrivial generalization (a 

portion of the Artin-Schreier theorem): any real-closed field F (i.e. such that –1 

is the sum of squares in any proper algebraic extension of F, but not in F itself) 

has a unique total ordering compatible with its algebraic structure. 

 A mathematical whole may be determined by a part in the sense that each 

member of the whole is "approximable" in a suitable (i.e., topological) sense by 

members of the part. The classic example of this is the fact that each real 

number is the limit of a sequence of rational numbers. This fact of course has 

deep roots in mathematical history. The Pythagoreans around 550 B.C. 

apparently believed that the whole corpus of "ratios" of similar geometric 

magnitudes was identical with the part consisted of "ratios" of whole numbers 

(so that measurement is always reducible to counting). Their discovery of the 

incommensurablity of the side and diagonal of a square (i.e. the irrationality of 

√2) —the first “mathematical crisis” — forced them and their mathematical 

successors to recognize that whole number ratios constitute only a proper part 

of that whole, and so to formulate a workable description of that whole: this is 



 3

Eudoxus's theory of proportions.  

 Other important examples of this sort of mereosis are provided by the 

Weierstrass approximation theorems, namely, any continuous real or complex 

continuous function on a closed real interval is the uniform limit of a sequence 

of polynomials; and any 2π-periodic complex function on the real line is the 

uniform limit of a sequence of trigonometric polynomials. In both of these cases 

the respective wholes (arbitrary continuous or periodic functions) are 

determined through uniform approximation or "variation" along a specified part 

(polynomials or trigonometric polynomials). These 19th century theorems were 

generalized in the 20th century to the Stone-Weierstrass theorem (see, e.g., 

Edwards 1965) which gives a criterion for a part A of an algebra of continuous 

real- or complex-valued functions on a compact Hausdorff space X to be 

identical with the whole algebra of such functions: to wit, A is a closed self-

conjugate subalgebra containing the unit function and separating the points of 

X. 

 Galois theory (see, e.g, Bourbaki 1979) provides a far-reaching instance of 

mereosis in mathe-matics. In its classical setting, we are given a polynomial 

equation f(x) = 0 over a field F (typically, the rational numbers), and we seek a 

solution to this equation by “radicals”, that is, the extraction of nth roots for 

arbitrary n.  The pertinent "whole" in this case is the so-called splitting field K 

of f over F, that is, the least field containing F in which f can be completely 

factorized into linear factors. The condition for solubility by radicals of f can be 

formulated as a condition on the way in which the whole field K (to be strictly 

precise, some well-determined extension of K) can be built up from suitable 

"parts"—in this case, intermediate subfields L of K for which F ⊆ L ⊆ K. 

Associated with K is a group G —its Galois group —which is isomorphic to a 

subgroup of the group of permutations of n objects, where n is the degree of f. 

The group G constitutes a new "whole"; its pertinent "parts" are its subgroups. 

The fundamental theorem of Galois theory asserts that the assemblages of parts 

of the two wholes K and G are, in a suitable sense, isomorphic. (The 
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correspondence establishing the isomorphism is an instance of a very general 

sort of correspondence now called a Galois connection or adjunction.) This 

isomorphism has the effect of transforming the complex property of the 

assemblage of parts of the whole K expressing the solubility by radicals of f into 

a comparatively simple property— solvability—of the parts of G (and hence of G 

itself). Here we have an instance of the mereotic pattern  

 

WHOLE →←  PARTS    

 

 There are some important examples of mereosis in mathematical logic. To 

begin with, we have the evident, but often useful fact that the consistency of a 

first order theory is reducible to the consistency of its finite parts. Then there is 

the indispensable compactness theorem (see e.g. Bell and Slomson 1969) which 

asserts that a first-order theory Σ has a model precisely when each finite part 

of Σ does. Here the model of Σ can be fashioned directly (as an "ultraproduct") 

from the models of the finite parts of Σ. This is an instance of "synthesis" of a 

mathematical structure from parts—a procedure we shall return to.  

 The celebrated Löwenheim-Skolem theorem asserts that the definable 

properties of a given (infinite) structure are identical with those of some of its 

(comparatively small) parts and with those of other, larger, structures, of which 

the original constitutes a (small) part. A related result, the reflection principle of 

set theory (see, e.g., Bell and Machover 1977) asserts that the definable 

properties of the universe of sets is "reflected" in those of a small part—to wit, a 

set. 

 Conservation results in mathematical logic are also a source of examples of 

merosis. Here we are given theories Σ1 ⊆ Σ2 formulated in languages L1 ⊆ L2 

respectively. Σ2 is a conservative extension of Σ1 if the part of Σ2 consisting of L1-

sentences is identical with Σ1. The basic instance of this arises when Σ1 is any 

theory in a first-order language L1 and Σ2 is the set of logical consequences of 
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Σ1 in a first-order language L2 ⊇ L1. Abraham Robinson’s Nonstandard Analysis 

(Robinson 1996) provides another example: here Σ1 is classical analysis 

formulated in the usual set-theoretic language L1 and Σ2 is nonstandard 

analysis formulated in the appropriately extended language L2. A further 

example was provided by Gödel: here one takes L1 to be the language of (set-

theoretic) arithmetic, Σ1 to be the set of statements of L1 provable in Zermelo-

Fraenkel set theory ZF, L2 the language of set theory and Σ2 the theory ZF + the 

axiom of choice + the continuum hypothesis. As a failed example we may 

consider Hilbert's program in its original form. Here L1 is the language of 

"concrete" mathematics, Σ1 the "concretely" provable statements of L1, L2 the 

language of "ideal" mathematics, and Σ2 the "ideally" provable statements of L2. 

Hilbert hoped to prove Σ2 a conservative extension of Σ1 but, as is well-known, 

Gödel showed, through his famous incompleteness theorems, that this could 

not be the case.    

 Our first two examples of mereosis showed how a mathematical structure 

can be determined by a single specially chosen part. We now consider 

situations in which such structures can be reconstituted from a suitably 

chosen plurality of parts. 

 A simple instance of this is the fact that any object A in a category of 

algebras can be recaptured from its finitely generated subalgebras: A is the 

colimit of the diagram whose vertices are the finitely generated subalgebras of 

A and whose arrows are inclusion maps on these vertices. 

 More interestingly, mathematical structures can often be reconstituted 

from parts which arise as "level sets" of "quantities" varying over them in a 

continuous manner (just as a surface can be mapped by level curves). The 

archetypal example here is that of a compact Hausdorff space X. In this case X 

can be recaptured from its continuous zero-sets Z(f): here Z(f) is the part of X on 

which the continuous real-valued function f vanishes (Gillamn and Jerison 

1960). Each Z(f) may be thought of as a piece of information about X identifying 
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the part of X over which the continuously varying quantity f assumes a 

particular constant value (in this case, zero). In this sense zero-sets constitute 

informative parts of X. (If X is a surface in 3-space then the relevant continuous 

zero-sets—the level curves— are those arising as intersections of the surface 

with planes parallel to one of the coordinate planes.) We find that maximal 

nondisjoint sets of informative parts of X correspond to points of X, and that X 

can then be recaptured by imposing a natural topology on the collection of 

such sets of informative parts. In this case then, "if you know the informative 

parts, you know the whole."  

 The technique of reconstituting a space from its informative parts extends 

to algebraic structures such as (commutative) rings which arise by abstracting 

the idea of (continuously) varying quantity. Here the idea is to assemble 

informative parts of a given ring R into a topological space X, and to identify a 

(topological) ring R* resembling R in certain key respects, in such a way that R 

may be identified as the ring of continuous R*-valued maps on X.       

 There are two classical examples of this. 

 First, Stone duality (see Johnstone 1982). In this case R is a Boolean ring 

B—i.e., one in which the identity x2 = x holds. (The concept of Boolean ring was 

abstracted, essentially by Boole himself, from the idea of propositional or truth 

function, viz., a varying "quantity" assuming just the two "truth values" true (1) 

and false (0).) Here the informative parts of B are its maximal ideals—the parts 

of B on which a homomorphism to the discrete topological ring 2 of integers 

modulo 2 takes value 0. These can be assembled into a topological space X—

the Stone space of B—and B then identified as the ring of continuous maps 

from X to 2. 

 Next, Gelfand duality (see, e.g., Loomis 1953). In this case R is a C*-

algebra—a certain kind of Archimedean ordered ring. The informative parts of 

R are again its maximal ideals—here these are the parts on which a 

homomorphism to a field vanishes. These are assembled into a topological 

space X and R then identified as the ring of continuous maps from X to the real 
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field .  

 In both of these cases the given ring R is recaptured as a ring of 

continuously variable quantities over a topological space X assembled from 

certain parts of R. More can be done by introducing the category (a topos)  

Shv(X) of sheaves over X, which may be described as the universe of all objects 

undergoing continuous variation over X (see, e.g., Mac Lane and Moerdijk 

1992). It turns out that any Boolean ring may be identified with the ring  2 

constructed in Shv(X), and any C*-algebra with the ring  constructed in 

Shv(X). To put it another way, any Boolean ring B (resp., C*-algebra R) can be 

regarded as the ring 2 (resp., ) undergoing continuous variation over the 

topological space assembled from its informative parts.    

 To reconstitute an arbitrary (commutative) ring R in a similar way, the 

relevant informative parts are prime ideals—parts of R on which a 

homomorphism to an integral domain vanishes, and these are assembled into a 

space X called the Zariski spectrum of X. R can then be identified with a certain 

local ring in Shv(X): see Mulvey 1979. (A local ring is one which is almost a field 

in the sense that, for any element x, either x or 1 – x is invertible: both 2 and  

are local rings, as is the ring of germs of continuous real-valued functions at 

any point of a topological space.) Thus any commutative ring can be identified 

as a certain "near-field" undergoing continuous variation over the space 

assembled from its informative parts.         

 To sum these cases up: 

 

PARTS + VARIATION  →   WHOLE      

 

  The concept of part is given a very general formulation in category 

theory (see Lawvere and Schanuel 1997). Given an object A in a category C, a 

subobject of A is a monic arrow α: S → A in C. The subobjects of A constitute 

the objects of a category Sub(A), the category of subobjects of A, in which an 
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arrow from an object S Aα→ to an object T Aβ→ is a (necessarily monic) 

arrow fS T→ in C for which the diagram 

 

 

 

                                                                                                                 (*) 

 

 

commutes. In Sub(A) there is at most one arrow between any given pair of 

objects, so Sub(A) is a preordered class. A part of A is an equivalence class of 

subobjects of A under the equivalence relation ∼ which identifies two 

subobjects S Aα→ and T Aβ→  precisely when there is an isomorphism 
iS T→ making the diagram  

 

 

 

 

 

commute. The class Part(A) of parts of A is then partially ordered by the 

relation ⊆ of inclusion: writing α�  for the equivalence class of a subobject α, 

α� ⊆β�  just when there is an arrow fS T→ in C making the diagram (*) above 

commute. 

 A particularly important kind of mereosis in mathematics is the idea of an 

object being covered by its parts. In differential geometry, for example, a 

differentiable manifold is a topological space which is covered in an appropriate 

way by open parts each of which is homeomorphic to a part of n . In set theory 

each set is “covered” by its family of singletons—its one element subsets—in 

the sense of being the union of that family. In intuitionistic mathematics, 

where the law of excluded middle is not generally affirmable, individuals are 

            f 
S                     T 
 
  α                β 
 
            A 

            i 
S                     T 
 
  α                β 
 
            A 
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“smeared out”—that is, do not necessarily satisfy the condition a = b or a ≠ b— 

so that a singleton must be redefined as a set containing at most one element. 

Objects which unions of singletons in this new sense play the role of 

“generalized sets”. 

 For sets, the covering relation satisfies the following three characteristic 

conditions:   (i) {U} covers U, (“each set covers itself”); (ii) if a family A  of sets 

covers U and  V ⊆ U, then A|V = {A ∩ V: A ∈ A} covers V (“the restriction of a 

cover to a part is a cover”); and (iii) if A covers U and, for each A ∈ A ,  BA 

covers A, then A
A∈
∪
A

B covers U (“the union of a covering family of covers is a 

cover”. Grothendieck generalized these conditions to arbitrary categories, 

defining what came to be known as a Grothendieck topology (see Mac Lane and 

Moerdijk 1992). This notion assumes a particularly transparent form in the 

context of partially ordered sets. Thus let (P, ≤) be a fixed but arbitrary partially 

ordered set: we shall use letters p, q, r, s, t to denote elements of p. A subset S 

of P is said to be a sharpening of, or to sharpen, a subset T of P, writtenS T≺ , if 

( ).s S t T s t∀ ∈ ∃ ∈ ≤  A cover scheme on P is a map C assigning to each p ∈ P a 

family C(p) of subsets of p↓ = {q: q ≤ p}, called (C-)covers of p, such that, if q ≤ p, 

any cover of p can be sharpened to a cover of q, i.e., 

 ( )& ( )[ ( )].S p q p T q t T s S t s∈ ≤ → ∃ ∈ ∀ ∈ ∃ ∈ ≤C C  

This corresponds to condition (ii) above. A Grothendieck topology on P may now 

be identified as a cover scheme C on P satisfying counterparts of conditions (i) 

and (iii) above, namely, p↓ ∈ C(p) for all p ∈ P  and, if S ∈ C(p) and, for each      

s ∈ S, Ts ∈ C(s), then s
s S

T
∈
∪ ∈ C(p).  

 With each topological space T in the usual sense there is an associated 

notion of closure: here the closure X of a subset X of T is the least closed set 

containing X, i.e. the least set Y containing X with the property that, if every 

neighbourhood of a point p intersects Y, then p ∈ Y.   This closure operation 

satisfies the well-known Kuratowski axioms, namely 
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,    ,   X X X X X Y X Y⊆ = ∪ = ∪ . 
  

Grothendieck topologies also give rise to a kind of closure operation, only on 

sieves rather than arbitrary subsets: a sieve in a partially ordered set (P, ≤) to 

be a subset S of P which is ≥-stable, that is, satisfies p ∈ S & p ≥ q  →   q  ∈ S. 

Accordingly suppose given a Grothendieck topology C on a partially ordered set 

(P, ≤); write S(P) for the set of all sieves on P.  A sieve I will be said to cover an 

element p ∈ P if I includes a cover of p. Call I  C-closed if it contains every 

element of P that it covers, i.e. if 

 

( )( )S p S I p I∃ ∈ ⊆ → ∈C . 

 
It is easy to see that the intersection of an arbitrary family of C-closed sieves is 

a C-closed sieve, so that for each sieve I in P there is a least C-closed sieve I�  

containing I —the C-closure of I. The operation of C-closure satisfies two of the 

Kuratowski closure conditions above, namely   and  ,I I I I⊆ =�� � but instead of 

distributing over union it can be shown to distribute over intersection: 

k i.I J I J∩ = ∩�  
 
It is worth noting that the characteristic properties of closure operations 

associated with the notion of covering were discovered almost exactly half a 

century after the isolation of the of the corresponding properties of closures 

derived from the notion of neighbourhood 

 

I turn finally to the idea of a lattice of parts.   Given a space or "whole" S, 

one expects the pertinent parts of S to constitute a lattice L under the primitive 

relation ⊆ of inclusion. That is, for each pair U, V of parts of S  we assume that 

there are parts U  V, U  V —the join and meet of U, V —which are the ⊆- least 

and ⊆-largest parts, respectively, of S containing, or, respectively, contained in, 

U and V. We assume that ∅ and S are the least and largest parts of S, 
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respectively.  We also suppose that for each part U we are furnished with a part 

U* for which U  U* = ∅: U* is the designated part of S "outside" U. We suppose 

that the operation * is inclusion inverting: U ⊆ V → V* ⊆ U*. We shall call the 

structure S = (S, L) a mereotic space: S is the whole, and the members of L the 

parts, of S. 

 Suppose now that we are given a number of primitive attributes A, B ("red", 

"hard", etc.) that may be possessed by the parts of S. Each part U is assigned a 

collection A(U) of attributes possessed by it: we assume that the possession of 

primitive attributes is persistent in the sense that U ⊆ V → A(V) ⊆ A(U). The 

relation of possession is extended to compound attributes ϕ in the following 

way, writing U  ϕ for "U possesses ϕ":  

 

 U  A  iff  A ∈ A(U)  for primitive A; 

 U  ϕ ∧ ψ  iff  U  ϕ and U  ψ;   

 U  ϕ ∨ ψ  iff  V  ϕ and W  ψ  for some parts V, W such that U = V   W;  

 U  ¬ϕ  iff  V  ϕ → V ⊆ U*  for all V.   

Call an attribute ϕ persistent in S if for all parts U, V, 

U   ϕ  and V  ⊆ U → V  ϕ. 

Persistence of arbitrary attributes in S is ensured by the distributivity of L: that 

is, the truth of the law 

  
( ) ( ) ( )x y z x y x z∧ ∨ = ∧ ∨ ∧ . 

 
The two conditions are  equivalent  provided  that  corresponding  to  each  

part U there is an attribute AU such that  X  AU  ⇔  X ⊆ U for all parts X.  If we 

think of the relation  as a kind of covering relation between parts and 
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attributes (so U  ϕ is understood as asserting that ϕ covers U, then 

persistence of arbitrary attributes in S may be seen as amounting to the 

satisfaction of the second postulate of a Grothendieck topology: the restriction 

of a cover is a cover. 

There are natural mereotic spaces S arising in connection with proximity 

structures in which certain attributes ϕ are not persistent: in fact, ϕ may be 

possessed by the whole space but not by certain parts. In this case attributes 

of the whole are not reflected in all of its parts.    

 A proximity structure is a set S equipped with a reflexive symmetric binary 

relation . For each x ∈ S we define the blob at x, Bx, by 

Bx = {y ∈ S: x  y}.  

Unions of blobs are called parts of S. We obtain a mereotic space                   

(S, Part(S))—called a proximity space—in which the join operation is set-

theoretic union, the meet of two parts of S is the union of all blobs included in 

their intersection, and for U ∈  Part(S),  

 

U* = {y ∈ S: ∀x ∈U.x  y}. 

 

 I conclude with a simple example of a nonpersistent proximity space. Take 

S to be the unit circle and the blob at any point x ∈ S to be the quadrant 

centred on the radius vector passing through x. Now assign the attributes red 

and black to the parts of S by colouring the first and third quadrants red and 

the second and fourth black. Then S possesses the attribute red ∨ black. On 

the other hand, if U is (either) semicircle with diameter at 45 degrees to the x-

axis, then clearly U fails to possess red ∨ black, since it cannot be decomposed 

into two parts possessing the respective attributes red and black. A similar 

argument shows that S, but not U, possesses the attribute red ∨ ¬red. On the 

other hand, U possesses the attribute ¬¬(red ∨ black), since it can be shown 

that, for any part U of a proximity space, and any attribute ϕ, 
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U  ¬¬ϕ  ↔  ∃V ⊇ U. V  ϕ. 

In a proximity space, in other words, a part U possesses the double negation of 

an attribute exactly when U is itself a part of a larger part possessing the 

attribute. Accordingly, while arbitrary attributes may not be persistent, double 

negated attributes always persist. 
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