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FOREWORD 
 

My purpose in writing this book is to present an overview—at a fairly elementary 
level—of the conceptual evolution of mathematics. As will be seen from the Table of 
Contents, I have adhered in the main to the traditional tripartite division of the subject 
into Algebra (including the Theory of Numbers), Geometry, and Analysis. I have 
attempted to describe, in roughly chronological order, what are to me some of the most 
beautiful, and—if I am not entirely misguided—some of the most significant 
developments in each of these domains. In this spirit I have also included brief 
accounts of mathematical notation, ancient Greek mathematics, set theory, and the 
philosophy of mathematics. The Appendices contain short expositions of topics which 
are particularly dear to my heart and which I hope my readers (if any) will take to 
theirs. My approach here—a curious mix, admittedly, of the chronological and the 
expository—is the result, not entirely of my whim, but also of having spent a number 
of years of lecturing on these topics to undergraduates.  
 I should point out that the use of the word “intelligible” in the book’s title is 
intended to convey a double meaning. First, of course, the usual one of 
“comprehensible” or “capable of being understood.” But the word also has an older 
meaning, namely, “capable of being apprehended only by the intellect, not by the 
senses”; in this guise it serves as an antonym to “sensible”. It is precisely with this 
signification that Plutarch uses the word in the epigraph I have chosen. While the 
potential intelligibility of mathematics in this older sense is hardly to be doubted, I can 
only hope that my book conveys something of that intelligibility in its more recent 
connotation. 
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