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APPENDIX 2 
 
 

 THE GÖDEL INCOMPLETENESS THEOREMS 
 
 
 
We sketch proofs of Gödel’s theorems, obtaining along the way an important result of 
Tarski on the undefinability of mathematical truth. 
 We begin by setting up a formal language in which arithmetical statements can be 
written down in a precise way. This language will be denoted by the symbol L and 
called the language of arithmetic. As is the case with any language, we must first 
specify its alphabet: that of L consists of the following symbols: 
 
 Arithmetical variables:  x1,  x2,  x3, ...  

Arithmetical constants:   0, 1, 2, … 
Arithmetical operation symbols: +, ×  

 Equality symbol:   = 
Logical operators:    ∧   (conjunction, “and”)  

                                       ∨    (disjunction, “or”)  
                                       ¬    (negation, “not”),  
                                       →    (implication, “if ... then”)  
                                       ↔    (bi-implication, “is equivalent to”)  
                                        ∀    (universal quantifier, “for all”)  

∃ (existential quantifier, “there exists”)   
Punctuation symbols: (,  ) , [ , ], commas, etc.  

 
  Expressions of L—arithmetical expressions—are built up by stringing together 
finite sequences of symbols. As in any language, only certain expressions of L will be 
deemed meaningful or well-formed. These are the terms, the arithmetical counterparts 
of nouns, and the formulas, the arithmetical counterparts of declarative assertions. 
 Arithmetical terms, or simply terms, are specified by means of the following rules: 
 
 (i)  Any arithmetical variable or constant standing by itself is a term. 
 (ii) If t and u are terms, so too are the expressions t + u, t × u. 
 (iii) An expression is a term when, and only when, it follows that it is one from 
finitely many applications of clauses (i) and (ii). 
Thus, for example, each of the expressions 6,   x1 + 2  and  (x1 × x5) + 27 is a term. 

Arithmetical formulas, or simply formulas, are specified by means of the following 
rules: 
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 (a)  For any terms t, u, the expression t = u is a formula. 

(b)  If A and B are formulas, so too are all the expressions ¬A,  A ∧ B,  A ∨ B,  A →  
B, A ↔ B,  ∀xnA, ∃xnA, for any numerical variable xn. 

(c) An expression is a formula when, and only when, it follows that it is one from 
finitely many applications of clauses (a) and (b). 
 

Thus, for instance, each of the following expressions is a formula: x1 + 2 = 3,        
∃x1(x1 + 2 = 3), ∀x1∀x5(x1 × x5 = 3). 
 Terms assume numerical values and formulas truth values (truth or falsehood) 
when their constituent symbols are interpreted in the natural way. In this natural 
interpretation, each arithmetical variable is assigned some arbitrary but fixed integer as 
value, and then each arithmetical constant n is interpreted as the corresponding integer 
n, the arithmetical operation symbols + and × as addition and multiplication of integers, 
respectively, the equality symbol as identity of integers, and finally the logical 
operators as the corresponding logical particles of ordinary discourse. For example, if 
we assign the values 3 to x1 and 7 to x5 , then the  resulting values assigned to the three 
terms above are, respectively, 6; 3 + 2, i.e., 5; and (3 × 7) + 27, i.e., 48. Under the same 
assignment of values, the resulting truth values assigned to the three formulas above 
are, respectively,  
 

THE TRUTH VALUE OF THE STATEMENT 3 + 2 = 3, I.E.,  FALSEHOOD; 
THE TRUTH VALUE OF THE STATEMENT THERE IS A NUMBER WHOSE SUM WITH 2 EQUALS 3, 

I.E., TRUTH ; 
THE TRUTH VALUE OF THE STATEMENT THE PRODUCT OF ANY PAIR OF NUMBERS EQUALS 3, 

I.E., FALSEHOOD.  
 
 In place of the clumsy locution “the truth value of A is truth (or falsehood)” we 
shall usually employ the phrase “ A is true (or false).” Note that then a formula A is true 
exactly when its negation ¬A is false. 

We observe that, while the truth or falsehood of the first of these formulas is 
dependent on the values assigned to the variables occurring in it (in this case, just x1), 
the truth values of the second two are independent of the values assigned to such 
variables. Formulas having this independence property are called sentences: they may 
be regarded as making simple declarative assertions—either true or false— about the 
system of natural numbers. Formally speaking, a sentence is a formula in which each 
occurrence of a variable x is accompanied by the occurrence of a corresponding 
“quantifier” expression of the form  ∀x or  ∃x.   
 Occurrences of variables in formulas not accompanied by a corresponding 
quantifier expression are called free occurrences: for example, the occurrence of the 
variable x1  in  the first formula above is free, but those in the second and third formulas 
are not. We write A(x1 ..., xn) for any formula A in which at most the variables x1, ..., xn 
have free occurrences, and, for any natural numbers m1, ..., mn, we write A(m1, ..., mn) 
for the formula (evidently a sentence) obtained by substituting m1 for x1, ..., mn for xn at  
each of the latter's free occurrences in A. Thus, for example, if A(x1, x2, x3, x4) is the 
formula  
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 ∃x1(x1 + x2 = 4  ∧ x3 × x4 = 7), 

  
then A(1, 5, 7, 8) is the sentence  
 

 ∃x1(x1 + 5 = 4  ∧  7 × 8 = 7). 
 
We shall employ similar notational conventions for terms. 

We next assign numerical labels to the symbols of the language of arithmetic in the 
following way. Suppose that its symbols, excluding variables and constants, are k in 
number. To these symbols we assign, in some initially arbitrary but subsequently fixed 
manner, the labels 0, 1, ..., k – 1. Then to each numerical variable xn we assign the label 
k + 2n and to each numerical constant n the label k + 2n + 1. In this way each symbol s 
is assigned a label which we shall denote by s*.  

Finally, each expression s1s2...sn is assigned the code number  
 

2s*×3s*×...×pn
s*, 

 
where pn is the nth prime number. In this way each expression is assigned a unique 
positive integer as its code, and, conversely, every positive integer is the code of some 
unique expression.  
 We shall use the symbol An to denote the arithmetical expression with code number 
n.  
 Let P be a property of natural numbers: we write P(m) to indicate that the number m 
has the property P. Similarly, if R is a relation among natural numbers, we write      
R(m1 ,..., mn) to indicate that the numbers m1, ..., mn stand in the relation R. We shall 
often use the term “relation” to cover properties as well. 
 A relation R among natural numbers is called arithmetically definable if there is an 
arithmetical formula A(x1 ,..., xn) such that, for all numbers m1, ..., mn, we have 
 

R(m1 ,..., mn) iff 1 the sentence A(m1, ..., mn) is true. 
 
In this case we say that the relation R is defined by the formula A. We extend this 
concept to arithmetical expressions by saying that a property of (or a relation among) 
such expressions is arithmetically definable if the corresponding property of (or 
relation among) their code numbers is so definable.  
 Now it can be shown without much difficulty that the property of being (the code 
number of) an arithmetical formula, or a sentence, is arithmetically definable. But what 
about the property of being a true sentence? We shall establish the remarkable result 
that this property is not arithmetically definable.  
 Since the assignment of code numbers to arithmetical expressions is evidently a 
wholly mechanical process, it is possible to compute, for any given formula2 Am(x1) 

                                                           
1We use “iff” as an abbreviation for the phrase “if and only if”, that is, “is equivalent to”. 
2Recall that Am stands for the formula with code number m. In writing Am(x1) we are, accordingly, assuming 
that Am has free occurrences of at most the variable x1. 
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with code number m, and any number n, the code number of the sentence Am(n). This 
computation is in turn arithmetically representable in the sense that one can construct 
an arithmetical term3 s(x1, x2) with the property that, for any numbers m, n, p,   

 
the sentence s(m, n) = p is true  iff p is the code number of the sentence Am(n). 

 
 Now let S any collection of arithmetical sentences. We proceed to prove the 
 
 Arithmetical Truth Theorem. Suppose that S satisfies the following conditions:  
   

(i)Each member of S is true. 
(ii) The property of being (the code number of) a member of S is 

arithmetically definable.  
 
Then there is a true sentence G of L such that neither G nor its negation ¬G are 
members of S. 
 
 Proof. By assumption (ii) there is a formula T(x1) of L such that, for all numbers n,  
 

 T(n) is true  iff  n is the code number of a sentence in S 
 
                                               iff  An is in S. 
 
Write B(x1) for the formula ¬T(s(x1, x1)) (i.e., the result of substituting s(x1, x1) for all 
free occurrences of x1 in ¬T(x1)) and suppose that B has code number m. Then 
 

B is the sentence Am. 
 
Next, let p be the natural number such that 
 

p = s(m, m) 
 
is a true sentence. Then, by definition, p is the code number of the sentence Am(m). 
 
 Now write G for Am(m). Then p is the code number of G, or, in other words, 
 

G is Ap. 
 
Thus we have 
 

G is true  iff Am(m).is true 
                                  
                                                                 iff  B(m) is true 
 

                                                           
3Here “s” stands for “substitution.” 
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                                                                 iff  ¬T(s(m, m)) is true 
 
                                                                 iff  T(p) is false 
 
                                                                 iff  Ap is not in S 
 
                                                                 iff  G is not in S. 
                                    
We see from this G asserts of itself that it is not in S. It follows that G is true, for, if it 
were false, it would follow from the above that it was in S, and hence true by 
assumption (i). Since G is now true, again by the above it cannot be a member of S. 
Finally, since ¬G must now be false, it cannot be a member of S since by assumption 
every member of the latter is true. The proof is complete. 
 
 By taking S in this theorem to be the collection of all true arithmetical sentences, 
we immediately obtain 
 
 Tarski's Theorem on the Undefinability of Truth.  The property of being a true 
arithmetical sentence is not arithmetically definable.  
 
 We observe that the relevant sentence G in Tarski’s theorem asserts “I am not in the 
set of true sentences”, i.e., “I am false”. Thus, like the sentence in the Liar paradox, G 
asserts its own falsehood. 
 Next, one can formulate the notion of a proof from a set of arithmetical sentences S 
and that of a formula provable from S in such a way that: 
 
 (1) if each member of S is true, so is each sentence provable from S; 

(2) if the property of being a member of S is arithmetically definable, so is the 
property of being a sentence provable from S. 
   
 Then from the Arithmetical Truth Theorem one infers 
 
 Gödel's First Incompleteness Theorem (weak form). Let S be a set of true 
arithmetical sentences and suppose that the property of being a member of S is 
arithmetically definable. Then S is incomplete, i.e. there is a (true) arithmetical sentence 
G such that neither it nor its negation are provable from S. 
 
 To prove this we define S  to be the set of all sentences provable from S. Then by 
(1) and (2) above, S consists of true sentences and the property of being a member of 
S  is arithmetically definable. Accordingly we may apply the Arithmetical Truth 
Theorem to S : this yields a (true) sentence G such that neither G nor ¬G are members 
of S , in other words, neither are provable from S. 
 
 The sentence G here will be seen to assert, not its own falsehood, but its own 
unprovability from S.    
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 The import of this theorem may be stated in the following way. Suppose we think 
of our set S as a possible set of axioms for arithmetic, from which one might hope to be 
able to infer (at least in principle) all arithmetical truths. Then the theorem shows that 
one will never be able to construct within any language like L a set S of axioms for 
arithmetic which is sound, in the sense that each of its members is true, arithmetically 
definable, so that we know what to put in it, and complete, so that it can be used to 
prove or refute4 any arithmetical sentence. It is possible for S to possess any two of 
these properties, but not all three at once.    
 By refining this argument one can significantly strengthen its conclusion. Let us call 
S consistent if no formula of the form A  ∧ ¬A (a contradiction) is provable from S. Let 
R be a relation defined by a formula A. We say that R is S-definite if, for any natural 
numbers m1, ..., mn, we have 
 

R(m1, ..., mn)  iff  A(m1, ..., mn) is provable from S 
 not R(m1, ..., mn)  iff  ¬ A(m1, ..., mn) is provable from S. 

 
 Let Q be the substitution relation among natural numbers, that is, the relation which 
obtains among those triples m1, m2, m3 of numbers for which the sentence                
s(m1, m2) = m3 is true. Then one can prove  
 
 Gödel's First Incompleteness Theorem (strong form). Suppose that S is consistent, 
the property of being a member of S is arithmetically definable, and the property Q and 
the property of being a formula provable from S are both S-definite. Then S is 
incomplete. 
 
 We sketch the proof of this theorem. As before, we take G to be an arithmetical 
sentence which asserts its own unprovability from S. For any formula A, let us write      

S A for “A is provable from S”, and  S A for “A is not provable from S.” 
 Suppose that  S G. Then because provability from S is S-definite, it follows that  
 

S  “G is provable from S”. 
 
But the assertion “G is provable from S” is essentially just ¬G (since G is essentially 
“G is unprovable from S”), so we get 
 

S ¬G,  
    
contradicting the supposed consistency of S. Therefore  S G. 

Now suppose that S ¬G. Then since S is consistent, it follows that S S G and 
because provability from S is S-definite, we get 
 
                                                           
4We say that a sentence is refutable if its negation is provable. 
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S “G is unprovable from S”. 
 
Noting again that G is essentially the assertion “G is unprovable from S", it then 
follows that 
 

S G, 
 
contradicting the consistency of S. Hence also  S ¬G, and we are done. 
 
 The advantage of this strong form of the incompleteness theorem is that in it the 
“external” requirement that all the members of S be true has been replaced by the much 
weaker “internal” requirement that S be merely consistent. We may sum it up by saying 
that any consistent definable set of axioms for arithmetic must be incomplete.  
 In sketching the proof of this last theorem we established the implication  
 
                                 if S is consistent, then S G.                                     (*) 
 
Now the assertion “S is consistent” can be expressed as an arithmetical sentence ConS 
in the following way. Let n0 be the code number of some demonstrably false sentence,      
0 = 1, say, and write P(x1) for the arithmetical formula defining the property of being 
the code number of a sentence provable from S. Then ConS may be taken to be the 
sentence  

 
¬P(n0). 

 
 It turns out that the proof of the implication (*) can be written down formally in the 
language of arithmetic. Recalling yet again that G is essentially the assertion “S  G ”, 
this yields a proof from S of the arithmetical sentence 
 

ConS →  G, 
 
Now suppose that  
 

S  ConS.  
 
Then since, as we have seen, 
 

S  ConS →  G, 
 
it would follow that  

S G.  
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But, by the First Incompleteness Theorem, if S is consistent, then S G. This is a 
contradiction, and we infer  
 
 Gödel's Second Incompleteness Theorem. Under the same conditions as the strong 
form of the First Incompleteness Theorem, the arithmetical sentence ConS expressing 
the consistency of S is not provable from S. 
 
 In other words, the consistency of any arithmetically definable consistent system of 
axioms for arithmetic is not demonstrable in the system itself. Thus the consistency of 
arithmetic—assuming that it is indeed consistent—can only be demonstrated by appeal 
to procedures which transcend arithmetic, that is, in which the infinite figures in some 
essential way. This discovery dealt a shattering blow to Hilbert’s program for 
establishing the consistency of mathematics by “finitistic” means. 


