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In his On What is Continuous of 1914 ([2]), Franz Brentano makes the 
following observation: 
 
 If we imagine a chess-board with alternate blue and red squares, 
then this is something in which the individual red and blue areas allow 
themselves to be distinguished from each other in juxtaposition, and 
something similar holds also if we imagine each of the squares divided into 
four smaller squares also alternating between these two colours. If, 
however, we were to continue with such divisions until we had exceeded 
the boundary of noticeability for the individual small squares which result, 
then it would no longer be possible to apprehend the individual red and 
blue areas in their respective positions. But would we then see nothing at 
all? Not in the least; rather we would see the whole chessboard as violet, 
i.e. apprehend it as something that participates simultaneously in red and 
blue. 
 
 In this paper I will describe a simple and natural framework—a logic of 
perception—in which this “simultaneous participation” or superposition of 
perceived attributes is accorded a major role. (This framework was 
originally introduced in [1] for a different purpose.) The central concept of 
the framework is that of an attribute being manifested over a region or 
part of a proximity space—an abstract structure embodying key features 
of perceptual fields. An important property of the manifestation relation 
is nonpersistence, namely, the fact that a space may manifest an 
attribute not manifested by some part. This will be shown to be closely 
related to the idea of superposing attributes.  
 
I will also show how this framework is tied up with the continuity of   
perceptual fields.         
 

* 
 

Let us think of attributes or qualities such as “blackness”, “hardness”, etc. 
as being manifested over or supported by parts of a (perceptual) space.  
For instance if the space is my total sensory field, part of it manifests 
blackness and part manifests hardness and, e.g., a blackboard manifests 
both attributes. Each attribute α is correlated with a proposition (more 
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precisely, a propositional function) of the form “— manifests the attribute 
α.”  
 
I assume given a supply of atomic or primitive attributes, i.e., attributes 
not decomposable into simpler ones: these will be denoted by A, B, C.  
For each primitive attribute A and each space S we may consider the 
total part of S which manifests A; this will be called the A-part of S and 
denoted by A S. Thus, for instance, if S is my visual field and A is the 

attribute “redness”, then A S is the total part of my sensory field where I 
see redness: the red part of my visual field.  
 
Attributes may be combined by means of the logical operators ∧ (and), ∨ 
(and/or), ¬ (not) to form compound or molecular attributes. The term 
“attribute” will accordingly be extended to include compound attributes. 
It follows that (symbols for) attributes may be regarded as the statements 
of a propositional language L—the language of attributes. 
 
In order to be able to correlate parts of any given space S with compound 
attributes, i.e., to be able to define the A-part of S for arbitrary compound 
A, we need to assume the presence of operations , , ∼ corresponding 

respectively to ∧, ∨, ¬, on the parts of S. For then we will be able to 
define the α-part α S for arbitrary attributes α according to the following 
scheme: 
 

α ∧ β S = α S   β S 

                                         α ∨ β S = α S   β S                           (*) 

¬α S = ∼ α S   
 
                                         
 

Once this is done, we can then define the basic relation S of inclusion 

between attributes over S: 
 

α S β  ⇔ α S ⊆ β S 

  
where, as usual, “⊆” denotes the relation of set-theoretic inclusion. 
 
Now the conventional meaning of “∧” dictates that, for any attributes α 
and β, we should have α ∧ β S A and α ∧ β S B and, for any γ, if γ S α 
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and γ S β then γ S α ∧ β. In other words, α ∧ β S should be taken to be 

the largest part (w.r.t. ⊆) of S included in both α S and β S . By the first 

equation in (*) above, the same must be true of α S  β S. Consequently, 

for any parts U, V of S, U  V should be the largest part of S included in 

both U and V.  
 
Similarly, now using the conventional meaning of “∨”, we find that, for 
any parts U, V of S, U  V should be the smallest part of S which 

includes both U and V.  
 
We shall suppose that there is a vacuous attribute ⊥ for which ⊥ S = ∅, 
the empty part of S. In that case, for any attribute α, we have  
 

α S  ∼ α S = α S  ¬α S = α ∧ ¬α S = ⊥ S = ∅. 
 
Consequently, for any part U of S we should require that U  ∼U = ∅, i.e. 

that U and ∼U be mutually exclusive. 
 
It follows from these considerations that we should take the parts of a 
perceptual space S to constitute a lattice of  subsets of (the underlying set 
of) S, on which is defined an operation ∼ (‘complementation’) 
corresponding to negation or exclusion satisfying the condition of mutual 
exclusiveness mentioned above. Formally, a lattice of subsets of a set S is 
a family L of subsets of S containing ∅ and S such that for any U, V ∈ L 
there are elements U  V, U  V of L such that U  V is the largest (w.r.t. 

⊆) element of L included in both U and V and U  V is the smallest (w.r.t. 

⊆) element of L which includes both U and V. U  V, U  V are called the 

meet and join, respectively, of U and V. A lattice L of subsets of S 
equipped with an operation ∼: L → L satisfying U  ∼U = ∅ for all U ∈ L 

is called a ∼-lattice of subsets of S.  
 
We can now formally define a perceptual space, or simply a space, to be a 
pair S = (S, L) consisting of a set S and a ∼-lattice L of subsets of S. 
Elements of L are called parts of S, and L is called the lattice of parts of 
S. 
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The perceptual spaces that most closely resemble actual perceptual fields 
are called proximity spaces. These in turn are derived from proximity 
structures. A proximity structure is a set S equipped with a proximity 
relation, that is, a symmetric reflexive binary relation ≈. Here we think of 
S as a field of perception, its points as locations in it, and the relation ≈ 
as representing indiscernibility of locations, so that x ≈ y means that x and 
y are “too close” to one another to be perceptually distinguished.  
(Caution: ≈ is not generally transitive!) For each x ∈ S we define the 
sensum at x, Qx , by 
 

Qx = {y∈S: x ≈ y}. 
 

We may think of the sensum Qx as representing the minimum 
perceptibilium at the location x. Unions of families of sensa are called 
parts of S. Parts of S correspond to perceptibly identifiable subregions of S. 
It can be shown that the family Part(S) of parts of S forms a ∼-lattice of 
subsets of S (actually, a complete ortholattice) in which the join operation 
is set-theoretic union, the meet of two parts of S is the union of all sensa 
included in their set-theoretical intersection, and, for U ∈ Part(S),  
 

∼U = {y∈S: ∃x∉U. x ≈ y}. 
 

The pair S = (S, Part(S)) is called a proximity space.   
 
The most natural proximity structures (and proximity spaces) are derived 
from metrics. Any metric d on a set S and any nonnegative real number ε 
determines a proximity relation ≈ given by x ≈ y ⇔ d(x, y) ≤ ε. When ε = 0 
the associated proximity relation is the identity relation =: the 
corresponding proximity space is then called discrete. It can be shown 
that, if a proximity space S has a transitive proximity relation, then it is 
almost discrete in the sense that its lattice of parts is isomorphic to the 
lattice of parts of a discrete space.  
 
Given a perceptual space S = (S, L) we define an interpretation of the 
language L of attributes to be an assignment, to each primitive attribute 
A, of a part A S of S. Then we can extend the assignment of parts of S to 
all attributes as in (*) above. Given an attribute α and a part U of S, we 
think of the relation U ⊆ α S as meaning that U is covered by the 
attribute A. Now there is another relation between parts and attributes 
the manifestation relation S—which reflects more closely the way 

compound attributes are built up from primitive ones. U S α, which is 
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read “U manifests α” or “α  is manifested over U” is defined as 
follows: 
 

U S A ⇔ U ⊆ A S for primitive A, 

U S A ∧ B ⇔ U S A and U S B, 
U S A ∨ B  ⇔ V S A  & W S B  for some parts V, W of S such that       

U = V  ∪ W,  
U S ¬A  ⇔ (for all parts V of S) V S A ⇒ V ⊆ ∼U. 

 
Thus U manifests a disjunction A ∨ B  provided there is a “covering” of U 
by two “subparts” manifesting A and B respectively, and U manifests a 
negation ¬A provided any part of S manifesting A is included in the 
“complement” of U. 
 
In general, the manifestation and covering relations fail to coincide in 
proximity spaces. The reason for this is that, while the latter has a 
certain persistence property, the former, in general, fails to possess this 
property. By persistence of the covering relation is meant the evident fact 
that if a part U of a space is covered by an attribute, then this attribute 
continues to cover any subpart of U. However, as we shall see, this is not 
the case for the manifestation relation: there are attributes manifested 
over a part of a space which fail to be manifested over a subpart.  
 
Let us call an attribute S-persistent (or persistent over S) if for all parts U, 
V of S we have 
 

V ⊆ U & U S A ⇒ V S A. 
 

(Note that a primitive attribute is always persistent. More generally, it 
is not hard to show that the same is true for any compound attribute not 
containing occurrences of the disjunction symbol ∨.) Let us call a space S 
persistent if every attribute is S-persistent (for any interpretation of L in 
S). We now give an example of a nonpersistent proximity space, a one-
dimensional version of Brentano’s chessboard. 
 
 
 
 
                                  Red      Blue     Red     Blue     Red     Blue      Red     Blue 
 
                              –4     –3    –2    –1     0      1     2      3     4 
                                                                     U 
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Consider the real line with the proximity relation ≈ defined by x ≈ y ⇔    
|x – y| ≤ 2, and let R be the associated proximity space. The sensum at 
a point x is then the closed interval of length 1 centred on x. Suppose 
now we are given two primitive attributes B (‘blue’) and R (‘red’). Let the 
B-part of R be the union of all closed intervals of the form [2n, 2n + 1] 
and let the R-part of R be the union of all closed intervals of the form   
[2n – 1, 2n]. To put it more vividly, we “colour” successive unit segments  
alternately blue and red. Clearly, then, R manifests the disjunction        
R ∨ B. But if U is the sensum Q1 = [2, 12], then R ∨ B is not manifested 
over U, since U is evidently not covered by two subparts over which R and 
B are manifested, respectively—indeed U has no proper subparts.  
 
Thus arises the curious phenomenon that, although we can tell, by 
surveying a (sufficiently large part of) the whole space R, that the part U 
is covered by redness and blueness, nevertheless U—unlike R—does not 
split into a red part and a blue part. In some sense redness and blueness 
are conjoined or superposed in U: it seems natural then to say that U 
manifests a superposition of these attributes rather than a disjunction. If 
we take the unit of length on the real line sufficiently small (or 
equivalently, redefine x ≈ y to mean |x – y| ≤ ε for sufficiently small ε) so 
that each interval of unit length represents the minimum length 
discernible to human visual perception, we have (essentially) Brentano’s 
chessboard in one dimension. In that case, the “superposition” of the two 
attributes blue and red turns out to be violet, which is what we actually 
see. 
 
Actually, the covering of our proximity space by parts like U looks like 
this: 
 
                             red   blue   blue    red    red    blue     blue   red    red     blue 
 
 
while Brentano’s chessboard looks like this: 
 
                             red   blue    red   blue     red    blue     red     blue   red    blue 
 

 
But the two arrangements are obviously isomorphic. 
 
The concept of superposition of attributes admits a very simple rigorous 
formulation. In the example we have just considered, the part U 
manifests a superposition of the attributes R and B just when there is a 
part V of the space which includes U and manifests R ∨ B  (in this case, V 
may be taken to be the whole real line). This prompts the following 
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definition. Given a proximity space S, an interpretation of L in S and 
attributes A, B, we say that a part U of S manifests a superposition of A 
and B if there is a part V of S such that U ⊆ V and  V  S A ∨ B. Now for 
any attribute C, it is readily shown that  
 

U S ¬¬C. ⇔ V S C  for some part V such that U ⊆ V. 
 

So the condition that U manifest a superposition of A and B is just 
 

U S ¬¬(A ∨ B). 
 

It follows that a superposition is a double negation of a disjunction. In the 
human visual field, then, the attribute “violet” is the double negation of 
the attribute “blue or red”. Similarly, the attribute “grey” is the double 
negation of the attribute “black or white”, etc. 
 
Finally, we discuss the relationship between these ideas and continuity. 
Let us call a proximity structure (S, ≈) continuous if for any x, y ∈ S there 
exist z1, …, zn  such that x ≈ z1, z1 ≈ z2, …, zn-1 ≈ zn , zn  ≈ y. Continuity in 
this sense means that any two points can be joined by a finite sequence 
of points, each of which is indistinguishable from its immediate 
predecessor. (Thus, in the case of our nonpersistent proximity space 
above, continuity means that a red segment and a blue segment can 
always be joined by a violet line provided that the coloured segments are 
taken to be sufficiently small.) If d is a metric on S such that the metric 
space (S, d) is connected, then every proximity structure determined by d 
is continuous. When S is a perceptual field such as that of vision, the 
fact that it does not fall into separate parts means that it is connected as 
a metric space with the inherent metric. Accordingly every proximity 
structure on S determined by that metric is continuous. Note that this 
continuity emerges even when S is itself an assemblage of discrete 
“points”. This would seem to be the way in which continuity of perception 
is engendered by an essentially discrete system of receptors.  
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