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INTRODUCTION 

  

Set theory is sometimes formulated by starting with two sorts of entities 

called individuals and classes, and then defining a set to be a class as 

one, that is, a class which is at the same time an individual, as indicated 

in the diagram:  

 

                                          Individuals     Sets     Classes 

 

 

If on the other hand we insist—as we shall here—that classes are to be 

taken in the sense of multitudes, pluralities, or classes as many, then no 

class can be an individual and so, in particular, the concept of set will 

need to be redefined. Here by  “class as many” we have in mind what 

Erik Stenius refers to in [5] as set of, which he defines as follows: 

If we start from a Universe of Discourse given in advance, then we 
may define a set-of things as being many things in this UoD or just 
one thing - or even no things, if we want to introduce this way of 
speaking. 

 

Stenius draws a sharp distinction between this concept and that of 
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set as a thing. As he says, 

The distinction between a set-as-a-thing and a set of corresponds to 
the Russellian distinction between a “class as one” and a “class as many” 
(Principles of Mathematics, p. 76). Only I use the expressions ‘set-as-a-
thing” and “set-of” instead, in order to stress the (grammatical and) 
ontological character of the distinction; and also because of the difficulty 
that a set-of need not consist of many things; it can comprise just one thing 
or no things. But of course it is important that if a set-of comprises many 
things, it is a set as many and not as one, and that a set-as-a-thing is one 
and not many. 
 

Now while we shall require a set to be a class of some kind,  

construing the class concept as “class as many” entails that sets can no 

longer literally be taken as individuals. So instead we shall take sets to 

be classes that are represented, or labelled, by individuals in an 

appropriate way. For simplicity we shall suppose that labels are 

attached, not just to sets, but to all classes: thus each class X will be 

assigned an individual λX called its label. Now in view of Cantor’s 

theorem that the number of classes of individuals exceeds the number of 

individuals, it is not possible for different classes always to be assigned 

distinct labels. This being the case, we single out a subdomain S of the 

domain of classes on which the labelling map λ is one-to-one. The 

classes falling under S will be identified as sets; and an individual which 

is the label of a set will be called an identifier.  

 For reasons of symmetry, it will be convenient (although not 

strictly necessary) to assume that, in addition to the operation of 

labelling each class by an individual, there is a reverse process—
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colabelling—which assigns a class to each individual. Thus we shall 

suppose that to each individual x there corresponds a unique class x* 

called its colabel. Again, because of Cantor’s theorem, not every class can 

be the colabel of an individual (although every individual can be the label 

of a class). However, it seems natural enough to stipulate that each set 

be the colabel of some individual, and indeed that this individual may be 

taken to be the label of the set in question.  Thus we shall require that X 

= λ(X)* for every set X. In that event, for any identifier x in the above 

sense, we shall have x = λ(x*); that is, the colabel of an identifier is the 

set of which it is the label, or the set labelled by the identifier. Another 

way of putting this is to say that the restriction of the colabelling map to 

identifiers acts as an inverse to the restriction of the labelling map to 

sets. So the above diagram is to be replaced by the diagram: 

                                                        * 

                                                         

                                   Identifiers                                          Sets 

                    

                        

                       Individuals                λ                      Classes 

                                                         

  Singletons and the empty class—“multitudes” with just one, or no 

members respectively—are here regarded, like the “numbers” 1 and 0, as 

“ideal” entities introduced to enable the theory to be developed smoothly. 
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(It may help to think of singletons as “clubs with one member” and the 

empty set as a club all of whose members are deceased.)  Thus, as is 

customary in standard set theory, we distinguish between an individual 

a and the singleton-class {a} whose only member is a. But of course there 

is a difference, for while in standard set theory {a} is, like a, merely 

another individual which could, in principle at least, coincide with a (and 

in nonwellfounded set theories sometimes does), in the theory to be 

developed here {a} and a, being of different sorts, can never coincide. 

The membership relation ∈ between individuals and classes is a 

primitive of our system. It will be taken as an objective relation in the 

sense suggested, for example, by the assertion that Lazare Carnot was a 

member of the Committee of Public Safety, or Polaris is a member of the 

constellation Ursa Minor. The fact that ∈ is not iterable—there are no “∈-

chains”—means that it can have very few intrinsic properties. This is to 

be contrasted with the relation ε of “membership” between individuals, 

defined by x ε y ↔ x ∈ y*: x is a member of the class labelled by y. This 

relation links entities of the same sort and is, accordingly, iterable. It 

should be noted, however, that the presence of the colabelling map * in 

the definition of ε gives the latter a purely formal, arbitrary character. 

  In fact the formal character of ε renders the scheme to be put 

forward here particularly apposite for presenting nonwellfounded set 

theories. In the usual set theories it is difficult to grasp the nature of a 
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set which is, for example, identical with its own singleton since such a 

set cannot be “formed” by assembling individuals. In the present scheme, 

on the other hand, the assertion a = {a}—which is, as remarked above, 

not well-formed—is  replaced  by  the  assertion  

∀x(x ε a ↔ x = a), 

that is,  

a* = {a}, 

which asserts that {a} is identical, not with a itself, but rather with its 

colabel. Similarly, the self-membership assertion a ∈ a is transformed 

into the statement 

a ε a,  

that is,  

a ∈ a*, 

which asserts that a belongs, not to itself, but merely to its colabel. And 

an assertion of cyclic membership a ∈ b ∈ a is transformed into the 

assertion 

a ε b ε a, 

or 

a ∈ b* & b ∈ a*, 

that is, “a (resp. b) is a member of the colabel of b (resp. a).” These 

rephrasings appear much more natural in that they only impute the 
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possession of curious properties to the colabelling map, rather than to 

the objective membership relation ∈ itself. 

 We shall also see that, in addition to nonwellfounded set theories, 

a number of other theories familiar from the literature can be provided 

with natural formulations within the system to be presented here. These 

include second-order arithmetic, the set theories of Zermelo-Fraenkel, 

Morse-Kelley, and Ackermann, as well as a system in which Frege’s 

construction of the natural numbers can be carried out. Each of these 

theories can therefore be seen as the result of imposing a particular 

condition on a common apparatus of labelling classes by individuals. 

  

 

1. THE THEORY M 

  

The theory M of multitudes or classes as many will be presented 

informally, employing the usual logical notation. It will be evident, 

however, that the theory can be readily formalized in a two-sorted first-

order language L. 

 We assume that we are given two distinct sorts of entity, 

individuals, and classes (or multitudes). We use lower-case letters a, b, c, 

x, y, z, ... to denote individuals, and upper-case letters A, B, C, X, Y, Z, ... 

to denote classes. Letters from the end of the alphabet will normally be 
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used as variables ranging over the domain of entities of the appropriate 

sort. 

 We assume given a relation ∈ between individuals and classes 

called membership: thus, for an individual a and a class A, we write 

a  ∈ A, 

which is to be read, as usual, a belongs to A, or a is an element, or a 

member, of A. Note the fact that an assertion of the form α ∈ β is 

meaningful only when α denotes an individual an β a class.  

 We assume that the equality relation = is defined on each sort of 

entity, so that an assertion of the form α = β is meaningful only when α 

and β denote entities of the same sort.  

 Equality of classes is governed by the  

 

 Axiom of Extensionality 

∀X∀Y[X = Y ↔ ∀x(x ∈ X ↔ x ∈ Y)]. 

This expresses the idea that classes are uniquely determined by their 

elements.  

 Assigned to each class X is an individual λ(X) or λX called its label 

and to each individual x a class x* called its colabel. We also assume the 

presence of a pair of predicates I, S defined on individuals and classes 

respectively: I(x) is to be read “x is an identifier” and S(X) “X is a set.” 

These notions are subject to the 
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Labelling Axioms. 

S(X) → I(λX),  I(x) → S(x*), S(X) → (λX)* = X,  I(x) → λ(x*) = x. 

The following assertions are then immediate consequences: 

S(X) ∧ S(Y) ∧ λX = λY → X = Y,     I(x) ∧ I(y) ∧ x* = y* → x = y. 

 By a property of individuals x, we mean any formula α(x) in which 

the variable x is free in the two-sorted first-order language whose 

nonlogical symbols are ∈, I, S, λ, *. The formula α may contain other free 

individual or class variables: these are called parameters. Associated with 

each property α(x) is a class 

{x: α(x)} 

called the class defined by α or the class of individuals satisfying α. The 

notion of property is enlarged in the obvious way to include expressions 

of the form {x: α(x)}, and with any property ϕ(x) in this enlarged sense we 

also associate a class {x: ϕ(x)}. Providing this concept of property and 

associated class with a precise recursive definition is a straightforward 

matter. 

 Classes defined by properties are governed by the 

Axiom of Comprehension. 

y ∈ {x: ϕ(x)} ↔ ϕ(y). 
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From this and the Axiom of Extensionality one deduces immediately:     

{x: ϕ(x)} = {y: ψ(y)} ↔ ∀x[ϕ(x) ↔ ψ(x)],        ∀X  X = {x: x ∈ X}. 

 We now define M to be the theory in L based on the axioms of 

extensionality, labelling and comprehension. 

 In order to be able to handle relations in our framework it will later 

prove convenient to introduce ordered pairs into L. Thus we define L(,) to 

be the language obtained by adjoining to L a binary term ( , ) taking pairs 

of individuals to individuals, and M(,)  to be the theory obtained from M 

by adding the axiom 

 Ordered Pairs       

∀x∀y∀u∀v[(x, y) = (u, v) ↔ x = u ∧ y = v]. 

 Taking an ordered pair of individuals as an individual might seem 

to be in conflict with the maintenance of a strict distinction between  

intended not to connote the set-theoretic notion but rather that of 

coordinate geometry, in which an “ordered pair” is a single point in the 

Cartesian plane representing a pair of points selected from the 

coordinate axes in a prescribed order.  

The usual classes and relations and operations thereon can now be 

defined in L: 

V = {x: x = x} 

 ∅ = {x: x ≠ x} 

{a} = {x: x = a} 
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{a1, ..., an} = {x: x = a1 ∨ ... ∨ x = an} 

{x ∈ X: ϕ(x)} = {x: x ∈ X ∧ ϕ(x)} 

X ∪ Y = {x: x ∈ X ∨ x ∈ Y} 

X ∩ Y = {x: x ∈ X ∧ x ∈ Y} 

X – Y = {x ∈ X: x ∉ Y} 

–X = V – X 

X ⊆ Y ↔ ∀x(x ∈ X → x ∈ Y). 

In L(,) one makes the following additional definitions: 

 X  × Y = {z: ∃x∃y(x ∈ X ∧ y ∈ Y ∧ z = (x, y)}, 

 R is a relation  ↔ ∃X∃Y  R ⊆ X × Y 

R is a relation on X ↔ R ⊆ X  × X 

  xRy ↔ (x, y) ∈ R 

Field(R) = {x: ∃y(yRx ∨ xRy}, 

Rx = {y: x ≠ y ∧ yRx}, 

f is a function from X to Y, f: X → Y   ↔    

                              f   ⊆  X × Y ∧  ∀x∈X∃!y∈Y (x, y) ∈f  

 

We also make the following further definitions: 

 I = {x: I(x)} 

 x ε y ↔ x ∈ y* 

 ax: ϕ(x)b = λ{x: ϕ(x)} 

aab = λ{a} 
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aa1, ..., anb = λ{a1, ..., an} 

a ∪ b = ax: x ε a ∨ x ε bb 

a ∩ b = ax: x ε a ∧ x ε bb 

∪a  = ax: ∃y(y ε a ∧ x ε y)b 

0 = λ∅ 

a ⊆ b ↔ ∀x(x ε a → x ε b) 

Pa = ax: I(x) ∧ x ⊆ ab 

The defined relation ε is the membership relation on individuals. It follows  

easily from the comprehension and labelling axioms that  

I(x) → x = ay: y ε xb 

 Since λ is one-to-one on sets, an informal application of Cantor’s 

theorem shows that not every class can be a set, and so not every 

individual can be an identifier. We now define classes—the Russell 

classes and the least inclusive class—for which this can be explicitly 

demonstrated.  

 There are two Russell classes, namely, 

R1 = {x: x ∉ x*},     R2 = {x: I(x) ∧ x ∉ x*}; 

clearly R2 ⊆ R1. A class X is said to be inclusive, and we write Inc(X), if      

∀x[I(x) ∧ x* ⊆ X → x ∈ X]. 

The least inclusive class E is defined by 

E = {x: ∀X[Inc(X) → x ∈ X]}. 
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It is easily shown that R2 is inclusive, so that E ⊆ R2 ⊆ I. Moreover, we 

have the 

Theorem.  None of R1, R2 or E is a set. 

 Proof. Suppose that S(R1). Then λ(R1)* = R1 so that 

∀x[x ∈ (λR1)* ↔ x ∈ R1 ↔ x ∉ x*]. 

Hence 

λR1 ∈ (λR1)* ↔ λR1 ∉ (λR1)*, 

a contradiction. The argument for ¬S(R2) is similar.   

 Finally suppose that S(E); then, writing e = λE, we have e* = E. Now 

Inc(X) → E ⊆ X → e* ⊆ X → e ∈ X. 

Therefore e ∈ E = e*.  But this contradicts the observation above that      

E  ⊆ R2. It follows that ¬S(E).   

 

In fact E is the well-founded universe, and can be shown to be, 

with the operation of unions and singleton  (and assuming the singleton 

and union axioms), the initial Zermelo-Fraenkel algebra in the sense of 

Joyal and Moerdijk. 

If we define an individual a to be transitive —Trans(a)— provided 

∀x ∀y [x ε a ∧ y ε x → y ε a], and a class X to be transitively inclusive—

Inctran(X)—provided that ∀x[I(x) ∧ Trans(x) ∧ x* ⊆ X → x ∈ X], then the 

class ORD of von Neumann ordinals may be defined as the least 

transitively inclusive class, that is, 
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ORD = {x: ∀X[Inctrans (X) → x ∈ X]}. 

Again, Ord, together with the operation of union and ordinal successor, 

may be shown to be the initial ZF algebra with an inflationary successor. 

 All these arguments may be carried out constructively. 

 

2. EXTENSIONS OF M. 

 

We next consider extensions of M in which the existence of sets, or, 

equivalently, of identifiers, is ensured. 

 The first and least interesting way of extending M so as to ensure 

set existence is simply to introduce the Zermelo axioms which we will 

take in the form of postulating the existence of suitable identifiers. This 

leads to the system ZM, which is obtained by adding to M the axioms  

 

 Empty set         I(0) 

 Singletons         ∀x[I(x) → I(axb)] 

 Union                ∀x[I(x) → I(∪x)]  

 Power set          ∀x[I(x) → I(Px)] 

 Separation        ∀x[I(x) → I(ax: ϕ(x)b]   

 Infinity              ∃u[I(u) ∧ 0 ε u ∧ ∀x∈u x ∪ axbε u]      

 

The theory ZFM is obtained by adding to ZM the axiom scheme of 
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Replacement     ∀u[I(u) ∧ ∀xεu∃!y[I(y) ∧ ϕ(x, y)] → 
                                                             ∃v[I(v) ∧ ∀y[y ε v ↔ I(y) ∧ ϕ(x, y)]]] 
 

 The theories ZM*, ZFM* are obtained by adding respectively to ZM, 

ZFM the  

 Axiom of Foundation   ∀u[I(u) ∧ u ≠ 0 → ∃xεu[I(x) ∧ x ∩ u  = 0]. 

 

It is not difficult to show that each of the theories ZM, ZFM, ZM*, 

ZFM* is equiconsistent with its respective counterpart Z (Zermelo set 

theory), ZF (Zermelo-Fraenkel set theory), Z* (Z with foundation), ZF* (ZF 

with foundation). Consider, for example, ZM. We can interpret the 

language LZ of Z in the language L of M by construing the individual 

variables of LZ as ranging over the class {x: I(x)} and the membership 

relation of LZ as ε. Clearly the interpretations of the axioms of Z then 

become provable in ZM. 

Conversely, suppose given a model M = (M, E) of Z in the usual set-

theoretic sense. Choose some object k such that k ∉ M and let   M + =     

M ∪ {k}. We obtain a model of ZM by interpreting 

  

Individuals of M ........ as ........ elements of M + 

Classes of M ........................... subsets of M + 

 ∈ ............................................. set membership in the usual sense 

I(x) .......................................... x  ∈ M 
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 S(X) ......................................... X = {x: xEu} = u^ for some u ∈ M 

* .............................................. the map u 6 u^ for u ∈ M, k 6 M 

          λ .............................................. the map PM + → M + defined by  
                                                  λ(X) =  u  if X = u^ for some u ∈ M 

                                                              k  if not 
 
 
{x: ϕ(x)} ..................................... set of members of M satisfying the 

                                                                                   interpretation of ϕ 
 
 
We note that, if M is a standard model, then u^ = u for u ∈ M, and so we 

recapture the classical picture in which the labelling and colabelling 

maps are both the identity on sets.  

The same procedure works for the remaining theories. 

In a similar manner M can be extended to yield theories 

equiconsistent, respectively, with Gödel-Bernays set theory and Morse-

Kelley set theory MK. We outline the procedure for the latter. The theory 

MKM in L is obtained by adding to ZFM the following axioms: 

     

      Axiom of faithful colabelling   ∀x λ(x*) = x. 

      Axiom of individual extensionality ∀u∀v[u = v ↔ ∀x[x ε u ↔ x ε v]]. 

      Axiom of membership  ∀u[I(u) ↔ ∃v u ε v]. 

      Axiom of individual comprehension  ∃v∀x[I(x) → [x ε v ↔ ϕ(x)], 
               where ϕ is any formula containing only individual variables. 
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The language LMK of MK can be interpreted in L by construing the (class) 

variables of LMK as ranging over the class V of L, and construing the 

membership relation of LMK as ε. It is now easily shown that the 

interpretation of the axioms of MK become provable in MKM. Conversely, 

suppose given a model (M, E) of MK in the usual set-theoretic sense. 

Choose an object k ∉ M, let M + = M ∪ {k} and M′ = {x∈M: ∃u xEu}. Then 

one obtains a model of MKM by interpreting  

 

Individuals of M ........ as ........ elements of M 

Classes of M ........................... subsets of M + 

 ∈............................................. set membership in the usual sense 

I(x) .......................................... x ∈ M′ 

 S(X) ......................................... X = {x: xEu} = u^ for some u ∈ M′ 

* .............................................. the map u 6 u^ for u ∈ M, k 6 M 

          λ .............................................. the map PM + → M + defined by  

                                                   λ(X) =  u  if X = u^ for some u ∈ M 
                                                              k  if not 

                                                               

{x: ϕ(x)} ..................................... set of members of M satisfying the 
                                                                                   interpretation of ϕ 
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A more interesting—and quite natural—possibility is to admit as 

sets in M all those classes whose defining properties are independent of 

the labelling apparatus. Thus, calling a property pure if it contains no 

occurrence of the symbols I, S,  λ or *, we introduce the 

Axiom Scheme of Purity (P)   

S({x: ϕ(x)})   for all pure ϕ. 

This may be equivalently stated (in the presence of the labelling axioms) 

as I(ax: ϕ(x)b) for all pure ϕ. We denote by MP the theory obtained by 

adjoining P to M.  We observe that in MP the empty class, any finite or 

cofinite class, and the universal class V are all sets. It follows from this 

last fact that the axiom of separation is refutable in MP.  

 MP is interpretable in (the standard model of) second-order 

arithmetic, where by the latter we mean the second order theory SOA 

based on Peano’s axioms for the natural numbers with the axiom of 

induction in the form 

∀X[0 ∈ X ∧ ∀x[x ∈ X → x + 1 ∈ X] → ∀x x ∈ X], 

together with the axioms of extensionality  

∀X ∀Y[∀x[x ∈ X ↔ x ∈ Y] → X = Y] 

and comprehension 

∃X∀x[x ∈ X ↔ ϕ(x)], 

where ϕ(x) is an arbitrary formula not containing X. 
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 An interpretation of MP in the standard model (`, P`, s,∈) of SOA 

may now be set up in the following way. Let A be the collection of analytic 

(second-order definable) subsets of `, and let κ: A → ` be a one-one 

coding map on a whose range does not exhaust the whole of `; fix          

n0 ∈ ` – range(κ) and U0 ∈ P` - A. Now a model of MP is obtained by 

interpreting  

Individuals of M ........ as ........ elements of ` 

 Classes of M ........................... subsets of ` 

 ∈............................................. ∈ 

I(x) .......................................... x ∈ range(κ) 

 S(X) ......................................... X ∈ A 

          λ .............................................. the map P`  → `  defined by  
                                                  λ(X) =  κ(X)  if X ∈ A 
                                                  = n0  if not 

  

* ..............................................       the map `  → P`  defined by  

                                                  n*  =   κ–1(n)  if n ∈ range(κ)  
                                                         =  U0  if not 
   

{x: ϕ(x)} ..................................... set of members of ` satisfying the 
                                                                                   interpretation of ϕ 
  

Conversely, we may strengthen MP to a theory MP+ which is of the 

same proof-theoretic strength as second-order arithmetic. To the 
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language L of M add a new unary function symbol s (‘successor”) of 

signature Individuals → Individuals. Enlarge the concept of property to 

include formulas in which the symbol s occurs. The theory MP+ is 

obtained by adding to MP the Peano axioms stated in L in the natural 

way, namely 

∀x 0 ≠ sx,  

∀x∀y[sx = sy → x = y],  

∀X[0 ∈ X ∧ ∀x[x ∈ X → sx ∈ X] → ∀x x ∈X]. 

The interpretation of MP in the standard model of SOA given above 

extends readily to MP+. And clearly SOA is a subtheory of MP+. Thus MP+ 

may be considered a version of second-order arithmetic in which classes 

correspond to arbitrary sets of integers, sets to analytic sets, and 

identifiers to code numbers of these latter. 

 Another extension of M is related to Ackermann set theory. As we 

recall from [3] and [4], this is the theory A formulated in a first-order 

language LA with a unary predicate symbol M and a binary predicate 

symbol ∈. The variables of LA are called class variables and will be 

denoted by capital letters. M(X) is read “X is a set”; lower-case variables 

will be used for sets.  

 The axioms of A are: 

Extensionality ∀X(X  ∈ A ↔ X ∈ B) → A = B 

 Class Comprehension ∃X∀x[x ∈ X ↔ ϕ(x)], where ϕ is any formula 
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 Completeness ∀X∀x[X ∈ x ∨ X ⊆ x → M(X)] 

 Set Comprehension ∀x1...∀xn[∀X[α(X) → M(X)] →  
                                                                            ∃w∀X[X ∈ w ↔ α(X)]], 
                                                where  α  is  any  formula  having just the  
                                                free variables X, x1, ..., xn and in which M  
                                                does not occur 

The theory A* is obtained by adding to A the axiom of foundation for sets. 

It is known ([4]) that ZF and A* are equivalent theories in the sense that 

the sentences involving just set variables provable in A* coincide with the 

theorems of ZF. 

 A natural model of A or A* is a model of the form (Rβ, Rα, ∈) in 

which Rβ is the set of sets of rank < β, and Rα, with α < β, is the 

interpretation of the predicate M. It is known ([4]) that in such a model α 

is not definable in the structure (Rβ,∈), so that, in particular, β ≠ α + n for 

any natural number n. This observation will be used tacitly below.  

The extension of M corresponding most closely to A is the theory 

MA, which is obtained by adding the following axioms to M: 

 Faithful colabelling. 

Heredity (H1) ∀x∀y[I(y) ∧ x ε y → I(x)] 

Heredity (H2)  ∀X∀Y[S(Y) ∧ X ⊆ Y → S(X)] 

Simple Set Comprehension (SSC) 

∀x1...∀ xn[[I(x1) ∧ ... ∧ I(xn) ∧ ∀x[ϕ(x) → I(x)]]→ S({x: ϕ(x)})],  

where ϕ is a simple formula, that is, has only individual free variables 
and no occurrences of S, I or λ. 
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The theory MA* is obtained from by adding the axiom of foundation to 

MA. 

 Any natural model (Rβ, Rα,∈) of A can be converted into a model of 

MA*  by interpreting 

   

Individuals of M ........ as ........ elements of Rα+1 

 Classes of M ........................... elements of Rβ 

 ∈............................................. set membership in the usual sense 

I(x) .......................................... x ∈ Rα 

 S(X) ......................................... X ∈ Rα 

          λ .............................................. the map Rβ → Rα+1 defined by  

                                                  λ(u) =  u  if u ∈ Rα+1 
                                                          =  ∅ if not 
  

* .............................................. insertion map Rα+1  Rβ,   
 
{x: ϕ(x)} ..................................... set of elements of Rα+1 satisfying 

                                                           the interpretation of ϕ. 
 

  

 Conversely, A (or A*) is correctly interpretable in MA (or MA*) by 

interpreting the class variables of LA as class variables of L, M as S and ∈ 

as the relation η, where X η Y is defined to mean λX ∈ Y. Thus MA and A 

are very close to being equiconsistent theories. 
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 The (additional) axioms of ZM are derivable in MA in a way similar 

to that in which the axioms of Z are proved in A. We give a couple of 

examples. 

 Union.  Assume I(a). The formula ϕ(x, a) ≡ ∀y∈a* x ∈ y* is simple  

and the implication ∀xϕ(x, a) → I(x) follows from H1. So SSC gives       

S({x: ϕ(x, a)}),  whence  I(ax: ϕ(x, a)b)  by Labelling. But  clearly   ax: ϕ(x, a)b 

=  ∪a. 

 Infinity. Let ϕ(X) be the formula 

∃u∈X∀x(x ∉ u*) ∧ ∀x∈X∃u∈X ∀y(y ∈ u* ↔ y = x ∨ y ∈ x*), 

and α(x) the simple formula ∀X[ϕ(X) → x ∈ X]. It follows from the empty 

set, singleton, and union axioms (the first two of which are presumed to 

have already been verified in a way similar to that of the third above) that 

ϕ(I) holds. From this we deduce that  ∀x[α(x) → I(x)], and accordingly   

S({x: α(x)}) by SSC. Writing A = {x: α(x)}, it quickly follows that 

0 ∈ A ∧ ∀x∈A(x ∪ axb ∈ A). 

Therefore, writing a = λA, Labelling gives I(a) and  

0 ε a ∧ ∀xεa(x ∪ axb ε a). 

Infinity follows. 
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3.TYPE-REDUCING CORRESPONDENCES IN M 

 

 In [2] a system F of many-sorted first-order logic is introduced with 

the purpose of providing a common framework for presenting Frege’s 

construction of the natural numbers and Zermelo’s proof of the axiom of 

choice from the well-ordering theorem. In F a pivotal role is played by the 

notion of type-reducing correspondence, that is, a correspondence 

between second-level and first-level entities. Now the term λ, as a map 

from classes to individuals, is a type-reducing correspondence in this 

sense, and so the results derived for F can be adapted to our present 

framework. One such result is the Zermelo-Bourbaki Lemma (Lemma 2.1 

0f [2]), which asserts that each type-reducing correspondence gives rise 

to a well-ordering defined on a collection of entities of lowest type. The 

statement and proof of the result is easily adapted to M(,) where it takes 

the form of the 

 

 Zermelo-Bourbaki Lemma in M(,). Given any term τ taking classes 

to individuals, and any predicate Q defined on classes, there is a relation R 

such that R is a well-ordering and, writing M = Field(R),   

∀x[x ∈ M → Q(Rx) ∧ τ(Rx) = x] 

Q(M) → τ(M) ∈ M. 
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Here the term “well-ordering” has its usual meaning, readily formulated 

in L(,).  

 When τ is the labelling term λ, one finds, as in '4 of [2], that M is 

the class ORD of von Neumann ordinals (defined in L(,) in the usual way), 

R is the membership relation ε on individuals, and that ORD is not a set. 

The arguments of '4 of [2] also adapt easily to show that ORD is 

nonempty iff the empty set axiom holds, that the axioms of union and 

singletons jointly ensure that ORD is unbounded, and that these, 

together with the axiom of infinity, imply that the natural numbers 

defined as a subclass of ORD in the usual way constitute a set. 

 In [2] other type-reducing correspondences are introduced which 

can also be considered in M(,). For example, suppose to L(,) we add a type-

reducing correspondence σ and to M(,) the axiom 

∀X[X ≠ ∅ → σ(X) ∈ X]: 

 σ is accordingly a choice term. Then, as shown in Corollary 2.2 of [2], the 

corresponding well-ordering has field V, the universal class. 

 Another possibility is to add a type-reducing correspondence ν 

together with the axiom 

∀X∀Y[ν(X) = ν(Y) ↔ X ≈ Y]. 
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Here ≈ stands for “X and Y are equinumerous”, that is, “there is a 

bijection between X and Y”, a notion readily formulated in L(,). In this 

extension of M(,) one can prove, as in '3 of [2],  

 

 Frege’s Theorem. There is a Dedekind-infinite class. 

 

And from this, one goes on to prove the existence of the natural 

numbers. It should be noted, however, that the Dedekind-infinite class 

whose existence is asserted here (nor the associated class of natural 

numbers) does not necessarily have to be a set. In fact, the theorem can 

still hold when no sets or identifiers exist at all. 

 We mention here that the definability of the equinumerosity 

relation ≈ in L(,) yields another way of defining the set predicate S. For, as 

observed in '5 of [2], we may introduce the following version of the von 

Neumann maximization principle, namely 

 

VN                                         ∀X[S(X) ↔ ¬ X ≈ V]. 

 

From this one derives—as in '5 of [2]— 

 

• The well-ordering principle: V can be well-ordered. 
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• The second heredity axiom H2. 

• The weak axiom of replacement for classes: S(X) ∧ X ≈ Y → S(Y). 

 

The consistency of VN with M(,) is readily established through a 

straightforward adaptation of the model given in '5 of [2]. 

 

4. NONWELLFOUNDED SET THEORIES IN M 

 

As presented in [1], a nonwellfounded set theory is a consistent extension 

of ZF in which the axiom of foundation is refutable. Within the 

framework of this paper the most suitable theory for developing 

nonwellfounded set theories is M(,) because there we have available the 

notion of function between classes. The definitions of [1] are easily 

adapted to M(,). 

 Thus we define an accessible pointed graph (APG) to be a triple E = 

(E, R, e) in which E is a set, R is a binary relation on E, and e ∈ E, such 

that for any x ∈ E there is a finite subclass {x0,..., xn} of E such that        

x0 = x, xn = e and xiRxi+1 for i = 0, ..., n – 1. A decoration of E is a function       

d: E → I  such that, for all x ∈ E,  

(*)                                                 d(x) = ad(y): yRxb. 

In this case E is called a picture of the identifier d(e).   
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 The Antifoundation Axiom is the assertion  

AFA: every APG is the picture of a unique identifier. 

This may be regarded as asserting that the relation ε of membership on 

identifiers is universal in a certain sense. For by labelling (*) can be 

written 

d(x)* = {d(y): yRx} 

or 

yRx → d(y) ∈ d(x)* ↔ d(y) ε d(x). 

In other words, when the elements of E are replaced by their images 

under d, the relation R is transformed into ε. AFA asserts that any such 

relation can be transformed into ε in this way.  

 In [1] the concept of complete system is introduced, and such 

systems shown to be models of ZF together with the antifoundation 

axiom. As we shall see, they can be converted into models of M(,) + AFA.  

 Let U = (U, ∈) be a transitive model of ZF which we will regard as 

fixed. By a U-system we mean a pair  C = (C, J) with C ⊆ U, and J a binary 

relation on C such that, for each a ∈ C, the set aC = {x: xJa} is a member 

of U. C is full if, for any x ⊆ C such that x ∈ U, there is a unique a ∈ C for 

which x = aC. C is complete if each accessible pointed graph E = (E, R, e) ∈ 

U has a unique C-decoration, that is, there is a unique map f : E → C in 

U such that f(x)C = {f(y): yRx}. It is shown in [1] that every complete 

system is both full and a model of ZF + AFA. It is also shown, in essence, 
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that a complete system can be constructed from any standard model of 

ZFC    (= ZF + the axiom of choice) so that ZF + AFA is consistent. 

 We show finally that each complete system can be converted into a 

model of M(,) + AFA so that this theory is also consistent. In fact, given a 

standard model U = (U, ∈) of ZF, and a complete U-system  C = (C, J), 

define an interpretation of L(,) as follows. Choose some a0 ∉ C, let            

C′  = C ∪ {a0} and interpret 

 

Individuals of M ........ as ........ elements of C′ 

 Classes of M ........................... subsets of C 

 ∈............................................. set membership in the usual sense 

I(x) .......................................... x ∈ C 

 S(X) ......................................... X ∈ P(C) ∩ U 

          λ .............................................. the map P(C′) → C′ defined by  

                                                  λ(u) =   a  if u = aC for some a ∈ C 
                                                          =   a0   if not 
  

* ..............................................  map C′ → P(C′ ) defined by a* = aC 

                                                             if a ∈ C, a0* = {a0}   
 

{x: ϕ(x)} ..................................... set of elements of U′ satisfying 
                                                             the interpretation of ϕ. 
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It is now not hard to check that all the axioms of M(,) + AFA are true 

under this interpretation. Note that in this interpretation the “objective” 

membership relation is unaffected; it is the choice of the colabelling map 

which ensures the truth of the antifoundation axiom. 
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