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CHAPTER 10    
 
 

THE CONTINUOUS AND THE DISCRETE 
 
 
 
THE RELATIONSHIP BETWEEN THE IDEAS of continuity and discreteness has 
played no less important a role in the development of mathematics than it has in science 
and philosophy. Continuous entities are characterized by the fact that they can be 
divided indefinitely without altering their essential nature. So, for instance, the water in 
a bucket may be continually halved and yet remain water1. Discrete entities, on the 
other hand, typically cannot be divided without effecting a change in their nature: half a 
wheel is plainly no longer a wheel. Thus we have two contrasting properties: on the 
one hand, the property of being indivisible, separate or discrete, and, on the other, the 
property of being indefinitely divisible and continuous although not actually divided 
into parts.  
 Now one and the same object can, in a sense, possess both of these properties. For 
example, if the wheel is regarded simply as a piece of matter, it remains so on being 
divided in half. In other words, the wheel regarded as a wheel is discrete, but regarded 
as a piece of matter, it is continuous.  From examples such as these we see that 
continuity and discreteness are complementary attributes originating through the mind's 
ability to perform acts of abstraction, the one arising by abstracting an object’s 
divisibility and the other its self-identity. 
 In mathematics the concept of whole number provides an embodiment of the 
concept of pure discreteness, that is, of the idea of a collection of separate individual 
objects, all of whose properties—apart from their distinctness—have been refined 
away. The basic mathematical representation of the idea of continuity, on the other 
hand, is the geometric figure, and more particularly the straight line. Continuity and 
discreteness are united in the process of measurement, in which the continuous is 
expressed in terms of separate units, that is, numbers. But these separate units are 
unequal to the task of measuring in general, making necessary the introduction of 
fractional parts of the individual unit. In this way fractions issue from the interaction 
between the continuous and the discrete.  

A most striking example of this interaction—amounting, one might say, to a 
collision—is the Pythagorean discovery of incommensurable magnitudes. Here the 

                                                           
1For the purposes of argument we are ignoring the atomic nature of matter which has been established by 
modern physics. 
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realm of continuous geometric magnitudes resisted the Pythagorean attempt to reduce it 
to the discrete form of pure number. The “proportions” invented by Eudoxus to resolve 
the problem were in essence an extension of the idea of number—i.e., of the discrete— 
adequate to the task of expressing the relations between continuous magnitudes. Many 
centuries later, in the modern era, the concept of real number finally crystallized as a 
complete solution to the problem of representing continuous magnitudes as numbers. 
 The opposition between the continuous and the discrete also arises in physicists’ 
account of the nature of matter, or substance. An early instance of this opposition—
perhaps the first—in physics occurred in Greece in the third century B.C. with the 
emergence of two rival physical theories, each of which became the basis of a fully 
elaborated physical doctrine. One is the atomic theory, due to Leucippus (fl. 450 B.C.) 
and Democritus (b. c.470 B.C.) The other—the continuum theory—is the creation of 
the Stoic school of philosophy and is associated with the names of Zeno of Cition (fl. 
250 B.C.) and Chrysippus (280–206 B.C.).  
 The continuum of Stoic philosophy is an infinitely divisible continuous substance 
which was conceived as providing the ultimate foundation for all natural phenomena. 
In particular the Stoics held that space is everywhere occupied by a continuous 
invisible substance which they called pneuma (Greek: “breath”). This pneuma—which 
was regarded as a kind of synthesis of air and fire, two of the four basic elements, the 
others being earth and water—was conceived as being an elastic medium through 
which impulses are transmitted by wave motion. All physical occurrences were viewed 
as being linked through tensile forces in the pneuma, and matter itself was held to 
derive its qualities form the “binding” properties of the pneuma it contains.  
 The atomists, on the other hand, asserted that material form results from the 
arrangement of the atoms—the ultimate building blocks—to be found in all matter, that 
the sole form of motion is the motion of individual atoms, and that physical change can 
only occur through the mutual impact of atoms. 
 A major problem encountered by the Stoic philosophers was that of the nature of 
mixture, and, in particular, the problem of explaining how the pneuma mixes with 
material substances so as to “bind them together”. The atomists, with their granular 
conception of matter, did not encounter any difficulty here, since they could regard the 
mixture of two substances as an amalgam of their constituent atoms into a kind of 
lattice or mosaic. But the Stoics, who regarded matter as continuous, had difficulty with 
the notion of mixture. For in order to mix fully two continuous substances, they would 
either have to interpenetrate in some mysterious way, or, failing that, they would each 
have to be subjected to an infinite division into infinitesimally small elements which 
would then have to be arranged, like finite atoms, into some kind of discrete pattern.  
 This controversy over the nature of mixture shows that the problem of continuity is 
intimately connected with the problems of infinite divisibility and of the infinitesimally 
small. The mixing of particles of finite size, no matter how small they may be, presents 
no difficulties. But this is no longer the case when we are dealing with         a 
continuum, whose parts can be divided ad infinitum. Thus the Stoic philosophers were 
confronted with what was at bottom a mathematical problem. 
 In fact, the problem of infinite divisibility had already been posed in a dramatic but 
subtle way more than a century before the rise of the Stoic school, by Zeno of Elea  (fl. 
450 B.C.), a pupil of the philosopher Parmenides (fl. 500 B.C.), who taught that the 
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universe was a static unchanging unity. Zeno's arguments take the form of paradoxes 
which are collectively designed to discredit the belief in motion, and so in any notion of 
change. We consider, in modern formulation, three of these paradoxes, which are, 
perhaps, the most famous illustrations of the opposition between the continuous and the 
discrete. The first two of these, both of which rest on the assumption that space and 
time are continuous, purport to show that under these conditions continuous motion 
engenders, per impossibile, an actual infinity.  
 The first paradox, that of the Dichotomy, goes as follows. Before a body in motion 
can reach a given point, it must first traverse half of the distance; before it can traverse 
half of the distance, it must traverse one quarter; and so on ad infinitum. So, for  a body 
to pass from one point to another, it must traverse an infinite number of divisions. But 
an infinite number of divisions cannot be traversed in a finite time, and so the goal 
cannot be reached. 
 The second paradox, that of Achilles and the Tortoise, is the best known.  Achilles 
and a tortoise run a race, with the latter enjoying a head start. Zeno asserts that no 
matter how fleet of foot Achilles may be, he will never overtake the tortoise. For, while 
Achilles traverses the distance from his starting-point to that of the tortoise, the tortoise 
advances a certain distance, and while Achilles traverses this distance, the tortoise 
makes a further advance, and so on ad infinitum. Consequently Achilles will run ad 
infinitum without overtaking the tortoise.  
 This second paradox is formulated in terms of two bodies, but it has a variant 
involving, like the Dichotomy, just one. To reach a given point, a body in motion must 
first traverse half of the distance, then half of what remains, half of this latter, and so on 
ad infinitum, and again the goal can never be reached. This version of the Achilles 
exhibits a pleasing symmetry with the Dichotomy. For the former purports to show that 
a motion, once started, can never stop; the latter, that a motion, once stopped,  can 
never have started. 
 The third paradox, that of the Arrow, rests on the assumption of the discreteness of 
time. Here we consider an arrow flying through the air. Since time has been assumed 
discrete we may “freeze” the arrow’s motion at an indivisible instant of time. For it to 
move during this instant, time would have to pass, but this would mean that the instant 
contains still smaller units of time, contradicting the indivisibility of the instant. So at 
this instant of time the arrow is at rest; since the instant chosen was arbitrary, the arrow 
is at rest at any instant. In other words, it is always at rest, and so motion does not 
occur. 
 Let us examine these paradoxes more closely. In the case of the Dichotomy, we may 
simplify the presentation by assuming that the body is to traverse a unit spatial 
interval—a mile, say—in unit time—a minute, say. To accomplish this, the body must 
first traverse half the interval in half the time, before this one-quarter of the interval in 
one-quarter of the time, etc. In general, for every subinterval of length 1

2n  (n = 1, 2, 
3,…), the body must first traverse half thereof, i.e. the subinterval of length 1

1
2n+ . In 

that case both the total distance traversed by the body and the time taken is given by the 
convergent series  
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as expected. So, contra Zeno. the infinite number of divisions is indeed traversed in a 
finite time. 
 More troubling, however, is the fact that these divisions, of lengths 

3 2
1 1 1 1

2 22 2... ,..., , ,n constitute an infinite regression which, like the negative 

integers, has no first term. Zeno seems to be inviting us to draw the conclusion that it 
cannot be supplied with one, so that the motion could never get started. However, from 
a strictly mathematical standpoint, there is nothing to prevent us from placing 0 before 
all the members of this sequence, just as it could be placed, in principle at least, before 
all the negative integers. Then the sequence of correlations  

1 1 1 1
2 2 2 2...( , ),...,( , )n n … ,     (1, 1) between the time and the body’s position is 

simply preceded by the correlation  (0, 0), where the motion begins. There is no 
contradiction here. 
 In the case of the Achilles, let us suppose that the tortoise has a start of 1000 feet 
and that Achilles runs ten times as quickly. Then Achilles must traverse an infinite 
number of distances—1000 feet, 100 feet, 10 feet, etc.—and the tortoise likewise must 
traverse an infinite number of distances—100 feet, 10 feet, 1 foot, etc.—before they 
reach the same point simultaneously. The distance of this point in feet from the starting 
points of the two contestants is given, in the case of Achilles, by the convergent series 
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and in the case of the tortoise 
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And, assuming that Achilles runs 10 feet per second, the time taken for him to overtake 
the tortoise is given, in seconds, by the convergent series 
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so that, again contra Zeno, Achilles overtakes the tortoise in a finite time. 
 Although the use of convergent series does confirm what we take to be the evident 
fact that Achilles will, in the end, overtake the tortoise, a nagging issue remains. For 
consider the fact that, at each moment of the race, the tortoise is somewhere, and, 
equally, Achilles is somewhere, and neither is ever twice in the same place. This means 
that there is a biunique correspondence between the positions occupied by the tortoise 
and those occupied by Achilles, so that these must have the same number. But when 
Achilles catches up with the tortoise, the positions occupied by the latter are only part 
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of those occupied by Achilles. This would be a contradiction if one were to insist, as 
did Euclid in his Elements,  that the whole invariably has more terms than any of its 
parts. In fact, it is precisely this principle which, in the nineteenth century, came to be 
repudiated for infinite sets2 such as the ones encountered in Zeno’s paradoxes. Once 
this principle is abandoned, no contradiction remains.   
 The paradox of the Arrow can be resolved by developing a theory of velocity, based 
on the differential calculus. By definition, (average) velocity is the ratio of distance 
travelled to time taken. It will be seen at once that in this definition two distinct points 
in space and two distinct points in time are required. Velocity at a point is then defined 
as the limit of the average velocity over smaller and smaller spatiotemporal intervals 
around the point. According to this definition, a body may have a nonzero “velocity” at 
each point, but at each instant of time will not “appear to be moving”. 
  Although, as we have seen, Zeno’s paradoxes can be resolved from a strictly 
mathematical standpoint, they present difficulties for understanding the nature of 
actual motion which have persisted to the present day. 
 The Stoic philosophers, as well as mathematicians such as Eudoxus, grasped fully 
the idea of passage to the limit or convergence of purely spatial quantities. But the 
notion of convergence of points or intervals of time eluded them, because getting at this 
notion involves the idea of a functional correspondence between time and space, a 
conception which never received adequate formulation in ancient Greek science. 
Nevertheless, the Stoics made a bold attempt to overcome the difficulties involved in 
the analysis of motion. Chrysippus, for instance, perceived the intimate connection 
between time and motion, as is revealed in his “definition” of time, namely, as “the 
interval of movement with reference to which the measure of speed and slowness is 
reckoned.” He also held that the present moment, the now, is given by an infinite 
sequence of nested time intervals shrinking toward the mathematical “now”, a 
strikingly modern conception. 
 The problem of the continuum arises also in connection with the method of 
exhaustion. We are told by Archimedes that, using his principle of convergence,  
Eudoxus successfully proved that the volume of a cone is one third that of the 
circumscribed cylinder. Archimedes also claims that Democritus originally discovered 
the result, but was unable to prove it rigorously. The obstacle was that he could see no 
way of actually building the cone from circular segments, each one of which would  
differ slightly in area from the two flanking it (the method he had apparently used in 
discovering the result). The atomist Democritus, with his belief in ultimate finite units, 
would presumably have understood this “slightly” as entailing a discrete difference 
between the areas of these circular segments, which would produce, not a smooth cone, 
but instead a ziggurat-like figure with a surface consisting of a series of tiny steps. If, 
on the other hand, this “slightly” were to be taken to mean “continuously”, or 
“infinitesimally”,  then the difference between the areas of the segments would seem as   
a result to be nonexistent, and one would end up, not with a cone, but a cylinder. 
Eudoxus later surmounted this difficulty by taking the limit of the volumes in a manner 
essentially similar to the method employed in the integral calculus. This concept of 
limit is in fact completely in accord with the Stoic conception of the continuum.  

                                                           
2 See the following chapter for a discussion of infinite sets. 
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 The opposition between the continuous and the discrete resurfaced with renewed 
vigour in the seventeenth century with the emergence of the differential and integral 
calculus. Here the controversy centred on the concept of infinitesimal. According to 
one school of thought, the infinitesimal was to be regarded as a real, infinitely small, 
indivisible element of a continuum, similar to the atoms of Democritus, except that now 
their number was considered to be infinite. Calculation of areas and volumes, i.e., 
integration, was thought of as summation of an infinite number of these infinitesimal 
elements. An area, for example, was taken to be the “sum of the lines of which it is 
formed”, as indicated in the diagram below. Thus the continuous was once again 
reduced to the discrete, but, with the intrusion of the concept of the infinite, in a subtler 
and more complex way than before.  
 
 
 
 
 
 
 
 
  Infinitesimals enjoyed a considerable vogue among seventeenth and eighteenth 
century mathematicians. In the guise of the charmingly named “linelets” and “timelets”, 
they played an essential role in Isaac Barrow’s3 (1630–1677) “method for finding 
tangents by calculation”, which appears in his Lectiones Geometricae of 1670. As 
“evanescent quantities” they were instrumental (although later abandoned) in Newton's 
development of the calculus, and, as “inassignable quantities”, in Leibniz’s. The 
Marquis de l'Hospital (1661–1704), who in 1696 published the first treatise on the 
differential calculus (entitled Analyse des Infiniments Petits pour l'Intelligence des 
Lignes Courbes), invokes the concept in postulating that  “a curved line may be 
regarded as being made up of infinitely small straight line segments,” and that “one can 
take as equal two quantities differing by an infinitely small quantity.” 

However, the conception of infinitesimals as real entities suffered from a certain 
vagueness and even, on occasion, logical inconsistency. Memorably derided by the 
philosopher George Berkeley (1685–1753) as “ghosts of departed quantities” (and in 
the twentieth century roundly condemned by Bertrand Russell as “unnecessary,   
erroneous, and self-contradictory”), this conception of infinitesimal was gradually 
displaced by the idea—originally suggested by Newton—of the infinitesimal as a 
continuous variable which becomes arbitrarily small. By the start of the nineteenth 
century, when the rigorous theory of limits was in the process of being created, this 
conception of infinitesimal had been accepted by the majority of mathematicians. A 
line, for instance, was now understood as consisting not of “points” or “indivisibles”, 
but as the domain of values of a continuous variable, in which separate points are to be 

                                                           
3Barrow is remembered not only for his own outstanding mathematical achievements but also for being the 
teacher of Newton. 
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considered as locations. At this stage, then, the discrete had given way to the 
continuous. 
 But the development of mathematical analysis in the later part of the nineteenth 
century led mathematicians to demand still greater precision in the theory of continuous 
variables, and above all in fixing the concept of real number as the value of an arbitrary 
such variable. As a result, in the eighteen seventies a theory was formulated—
independently by Dedekind, Karl Weierstrass (1815–1897), and Georg Cantor (1845–
1918)—in which a line is represented as a set of points, and the domain of values of a 
continuous variable by a set of real numbers. In this scheme of things there was no 
place for the concept of infinitesimal, which accordingly disappeared for a time. Thus, 
once again, the continuous was reduced to separate discrete points and the properties of 
a continuum derived from the structure of its underlying point set. This reduction, 
underpinned by the development of set theory, has led to immense progress in 
mathematics, and has met with almost universal acceptance by mathematicians.   
 A new phase in the long contest between the continuous and the discrete has opened 
in the past few decades with the refounding of the concept of infinitesimal on a solid 
basis. This has been achieved in two essentially different ways.  
 First, in the nineteen sixties Abraham Robinson (1918–1974), using methods of 
mathematical logic, created nonstandard analysis, an extension of mathematical 
analysis embracing both “infinitely large” and infinitesimal numbers in which the usual 
laws of the arithmetic of real numbers continue to hold, an idea which in essence goes 
back to Leibniz. Here by an infinitely large number is meant one which exceeds every 
positive integer; the reciprocal of any one of these is infinitesimal in the sense that, 
while being nonzero, it is smaller than every positive fraction 1n . Much of the 
usefulness of nonstandard analysis stems from the fact that within it every statement of 
ordinary analysis involving limits has a succinct and highly intuitive translation into the 
language of infinitesimals. For instance, if we call two numbers x and y infinitesimally 
close when x – y is infinitesimal, we find that the statement  
 

 is the limit of f(x) as x → a 
 

is equivalent in meaning to the statement  
 

f(a + ε) is infinitesimally close to  for all infinitesimal ε ≠ 0, 
 

and the statement 
 

f is continuous at a  
 

 to the statement  
 

f(a + ε) is infinitesimally close to f(a) for all infinitesimal ε ≠ 0. 
 

Nonstandard analysis is presently in a state of rapid development, and has found many 
applications. 
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 The second development in the refounding of the concept of infinitesimal has been 
the emergence in the nineteen seventies of smooth infinitesimal analysis. Founded on 
the methods of category theory,  this is a rigorous framework of mathematical analysis 
in which every function between spaces is smooth (i.e., differentiable arbitrarily many 
times, and so in particular continuous) and in which  the use of limits in defining the 
basic notions of the calculus is replaced by nilpotent infinitesimals, that is, of quantities 
so small (but not actually zero) that some power—most usefully, the square—
vanishes4. Smooth infinitesimal analysis provides an image of the world in which the 
continuous is an autonomous notion, not explicable in terms of the discrete.  
 Thus we see that the opposition between the continuous and the discrete has not 
ceased to stimulate the development of mathematics. 
 
 
 
               

                                                           
4 We have already touched on this in the previous chapter:  a fuller account will be found in Appendix 3. 


