Share on Facebook Share on Twitter Email
Answers.com

sulfur

 
also sul·phur (sŭl'fər) pronunciation
n. (Symbol S)
A pale yellow nonmetallic element occurring widely in nature in several free and combined allotropic forms. It is used in black gunpowder, rubber vulcanization, the manufacture of insecticides and pharmaceuticals, and in the preparation of sulfur compounds such as hydrogen sulfide and sulfuric acid. Atomic number 16; atomic weight 32.066; melting point (rhombic) 112.8°C, (monoclinic) 119.0°C; boiling point 444.6°C; specific gravity (rhombic) 2.07, (monoclinic) 1.957; valence 2, 4, 6.

tr.v., -fured, also -phured, -fur·ing, -phur·ing, -furs, -phurs.
To treat with sulfur or a compound of sulfur.

[Middle English, from Anglo-Norman sulfre, from Latin sulfur.]


Search unanswered questions...
Enter a question here...
Search: All sources Community Q&A Reference topics

Sulfur crystals from Sicily (greatly enlarged)
(click to enlarge)
Sulfur crystals from Sicily (greatly enlarged) (credit: Courtesy of the Illinois State Museum; photograph, John H. Gerard)
Nonmetallic chemical element, chemical symbol S, atomic number 16. It is very reactive but occurs native in deposits, as well as combined in various ores (e.g., pyrite, galena, cinnabar); in coal, petroleum, and natural gas; and in the water in sulfur springs. Sulfur is the third most abundant constituent of minerals and one of the four most important basic chemical commodities. Pure sulfur, a tasteless, odourless, brittle yellow solid, occurs in several crystalline and amorphous allotropes, including brimstone and flowers of sulfur. It combines, with valence 2, 4, or 6, with nearly all other elements. Its most familiar compound is hydrogen sulfide, a poisonous gas that smells like rotten eggs. All metals except gold and platinum form sulfides, and many ores are sulfides. The oxides are sulfur dioxide and sulfur trioxide, which when dissolved in water make sulfurous acid and sulfuric acid, respectively. Several sulfur compounds with halogen elements are industrially important. Sodium sulfite (Na2SO3) is a reducing agent used to pulp paper and in photography. Organic compounds with sulfur include several amino acids, the sulfa drugs, and many insecticides, solvents, and substances used in making rubber and rayon.

For more information on sulfur, visit Britannica.com.

A chemical element, S, atomic number 16, and atomic weight 32.064. The atomic weight reflects the fact that sulfur is composed of the isotopes 32S (95.1%), 33S (0.74%), 34S (4.2%), and 36S (0.016%). The ratios of the various isotopes vary slightly but measurably according to the history of the sample. By virtue of its position in the periodic table, sulfur is classified as a main-group element. See also Periodic table.

The chemistry of sulfur is more complex than that of any other elemental substance, because sulfur itself exists in the largest variety of structural forms. At room temperature, all the stable forms of sulfur are molecular; that is, the individual atoms aggregate into discrete molecules, which in turn pack together to form the solid material. In contrast, other elements near sulfur in the periodic table normally exist as polymers (silicon, phosphorus, arsenic, selenium, tellurium) or as diatomic molecules (oxygen, nitrogen, chlorine). Selenium and phosphorus can exist as molecular solids, but the stable forms of these elements are polymeric.

At room temperature the most stable form of sulfur is the cyclic molecule S8. The molecule adopts a crownlike structure, consisting of two interconnected layers of four sulfur atoms each. The SS bond distances are 0.206 nanometer and the SSS bond angles are 108°. Three allotropes are known for cyclo-S8. The most common form is orthorhombic α-sulfur, which has a density of 2.069 g/cm3 (1.200 oz/in.3) and a hardness of 2.5 on the Mohs scale. It is an excellent electrical insulator, with a room temperature conductivity of 1018 ohm−1 cm−1. Sublimed sulfur and “flowers” of sulfur are generally composed of α-S8. Sulfur is quite soluble in carbon disulfide (CS2; 35.5/100 g or 1.23 oz/3.52 oz at 25°C or 77°F), poorly soluble in alcohols, and practically insoluble in water. At 95.3°C (203°F), sulfur changes into the monoclinic β allotrope. This form of sulfur also consists of cyclic S8 molecules, but it has a slightly lower density at 1.94–2.01 g/cm3 (1.12–1.16 oz/in.3). A third allotrope containing S8 is triclinic γ-sulfur. The β and γ allotropes of sulfur slowly revert to the α form at room temperature. Crystals of sulfur are yellow and have an absorption maximum in the ultraviolet at 285 nm, which shifts to higher energy as the temperature decreases. At low temperatures, S8 is colorless. Even at room temperature, however, finely powdered sulfur can appear to be nearly white.

The best-studied system is α-S8, which converts to the β form at 90°C (194°F), which then melts at 120°C (248°F) to give a golden yellow liquid. If this melt is quickly recooled, it refreezes at 120°C (248°F), thus indicating that it consists primarily of S8 molecules. If the melt is maintained longer at 120°C (248°F), then the freezing point is lowered about 5°C (9°F), indicating the formation of about 5% of other rings and some polymer. At 159.4°C (318.9°F), the melt suddenly assumes a red-brown color. Over the range 159.4–195°C (318.9–383°F), the viscosity of the melt increases 10,000-fold before gradually decreasing again. This behavior is very unusual, since the viscosity of most liquids decreases with increasing temperature. The strong temperature dependence of the viscosity is due to the polymerization and eventual depolymerization of sulfur. Polymeric sulfur retains its elastomeric character even after being cooled to room temperature. There are several polymeric forms of sulfur, but all of them revert to α-S8 after a few hours.

Sublimination of S8 occurs when it is maintained in a vacuum at a temperature below its melting point. It vaporizes at 444.61°C (832.30°F). Below 600°C (1110°F), the predominant species in the gas are S8 followed by S7 and S6. Above 720°C (1328°F), violet S2 is the major species.

Principal inorganic compounds

Hydrogen sulfide (H2S) is the most important compound that contains only sulfur and hydrogen. It is a gas at room temperature with a boiling point of −61.8°C (−79.2°F) and a freezing point of −82.9°C (−117°F). The low boiling point of hydrogen sulfide is attributed to the weakness of intermolecular S···H hydrogen bonding; the O···H hydrogen bond is much stronger, as evidenced by the high boiling point of water. Gaseous hydrogen sulfide is 1.19 times more dense than air, and air-H2S mixtures are explosive. Hydrogen sulfide has a strong odor similar to that of rotten eggs; its odor is detectable at concentrations below 1 microgram/m3. At high concentrations, H2S has a paralyzing effect on the olfactory system, which is very hazardous because H2S is even more toxic than carbon monoxide (CO).

The most common compound that contains only carbon and sulfur is carbon disulfide (CS2). Carbon disulfide molecules are linear, consisting of two sulfur atoms connected to a central carbon atom. Carbon disulfide is a toxic, highly flammable, and volatile liquid that melts at −111°C (−168°F) and boils at 46°C (115°F). Commercial carbon disulfide has a strong unpleasant odor due to impurities. It is manufactured from methane and elemental sulfur and is used for the production of carbon tetrachloride, rayon, and cellophane. Structurally related to carbon disulfide is carbonyl sulfide (SCO), which forms from carbon monoxide and elemental sulfur. The chlorination of CS2 gives Cl3CSCl, which can be reduced by H2S to thiophosphene, CSCl2. Thiophosgene (CSCl2) [boiling point 73°C or 163°F] is a planar molecule with the carbon at the center of a triangle defined by the sulfur and two chlorine atoms. Thiocyanate, the linear anion NCS, is prepared by the reaction of cyanide (CN) with elemental sulfur.

Several sulfur oxides exist, but the dioxide and trioxide are of preeminent importance. Sulfur dioxide (SO2) is a colorless gas that boils at −10.02°C (113.97°F) and freezes at −75.46°C (−103.8°F). The density of liquid sulfur dioxide at −10°C (14°F) is 1.46 g/cm3 (0.84 oz/in.3). Liquid sulfur dioxide is an excellent solvent. The sulfur dioxide molecule is bent, with an OSO angle of 119°.

Sulfur trioxide (SO3) is a planar molecule that is a liquid at room temperature that exists in equilibrium with a cyclic trimeric structure known as β-SO3. When β-SO3, actually S3O9, is treated with traces of water, it converts to either of two polymeric forms referred to as γ- and α-sulfur trioxide. These are fibrous materials, proposed to have the formula (SO3)xH2, where x is in the thousands. Sulfur trioxide is prepared by the oxidation of sulfur dioxide, although at very high temperatures this reaction reverses. Exposure of sulfur trioxide to water yields sulfuric acid (H2SO4); exposure of SO3 to sulfuric acid yields disulfuric acid (H2S2O7). See also Sulfuric acid.

Chlorine and sulfur react to give a family of compounds with the general formula SxCl2, several members of which have been obtained in pure form. The structures of these compounds are based on an atom or chain of sulfur atoms terminated with Cl. Sulfur monochloride (S2Cl2), also known as sulfur monochloride, is the most widely available of the series. It is a yellow oil that boils at 138°C (280°F), and reacts with chlorine in the presence of iron(III) chloride (FeCl3) catalyst to give sulfur dichloride (SC2), which is a red volatile liquid with a boiling point of 59°C (138°F). Treatment of sulfur dichloride with sodium fluoride (NaF) gives SF4.

Thionyl chloride (OSCl2) is a colorless reactive compound with a boiling point of 76°C (169°F); it is used to convert hydroxy compounds to chlorides. Important applications include the preparation of anhydrous metal halides and alkyl halides. Sulfuryl chloride (O2SCl2; boiling point 69°C or 156°F) is used as a source of chlorine.

Organosulfur compounds

This family of compounds contains carbon, hydrogen, and sulfur, and it is a particularly vast area of sulfur chemistry. Thiols, also known as mercaptans, feature the linkage CSH. Mercaptans are foul-smelling compounds. They are the sulfur analogs of alcohols, but they are more volatile. They can be prepared by the action of hydrogen sulfide (H2S) on olefins. Deprotonation of thiols gives thiolate anions, which form stable compounds with many heavy metals. Thiols and especially thiolates can be oxidized to form disulfides (persulfides), which have the connectivity of CSSC. The organic persulfides are also related to organic polysulfides, which have chains of sulfur atoms terminated with carbon. The introduction of such mono-, di-, and polysulfide linkages is the basis of the vulcanization process, which imparts desirable mechanical properties to natural or synthetic polyolefin rubbers. This is accomplished by heating the polymer with sulfur in the presence of a zinc catalyst. See also Rubber.

Thioethers, also known as organic sulfides, feature the connectivity CSC and are often prepared from the reaction of thiolates and alkyl halides. Like mercaptans, thioethers often have strong unpleasant odors, but they are also responsible for the pleasant odors of many foods and perfumes. They are intentionally introduced at trace levels in order to impart an odor to gaseous hydrocarbon fuels. The reaction of alkyl dihalides and sodium polysulfides affords organic polysulfide polymers known as thiokols.

There are many organic sulfur oxides; prominent are sulfonic acids (RSO3H), which are the organic derivatives of sulfuric acid. These compounds are prepared by the oxidation of thiols as well as by treatment of benzene derivatives with sulfuric acid, for example, benzene sulfonic acid. Most detergents are salts of sulfonic acids.

Biochemistry

Sulfur is required for life. Typical organisms contain 2% sulfur dry weight. Three amino acids contain sulfur, as do many prosthetic groups in enzymes. Some noteworthy sulfur compounds include the disulfide lipoic acid, the thioethers biotin and thiamine (vitamin B1), and the thiol coenzyme A. Sulfide ions, S2−, are found incorporated in metalloproteins and metalloenzymes such as the ferredoxins, nitrogenases, and hydrogenases. See also Amino acids; Enzyme; Protein.

Many bacterial species obtain energy by the oxidations of sulfides. Bacteria of the genus Thiobacillus couple the conversion of carbon dioxide (CO2) to carbohydrates to the aerobic oxidation of mineral sulfides to sulfuric acid. This activity can be turned to good use for leaching low-grade mineral ores. Often, however, the sulfuric acid runoff (such as in mines or sewers) has negative environmental consequences. The purple and green bacteria as well as the blue-green algae are remarkable because they are photosynthetic but anaerobic; they oxidize sulfide, not water (as do most photosynthetic organisms). Depending on the species, the sulfur produced in this energy-producing pathway can accumulate inside or outside the cell wall. See also Bacterial physiology and metabolism; Photosynthesis.

Minerals

Sulfide minerals are among the most important ores for several metals. These compounds are two- or three-dimensional polymers containing interconnected metal cations and sulfide S2− or persulfido S22− anions. In general, metal sulfides are darkly colored, often black, and they are not soluble in water. They can sometimes be decomposed by using strong acids, with liberation of hydrogen sulfide. Certain sulfides will also dissolve in the presence of excess sulfide or polysulfide ions.

Pyrites (FeS2), also known as iron pyrites or fool's gold, are the most common sulfide minerals and can be obtained as very large crystals that have a golden luster. Sphalerite (zinc blende; ZnS) and galena (PbS) are major sources of zinc and lead. Orange cinnabar (HgS) and yellow greenockite (CdS) are the major ores for mercury and cadmium, respectively. Molybdenite (MoS2) is the major ore of molybdenum.

The sulfur content of fossil fuels results from the sulfur in the ancient organisms as well as from subsequent incorporation of mineral sulfur into the hydrocarbon matrix. Gaseous fossil fuels are often contaminated with hydrogen sulfide, which is an increasingly important source of sulfur. Organic derivatives containing the CSC linkage are primarily responsible for the sulfur content of petroleum and coal. The so-called organic sulfur in petroleum can be removed by hydrodesulfurization catalysis, involving reaction with hydrogen over a molybdenum catalyst, to give hydrocarbons and hydrogen sulfide.


sulfur or sulphur (sŭl'fər), nonmetallic chemical element; symbol S; at. no. 16; interval in which at. wt. ranges 32.059-32.076; m.p. 112.8°C (rhombic), 119.0°C (monoclinic), about 120°C (amorphous); b.p. 444.674°C; sp. gr. at 20°C, 2.07 (rhombic), 1.957 (monoclinic), 1.92 (amorphous); valence −2, +4, or +6. Sulfur was known to the ancients; it is the brimstone of the Bible. It was first recognized as an element in 1777 by A. L. Lavoisier.

Properties and Compounds

Sulfur is found in Group 16 of the periodic table. It exhibits allotropy. Solid sulfur occurs principally in three forms, all of which are brittle, yellow in color, odorless, tasteless, and insoluble in water. Two of these solid forms are crystalline, composed of molecules containing eight sulfur atoms and having molecular weight 256.512 amu. Rhombic sulfur has orthorhombic crystalline structure and is stable below 95.5°C; most sulfur is in this form. The monoclinic, or prismatic, form has long, needlelike, nearly transparent crystals; it is stable between 95.5°C and its melting point but reverts to the rhombic form on standing at room temperature. Amorphous sulfur is a dark, noncrystalline, gumlike substance. It is often thought to be a supercooled liquid; it is formed by rapidly cooling molten sulfur, e.g., by pouring it into cold water. It slowly reverts to the rhombic form on standing. The crystalline forms are readily soluble in carbon disulfide, but the amorphous form is not. Many other forms of sulfur exist. Liquid sulfur is unusual in that its viscosity increases as it is heated. This property is thought to be due to the formation of long polymeric chains of sulfur molecules.

Sulfur is a chemically active element and forms many compounds, both by itself (sulfides) and in combination with other elements. It is part of many organic compounds, e.g., mercaptans (thiols) and thio compounds. It burns in air with a blue flame, forming sulfur dioxide, SO2.

Natural Occurrence and Processing

Sulfur is widely distributed in nature. It is found in many minerals and ores, e.g., iron pyrites, galena, cinnabar, zinc blende, gypsum, barite, and epsom salts and in mineral springs and other waters. It is found uncombined in some volcanic regions and in large underground deposits in Sicily and in Texas and Louisiana. Sulfur often occurs with coal, petroleum, and natural gas. Sulfur is found in meteorities, and deposits of it may be present near the lunar crater Aristarchus. The distinctive colors of Jupiter's moon Io are believed to result from forms of molten, solid, and gaseous sulfur. Sulfur is a component of all living cells. The amino acids cysteine, methionine, homocysteine, and taurine contain sulfur as do some common enzymes; it is a component of most proteins. Some forms of bacteria use hydrogen sulfide (H2S) in place of water in a rudimentary photosynthesislike process. Sulfur is absorbed by plants from soil as sulfate ions.

Sulfur is produced chiefly by the Frasch process, although it is also produced by the Sicilian method and by other methods. In the Sicilian method the sulfur-bearing ores are piled in a mound and ignited. The heat produced by the burning melts some of the sulfur, which is collected and cast. This sulfur is impure and is usually purified by sublimation. Sulfur is also recovered from natural gas, coal, crude oil, and other sources, e.g., the flue dusts and gases from the refining of metal sulfide ores. Elemental sulfur is obtained in several forms, including flowers of sulfur, a fine crystalline powder, and roll sulfur (cast cakes or sticks).

Uses

Elemental sulfur is used in black gunpowder, matches, and fireworks; in the vulcanization of rubber; as a fungicide, insecticide, and fumigant; in the manufacture of phosphate fertilizers; and in the treatment of certain skin diseases. The principal use of sulfur, however, is in the preparation of its compounds. The most important sulfur compound is sulfuric acid. Other important compounds include sulfur dioxide, used as a bleaching agent, disinfectant, and refrigerant; sodium bisulfite, used in paper manufacture; carbon disulfide, an important organic solvent; hydrogen sulfide, sulfur trioxide, and thionyl chloride, used as reagents in chemistry; Epsom salts (magnesium sulfate), used as a laxative, bath additive, exfoliant, and magnesium supplement in plant nutrition; the numerous other sulfate compounds; and sulfa drugs.



S
Orthorhombic -- bipyramidal

Environment

Associated worldwide with volcanic rocks, though the major commercially developed deposits are in sedimentary formations having been freed through the breakdown of sulfates such as gypsum or freed from H 2 S.

Crystal description

All low-temperature natural crystals are orthorhombic. Remelted sulfur crystallizes in an unstable structure in the monoclinic system. Well-formed, translucent orthorhombic crystals are common in the developed sedimentary occurrences, usually as steep bipyramids, though sometimes tabular. Irregular cavernous and skeletal crystals are characteristic of the volcanic localities, where sulfur often sublimates from escaping volatile compounds, usually at temperatures lower than those condensing sal ammoniac and the like. Often in crusts without individualized crystals.

Physical properties

Light yellow when pure, sometimes amber when stained with hydrocarbons; some slaglike volcanic specimens are reddish from selenium contamination or grayish from arsenic contamination. Luster resinous; hardness 2; specific gravity 2.0-2.1; fracture conchoidal; cleavage basal, prismatic, and pyramidal. Brittle; translucent.

Composition

Sulfur, but often contaminated with clay or bitumen. Volcanic sulfur may contain selenium, arsenic, etc.

Tests

Melts at 108°C and burns with a blue flame and acrid fumes of SO 2 . Insoluble in water and acids, dissolves in carbon disulfide. Not really fun to play with as the fumes are noxious and its acid (sulfuric, H 2 SO 4 ) very corrosive. Sulfur's physical states are interesting, for it melts to an amber liquid and, as it gets hotter, turns black, then yellow again when still hotter. However, it is not recommended that such experiments be undertaken outside of a well-equipped laboratory; chemists' laboratories keep fumes under a vented hood.

Distinguishing characteristics

There are few minerals with which it would be confused. The ease of melting and the burning with noxious smell will readily distinguish it from any other substance.

Occurrence

Sulfur is a characteristic deposit of the later stages of volcanic activity. In New Zealand, and Middle and South America it has been quarried from the craters of volcanoes that are, or have been thought to be, extinct. Tiny sulfur crystals are found in cavities in some weathered sulfides. In galena it is associated in cavities with anglesite. It is constantly forming in crusts of small crystals at a fumarolic deposit south of San Felipe, Baja California, and in Steamboat Springs and elsewhere in Nevada. Masses were mined for the copper smelter at the Leviathan Mine on the California-Nevada border near the Yerington, Weed Flat, Nevada, copper mine.

However, the economically important deposits in Sicily, Spain, Poland, and along the Gulf Coast appear to have formed from gypsum (calcium sulfate) through a chemical reaction. The best specimens come from the Italian sulfur mines, where well-formed crystals up to 6 in. (15 cm) or more in length are found. Probably comparable ones occur in Louisiana and Texas, but because of the method of mining (the Frasch process of melting the sulfur in deeply buried rocks with superheated steam, and piping the amber liquid to the surface), the only American crystals available from the Gulf area come from 8-inch diamond-drill well cores. Large amounts of sulfur are extracted from high-sulfur fuel oils in the refining process and fumes for acid are recovered from smelters. Crystals have also been found in an asphaltic deposit in n. Italy, in a sulfur deposit in France at Malvesi, near Narbonne, with gypsum at Bex, Switzerland, near Cadiz, Spain, and in limestone in Michigan.

Remarks

Sulfur is of great economic importance in fungicidal plant sprays, the vulcanization of rubber, and the production of sulfuric acid. It is a poor conductor of electricity and with friction becomes negatively charged. The warmth of the hand will cause crystals to expand at the surface and crack. Specimens should be kept out of sunlight, out of severe cold, and handled as little as possible.



Cosmic Lexicon:

Sulfur

Top

An element with atomic number 16; symbol: S. Sulfur is common on the surface of Jupiter's moon Io.



Sulfur is an element or mineral that supports many functions in the body. Sulfur is necessary to produce vitamin B1 (thiamine), an essential vitamin, and certain essential amino acids like methio-nine, cysteine, and cystine, and is a crucial ingredient in the synthesis of collagen (for bones, tendons, and connective tissue) and keratin (for hair, nails, and skin). Sulfur comes into our diet via meats, nuts, eggs, and legumes. Sulfur compounds can sometimes react with metals from flavor containers or the insides of cans. This can even occur from foods that contain free sulfur containing amino acids. See Minerals.

or (esp. Brit.) sulphur

symbol: S; a yellow nonmetallic element of group 16 of the IUPAC periodic table; atomic number 16; relative atomic mass 32.066. Its main oxidation states are −2, +4, and +6. Sulfur exists in a number of forms including crystalline (rhombic, monoclinic, rhombohedral) and amorphous forms. The relative abundance of stable isotopes is: sulfur-32 (mass 31.972) 95.02%; sulfur-33 (mass 32.971) 0.75%; sulfur-34 (mass 33.968) 4.21%. There are two radioactive isotopes, sulfur-35 and sulfur-38. Sulfur is important as a constituent of the amino acids methionine and cysteine, and as a constituent of glutathione. It also occurs in sulfolipids. Sulfate is the terminal electron acceptor for anaerobic respiratory metabolism in certain bacteria e.g. Desulfovibrio spp.

Previous:sulfoxide, sulfonylurea receptor 1, sulfonylurea
Next:sulfur-35, sulfur-38, sulph

n
S

A nonmetallic, multivalent, tasteless, odorless chemical element that occurs abundantly in yellow crystalline form or in masses, especially in volcanic areas. Its atomic number is 16, and its atomic weight is 32.064. It has wide use in industry. Sulfur has been used in the treatment of gout, rheumatism, and bronchitis and as a mild laxative.

Random House Word Menu:

categories related to 'sulfur'

Top
Random House Word Menu by Stephen Glazier
For a list of words related to sulfur, see:

phosphorussulfurchlorine
O

S

Se
Appearance
Lemon yellow sintered microcrystals


Spectral lines of sulfur
General properties
Name, symbol, number sulfur, S, 16
Pronunciation /ˈsʌlfər/ SUL-fər
Element category nonmetal
Group, period, block 163, p
Standard atomic weight 32.065(5)
Electron configuration [Ne] 3s2 3p4
Electrons per shell 2, 8, 6 (Image)
Physical properties
Phase solid
Density (near r.t.) (alpha) 2.07 g·cm−3
Density (near r.t.) (beta) 1.96 g·cm−3
Density (near r.t.) (gamma) 1.92 g·cm−3
Liquid density at m.p. 1.819 g·cm−3
Melting point 388.36 K, 115.21 °C, 239.38 °F
Boiling point 717.8 K, 444.6 °C, 832.3 °F
Critical point 1314 K, 20.7 MPa
Heat of fusion (mono) 1.727 kJ·mol−1
Heat of vaporization (mono) 45 kJ·mol−1
Molar heat capacity 22.75 J·mol−1·K−1
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 375 408 449 508 591 717
Atomic properties
Oxidation states 6, 5, 4, 3, 2, 1, -1, -2
(strongly acidic oxide)
Electronegativity 2.58 (Pauling scale)
Ionization energies
(more)
1st: 999.6 kJ·mol−1
2nd: 2252 kJ·mol−1
3rd: 3357 kJ·mol−1
Covalent radius 105±3 pm
Van der Waals radius 180 pm
Miscellanea
Crystal structure orthorhombic
Magnetic ordering diamagnetic[1]
Electrical resistivity (20 °C) (amorphous)
2×1015 Ω·m
Thermal conductivity (amorphous)
0.205 W·m−1·K−1
Bulk modulus 7.7 GPa
Mohs hardness 2.0
CAS registry number 7704-34-9
Most stable isotopes
Main article: Isotopes of sulfur
iso NA half-life DM DE (MeV) DP
32S 95.02% 32S is stable with 16 neutrons
33S 0.75% 33S is stable with 17 neutrons
34S 4.21% 34S is stable with 18 neutrons
35S syn 87.32 d β 0.167 35Cl
36S 0.02% 36S is stable with 20 neutrons
· r

Sulfur (play /ˈsʌlfər/ SUL-fər) or sulphur (British English; see spelling below) is the chemical element with atomic number 16. In the periodic table it is represented by the symbol S. It is an abundant, multivalent non-metal. Under normal conditions, sulfur atoms form cyclic octatomic molecules with chemical formula S8. Elemental sulfur is a bright yellow crystalline solid when at room temperature. Chemically, sulfur can react as either an oxidant or reducing agent. It oxidizes most metals and several nonmetals, including carbon, which leads to its negative charge in most organosulfur compounds, but it reduces several strong oxidants, such as oxygen and fluorine. It is also the lightest element to easily produce stable exceptions to the octet rule.

In nature, sulfur can be found as the pure element and as sulfide and sulfate minerals. Elemental sulfur crystals are commonly sought after by mineral collectors for their brightly colored polyhedron shapes. Being abundant in native form, sulfur was known in ancient times, mentioned for its uses in ancient Greece, China and Egypt. Sulfur fumes were used as fumigants, and sulfur-containing medicinal mixtures were used as balms and antiparasitics. Sulfur is referenced in the Bible as brimstone in English, with this name still used in several nonscientific terms.[2] Sulfur was considered important enough to receive its own alchemical symbol. It was needed to make the best quality of black gunpowder, and the bright yellow powder was hypothesized by alchemists to contain some of the properties of gold, which they sought to synthesize from it. In 1777, Antoine Lavoisier helped convince the scientific community that sulfur was a basic element, rather than a compound.

Elemental sulfur was once extracted from salt domes where it sometimes occurs in nearly pure form, but this method has been obsolete since the late 20th century. Today, almost all elemental sulfur is produced as a byproduct of removing sulfur-containing contaminants from natural gas and petroleum. The element's commercial uses are primarily in fertilizers, because of the relatively high requirement of plants for it, and in the manufacture of sulfuric acid, a primary industrial chemical. Other well-known uses for the element are in matches, insecticides and fungicides. Many sulfur compounds are odiferous, and the smell of odorized natural gas, skunk scent, grapefruit, and garlic is due to sulfur compounds. Hydrogen sulfide produced by living organisms imparts the characteristic odor to rotting eggs and other biological processes.

Sulfur is an essential element for all life, and is widely used in biochemical processes. In metabolic reactions, sulfur compounds serve as both fuels and respiratory (oxygen-replacing) materials for simple organisms. Sulfur in organic form is present in the vitamins biotin and thiamine, the latter being named for the Greek word for sulfur. Sulfur is an important part of many enzymes and in antioxidant molecules like glutathione and thioredoxin. Organically bonded sulfur is a component of all proteins, as the amino acids cysteine and methionine. Disulfide bonds are largely responsible for the mechanical strength and insolubility of the protein keratin, found in outer skin, hair, and feathers, and the element contributes to their pungent odor when burned.

Contents

Characteristics

When burned, sulfur melts to a blood-red liquid and emits a blue flame which is best observed in the dark.

Physical

Sulfur forms polyatomic molecules with different chemical formulas, with the best-known allotrope being octasulfur, cyclo-S8. Octasulfur is a soft, bright-yellow solid with only a faint odor, similar to that of matches.[3] It melts at 115.21 °C, boils at 444.6 °C and sublimes easily.[2] At 95.2 °C, below its melting temperature, cyclo-octasulfur changes from α-octasulfur to the β-polymorph.[4] The structure of the S8 ring is virtually unchanged by this phase change, which affects the intermolecular interactions. Between its melting and boiling temperatures, octasulfur changes its allotrope again, turning from β-octasulfur to γ-sulfur, again accompanied by a lower density but increased viscosity due to the formation of polymers.[4] At even higher temperatures, however, the viscosity decreases as depolymerization occurs. Molten sulfur assumes a dark red color above 200 °C. The density of sulfur is about 2 g·cm−3, depending on the allotrope; all of its stable allotropes are excellent electrical insulators.

Chemical

Sulfur burns with a blue flame concomitant with formation of sulfur dioxide, notable for its peculiar suffocating odor. Sulfur is insoluble in water but soluble in carbon disulfide and, to a lesser extent, in other nonpolar organic solvents, such as benzene and toluene. The first and the second ionization energies of sulfur are 999.6 and 2252 kJ·mol−1, respectively. Despite such figures, S2+ is rare, S4, 6+ being more common. The fourth and sixth ionization energies are 4556 and 8495.8 kJ·mol−1, the magnitude of the figures caused by electron transfer between orbitals; these states are only stable with strong oxidants as fluorine, oxygen, and chlorine.

Allotropes

The structure of the cyclooctasulfur molecule, S8.

Sulfur forms more than 30 solid allotropes, more than any other element.[5] Besides S8, several other rings are known.[6] Removing one atom from the crown gives S7, which is more deeply yellow than S8. HPLC analysis of "elemental sulfur" reveals an equilibrium mixture of mainly S8, but with S7 and small amounts of S6.[7] Larger rings have been prepared, including S12 and S18.[8][9]

Amorphous or "plastic" sulfur is produced by rapid cooling of molten sulfur—for example, by pouring it into cold water. X-ray crystallography studies show that the amorphous form may have a helical structure with eight atoms per turn. The long coiled polymeric molecules cause the brownish substance to be elastic, and in bulk this form has the feel of crude rubber. This form is metastable at room temperature and gradually reverts to crystalline molecular allotrope, which is no longer elastic. This process happens within a matter of hours to days, but can be rapidly catalyzed.

Isotopes

Sulfur has 25 known isotopes, four of which are stable: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). Other than 35S, with a half-life of 87 days and formed in cosmic ray spallation of 40Ar, the radioactive isotopes of sulfur have half-lives less than 170 minutes.

When sulfide minerals are precipitated, isotopic equilibration among solids and liquid may cause small differences in the δS-34 values of co-genetic minerals. The differences between minerals can be used to estimate the temperature of equilibration. The δC-13 and δS-34 of coexisting carbonates and sulfides can be used to determine the pH and oxygen fugacity of the ore-bearing fluid during ore formation.

In most forest ecosystems, sulfate is derived mostly from the atmosphere; weathering of ore minerals and evaporites contribute some sulfur. Sulfur with a distinctive isotopic composition has been used to identify pollution sources, and enriched sulfur has been added as a tracer in hydrologic studies. Differences in the natural abundances can be used in systems where there is sufficient variation in the 34S of ecosystem components. Rocky Mountain lakes thought to be dominated by atmospheric sources of sulfate have been found to have different δ34S values from lakes believed to be dominated by watershed sources of sulfate.

Natural occurrence

Most of the yellow and orange hues of Io are due to elemental sulfur and sulfur compounds, produced by active volcanoes.
Native sulfur crystals
Native sulfur crystals, Iran
Sulfur crystals, khanegiran, Iran
A man carrying sulfur blocks from Kawah Ijen, a volcano in East Java, Indonesia (photo 2009)

32S is created inside massive stars, at a depth where the temperature exceeds 2.5×109 K, by the fusion of one nucleus of silicon plus one nucleus of helium.[10] As this is part of the alpha process that produces elements in abundance, sulfur is the 10th most common element in the universe.

Sulfur, usually as sulfide, is present in many types of meteorites. Ordinary chondrites contain on average 2.1% sulfur, and carbonaceous chondrites may contain as much as 6.6%. It is normally present as troilite (FeS), but there are exceptions, with carbonaceous chondrites containing free sulfur, sulfates and other sulfur compounds.[11] The distinctive colors of Jupiter's volcanic moon Io are attributed to various forms of molten, solid and gaseous sulfur.[12]

On Earth, elemental sulfur can be found near hot springs and volcanic regions in many parts of the world, especially along the Pacific Ring of Fire; such volcanic deposits are currently mined in Indonesia, Chile, and Japan. Such deposits are polycrystalline, with the largest documented single crystal measuring 22×16×11 cm.[13] Historically, Sicily was a large source of sulfur in the Industrial Revolution.[14]

Significant deposits of elemental sulfur, believed to have been (and are still being) synthesised by anaerobic bacteria on sulfate minerals like gypsum, exist in salt domes along the coast of the Gulf of Mexico, and in evaporites in eastern Europe and western Asia. Native sulfur may be produced by geological processes alone. Fossil-based sulfur deposits from salt domes have until recently been the basis for commercial production in the United States, Poland, Russia, Turkmenistan, and Ukraine.[15] Such sources are now of secondary commercial importance, and most are no longer worked.

Common naturally-occurring sulfur compounds include the sulfide minerals, such as pyrite (iron sulfide), cinnabar (mercury sulfide), galena (lead sulfide), sphalerite (zinc sulfide) and stibnite (antimony sulfide); and the sulfates, such as gypsum (calcium sulfate), alunite (potassium aluminium sulfate), and barite (barium sulfate). On Earth, just as upon Jupiter's moon Io, elemental sulfur occurs naturally in volcanic emissions, including emissions from hydrothermal vents.

Production

Sulfur may be found by itself and historically was usually obtained in this way, while pyrite has been a source of sulfur via sulfuric acid.[16] The Sicilian process was used in ancient times to obtain sulfur from rocks present in volcanic regions of Sicily: sulfur deposits were piled and stacked in brick kilns built on sloping hillsides, with airspaces between them. Then, powdered sulfur was put on top of the deposit and ignited, causing the deposits to melt down the hills. Today's sulfur production is as a side product of other industrial processes such as oil refining; in these processes, sulfur often occurs as undesired or detrimental compounds that are extracted and converted to elemental sulfur. As a mineral, native sulfur under salt domes is thought to be a fossil mineral resource, produced by the action of ancient bacteria on sulfate deposits. It was removed from such salt-dome mines mainly by the Frasch process.[15] In this method, superheated water was pumped into a native sulfur deposit to melt the sulfur, and then compressed air returned the 99.5% pure melted product to the surface. Throughout the 20th century this procedure produced elemental sulfur which required no further purification. However, due to a limited number of such sulfur deposits and the high cost of working them, this process for mining sulfur has not been employed in a major way anywhere in the world since 2002.[17][18]

Sulfur recovered from hydrocarbons in Alberta, stockpiled for shipment in North Vancouver, B.C.

Today, sulfur is produced from petroleum, natural gas, and related fossil resources, from which it is obtained mainly as hydrogen sulfide. Organosulfur compounds, undesirable impurities in petroleum, may be upgraded by subjecting them to hydrodesulfurization, which cleaves the C–S bonds:[17][18]

R-S-R + 2 H2 → 2 RH + H2S

The resulting hydrogen sulfide from this process, and also as it occurs in natural gas, is converted into elemental sulfur by the Claus process. This process entails oxidation of some hydrogen sulfide to sulfur dioxide and then the comproportionation of the two:[17][18]

3 O2 + 2 H2S → 2 SO2 + 2 H2O
SO2 + 2 H2S → 3 S + 2 H2O

Owing to the high sulfur content of the Athabasca Oil Sands, stockpiles of elemental sulfur from this process now exist throughout Alberta, Canada.[19] Another way of storing sulfur is as a binder for concrete, the resulting product having many desirable properties.[20] The price of sulfur increased from 2007 to 2008, and decreased thereafter.[21]

Compounds

Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

Sulfides

Treatment of sulfur with hydrogen gives hydrogen sulfide. When dissolved in water, hydrogen sulfide is mildly acidic:[2]

H2S \overrightarrow{\leftarrow} HS + H+

Hydrogen sulfide gas and the dissolved sulfide and hydrosulfide anions are extremely toxic to mammals, due to their inhibition of the oxygen-carrying capacity of hemoglobin and certain cytochromes in a manner analogous to cyanide and azide (see below, under precautions).

Reduction of elemental sulfur gives polysulfides, which consist of chains of sulfur atoms terminated with S centers:

2 Na + S8 → Na2S8

This reaction highlights arguably the single most distinctive property of sulfur: its ability to catenate (bind to itself by formation of chains). Protonation of these polysulfide anions gives the polysulfanes, H2Sx where x = 2, 3, and 4.[22] Ultimately reduction of sulfur gives sulfide salts:

16 Na + S8 → 8 Na2S

The interconversion of these species is exploited in the sodium-sulfur battery. The radical anion S3 gives the blue color to the mineral lapis lazuli.

Lapis lazuli owes its blue color to a sulfur radical.

Elemental sulfur can be oxidized, for example, to give bicyclic S82+.

Oxides and oxyanions

The principal sulfur oxides are obtained by burning sulfur:

S + O2 → SO2
2 SO2 + O2 → 2 SO3

Other oxides are known, e.g. sulfur monoxide and disulfur mono- and dioxides, but they are unstable.

The sulfur oxides form numerous oxyanions with the formula SOn2–. Sulfur dioxide and sulfites (SO2−
3
) are related to the unstable sulfurous acid (H2SO3). Sulfur trioxide and sulfates (SO2−
4
) are related to sulfuric acid. Sulfuric acid and SO3 combine to give oleum, a solution of pyrosulfuric acid (H2S2O7) in sulfuric acid.

Peroxides convert sulfur into unstable such as S8O, a sulfoxide. Peroxymonosulfuric acid (H2SO5) and peroxydisulfuric acids (H2S2O8), made from the action of SO3 on concentrated H2O2, and H2SO4 on concentrated H2O2 respectively.

The sulfate anion, SO2−
4

Thiosulfate salts (S2O2−
3
), sometimes referred as "hyposulfites", used in photographic fixing (HYPO) and as reducing agents, feature sulfur in two oxidation states. Sodium dithionite, (S2O2−
4
), contains the more highly reducing dithionite anion. Sodium dithionate (Na2S2O6) is the first member of the polythionic acids (H2SnO6), where n can range from 3 to many.

Halides and oxyhalides

The two main sulfur fluorides are sulfur hexafluoride, a dense gas used as nonreactive and nontoxic propellant, and sulfur tetrafluoride, a rarely used organic reagent that is highly toxic.[23] Their chlorinated analogs are sulfur dichloride and sulfur monochloride. Sulfuryl chloride and chlorosulfuric acid are derivatives of sulfuric acid; thionyl chloride (SOCl2) is a common reagent in organic synthesis.[24]

Pnictides

The most important S–N compound is the cage tetrasulfur tetranitride (S4N4). Heating this compound gives polymeric sulfur nitride ((SN)x), which has metallic properties even though it does not contain any metal atoms. Thiocyanates contain the SCN group. Oxidation of thiocyanate gives thiocyanogen, (SCN)2 with the connectivity NCS-SCN. Phosphorus sulfides are numerous, the most important commercially being the cages P4S10 and P4S3.[25][26]

Metal sulfides

Many if not most minerals occur as sulfides. The principal ores of copper, zinc, nickel, cobalt, molybdenum and others are sulfides. These materials tend to be dark-colored semiconductors that are not readily attacked by water or even many acids. They are formed, both geochemically and in the laboratory, by the reaction of hydrogen sulfide with metal salts to form the metal sulfides. The mineral galena (PbS) was the first demonstrated semiconductor and found a use as a signal rectifier in the cat's whiskers of early crystal radios. The iron sulfide called pyrite, the so-called "fool's gold," has the formula FeS2.[27] The upgrading of these ores, usually by roasting, is costly and environmentally hazardous. Sulfur corrodes many metals via the process called tarnishing.

Organic compounds

Some of the main classes of sulfur-containing organic compounds include the following:[28]

Some inorganic compounds with carbon–sulfur bonds are known. Carbon disulfide, a volatile colorless liquid at standard conditions, is structurally similar to carbon dioxide; it is used as a solvent to make polymers. Whereas carbon monoxide is highly stable, carbon monosulfide is unstable and has only been observed as a gas and in the interstellar medium.[29]

Organosulfur compounds are responsible for the some of the unpleasant odors of decaying organic matter. They are used in the odoration of natural gas and cause the odor of garlic and skunk spray. Not all organic sulfur compounds smell unpleasant at all concentrations: the sulfur-containing monoterpenoid grapefruit mercaptan in small concentrations is responsible for the characteristic scent of grapefruit, but has a generic thiol odor at larger concentrations. Sulfur mustard, a potent vesicant, was used in World War I as a disabling agent.[30]

Sulfur can be used in organics as a structural component to harden synthetic polymers, in a way similar to the biological use of disulfide bridges to reinforce proteins (see biological below). In the most common type of industrial "curing" or hardening and strengthening of natural rubber, elemental sulfur is heated with the rubber to the point that chemical reactions form disulfide bridges between isoprene units of the polymer. This process, patented in 1843, historically changed rubber into a major industrial product. The process was named vulcanization after the Roman god of the forge and volcanism, in honor of both the heat and sulfur used. Although vulcanization is applied to other polymers, and sometimes with crosslinking agents other than sulfur, variants of sulfur/rubber vulcanization continue to be used in producing automobile tires and other elastomer products.

History

Antiquity

Pharmeceutical container for sulfur from the first half of the 20th century. From the Museo del Objeto del Objeto collection

Being abundantly available in native form, sulfur (Latin sulphur) was known in ancient times and is referred to in the Torah (Genesis). English translations of the Bible commonly referred to burning sulfur as "brimstone", giving rise to the name of 'fire-and-brimstone' sermons, in which listeners are reminded of the fate of eternal damnation that await the unbelieving and unrepentant. It is from this part of the Bible that Hell is implied to "smell of sulfur" (likely due to its association with volcanic activity). According to the Ebers Papyrus, a sulfur ointment was used in ancient Egypt to treat granular eyelids. Sulfur was used for fumigation in preclassical Greece;[31] this is mentioned in the Odyssey.[32] Pliny the Elder discusses sulfur in book 35 of his Natural History, saying that its best-known source is the island of Melos. He mentions its use for fumigation, medicine, and bleaching cloth.[33]

A natural form of sulfur known as shiliuhuang was known in China since the 6th century BC and found in Hanzhong.[34] By the 3rd century, the Chinese discovered that sulfur could be extracted from pyrite.[34] Chinese Daoists were interested in sulfur's flammability and its reactivity with certain metals, yet its earliest practical uses were found in traditional Chinese medicine.[34] A Song Dynasty military treatise of 1044 AD described different formulas for Chinese black powder, which is a mixture of potassium nitrate (KNO3), charcoal, and sulfur.

Early alchemists gave sulfur its own alchemical symbol which was a triangle at the top of a cross. In traditional medical skin treatment which predates modern era of scientific medicine, elemental sulfur has been used mainly as part of creams to alleviate various conditions such as scabies, ringworm, psoriasis, eczema and acne. The mechanism of action is not known, although elemental sulfur does oxidize slowly to sulfurous acid, which in turn (through the action of sulfite) acts as a mild reducing and antibacterial agent.[35][36][37]

Modern times

Sicilian kiln used to obtain sulfur from volcanic rock.

In 1777, Antoine Lavoisier helped convince the scientific community that sulfur was an element, not a compound. With the sulfur from Sicily being principally controlled by the French market, a debate ensued about the amount of sulfur France and Britain got. This led to a bloodless confrontation between the two sides in 1840.[38] In 1867, sulfur was discovered in underground deposits in Louisiana and Texas. The highly successful Frasch process was developed to extract this resource.[39]

In the late 18th century, furniture makers used molten sulfur to produce decorative inlays in their craft. Because of the sulfur dioxide produced during the process of melting sulfur, the craft of sulfur inlays was soon abandoned. Molten sulfur is sometimes still used for setting steel bolts into drilled concrete holes where high shock resistance is desired for floor-mounted equipment attachment points. Pure powdered sulfur was used as a medicinal tonic and laxative.[15] With the advent of the contact process, the majority of sulfur today is used to make sulfuric acid for a wide range of uses, particularly fertilizer.[40]

Spelling and etymology

Sulfur comes from the Old French soufre, apparently referring from a root meaning "to burn".[41] The element was traditionally spelled sulphur in the United Kingdom (since the 14th century),[42] most of the Commonwealth including India, Malaysia, South Africa, and Hong Kong, along with the rest of the Caribbean and Ireland. Sulfur is used in the United States, while both spellings are used in Canada and the Philippines.[42]

However, the IUPAC adopted the spelling sulfur in 1990, as did the Royal Society of Chemistry Nomenclature Committee in 1992.[43] The Qualifications and Curriculum Authority for England and Wales recommended its use in 2000,[44] and it now appears in GCSE exams.[45] The Oxford Dictionaries note that "In chemistry... the -f- spelling is now the standard form in all related words in the field in both British and US contexts"[46]

In Latin, the word is variously written sulpur, sulphur, and sulfur (the Oxford Latin Dictionary lists the spellings in this order). It is an original Latin name and not a Classical Greek loan, so the ph variant does not denote the Greek letter φ (phi). Sulfur in Greek is thion (θείον), whence comes the prefix thio-. The simplification of the Latin words p or ph to an f appears to have taken place towards the end of the classical period.[47][48]

Applications

Sulfuric acid

Elemental sulfur is mainly used as a precursor to other chemicals. Approximately 85% (1989) is converted to sulfuric acid (H2SO4):

2 S + 3 O2 + 2 H2O → 2 H2SO4

With sulfuric acid being central importance to the world's economies, its production and consumption is an indicator of a nation's industrial development.[49] For example with 36.1 million metric tons in 2007, the United States produces more sulfuric acid every year than any other inorganic industrial chemical.[50] The principal use for the acid is the extraction of phosphate ores for the production of fertilizer manufacturing. Other applications of sulfuric acid include oil refining, wastewater processing, and mineral extraction.[15]

Sulfuric acid production in 2000

Other large-scale sulfur chemicals

Sulfur reacts directly with methane to give carbon disulfide, which is used to manufacture cellophane and rayon.[15] One of the direct uses of sulfur is in vulcanization of rubber, where polysulfides crosslink organic polymers. Sulfites are heavily used to bleach paper and as preservatives in dried fruit. Many surfactants and detergents, e.g. sodium lauryl sulfate, are produced are sulfate derivatives. Calcium sulfate, gypsum, (CaSO4·2H2O) is mined on the scale of 100 million tons each year for use in Portland cement and fertilizers.

When silver-based photography was widespread, sodium and ammonium thiosulfate were widely used as "fixing agents." Sulfur is a component of gunpowder.

Fertilizer

Sulfur is increasingly used as a component of fertilizers. The most important form of sulfur for fertilizer is the mineral calcium sulfate. Elemental sulfur is hydrophobic (that is, it is not soluble in water) and, therefore, cannot be directly utilized by plants. Over time, soil bacteria can convert it to soluble derivatives, which can then be utilized by plants. Sulfur improves the use efficiency of other essential plant nutrients, particularly nitrogen and phosphorus.[51] Biologically produced sulfur particles are naturally hydrophilic due to a biopolymer coating. This sulfur is, therefore, easier to disperse over the land (via spraying as a diluted slurry), and results in a faster release.

Plant requirements for sulfur are equal to or exceed those for phosphorus. It is one of the major nutrients essential for plant growth, root nodule formation of legumes and plants protection mechanisms. Sulfur deficiency has become widespread in many countries in Europe.[52][53][54] Because atmospheric inputs of sulfur will continue to decrease, the deficit in the sulfur input/output is likely to increase, unless sulfur fertilizers are used.

Fine chemicals

A molecular model of the pesticide malathion.

Organosulfur compounds are used in pharmaceuticals, dyestuffs, and agrochemicals. Many drugs contain sulfur, early examples being antibacterial sulfonamides, known as sulfa drugs. Sulfur is a part of many bacterial defense molecules. Most β-lactam antibiotics, including the penicillins, cephalosporins and monolactams contain sulfur.[28]

Magnesium sulfate, known as Epsom salts when in hydrated crystal form, can be used as a laxative, a bath additive, an exfoliant, magnesium supplement for plants, or (when in dehydrated form) as a desiccant.

Fungicide and pesticide

Sulfur candle originally sold for home fumigation

Elemental sulfur is one of the oldest fungicides and pesticides. "Dusting sulfur," elemental sulfur in powdered form, is a common fungicide for grapes, strawberry, many vegetables and several other crops. It has a good efficacy against a wide range of powdery mildew diseases as well as black spot. In organic production, sulfur is the most important fungicide. It is the only fungicide used in organically farmed apple production against the main disease apple scab under colder conditions. Biosulfur (biologically produced elemental sulfur with hydrophilic characteristics) can be used well for these applications.

Standard-formulation dusting sulfur is applied to crops with a sulfur duster or from a dusting plane. Wettable sulfur is the commercial name for dusting sulfur formulated with additional ingredients to make it water miscible.[55][56] It has similar applications and is used as a fungicide against mildew and other mold-related problems with plants and soil.

Elemental sulfur powder is used as an "organic" (i.e. "green") insecticide (actually an acaricide) against ticks and mites. A common method of use is to dust clothing or limbs with sulfur powder.

Diluted solutions of lime sulfur (made by combinding calcium hydroxide with elemental sulfur in water), are used as a dip for pets to destroy ringworm (fungus), mange and other dermatoses and parasites.

Sulfur candles consist of almost pure sulfur in either blocks or pellets meant to be burned as a fumigant inside structures. It is no longer used in the home due to the toxicity of the products of combustion.

Bacteriocide in winemaking and food preservation

Small amounts of sulfur dioxide gas addition (or equivalent potassium metabisulfite addition) to fermented wine to produce traces of sulfurous acid (produced when SO2 reacts with water) and its sulfite salts in the mixture, has been called "the most powerful tool in winemaking.".[57] The sulfites absorb oxygen to inhibit aerobic bacterial growth after the yeast-fermentation stage in winemaking, that otherwise would turn ethanol into acetic acid and thus cause the wine to "sour." Without this preservative step, indefinite refrigeration of the product before consumption is usually required. Similar methods go back into antiquity but modern historical mentions of the practice go to the fifteenth century. The practice is used by large industrial wine producers and small organic wine producers alike.

Sulfur dioxide and various sulfites have been used for their antioxidant antibacterial preservative properties in many other parts of the food industry also. The practice has declined since reports of a allergy-like reaction of some persons to sulfites in foods.

Biological role

Protein and organic cofactors

Sulfur is an essential component of all living cells. It is the seventh or eighth most abundant element in the human body by weight, being about as common as potassium, and a little more common than sodium or chlorine. A 70 kg human body contains about 140 grams of sulfur.

In plants and animals, the amino acids cysteine and methionine contain most of the sulfur. The element is thus present in all polypeptides, proteins, and enzymes that contain these amino acids. Disulfide bonds (S-S bonds) formed between cysteine residues in peptide chains are very important in protein assembly and structure. These covalent bonds between peptide chains confer extra toughness and rigidity.[58] For example, the high strength of feathers and hair is in part due to their high content of S-S bonds and their high content of cysteine and sulfur. Eggs are high in sulfur because large amounts of the element are necessary for feather formation, and the characteristic odor of rotting eggs is due to hydrogen sulfide. The high disulfide bond content of hair and feathers contributes to their indigestibility and to their characteristic disagreeable odor when burned.

Homocysteine and taurine are other sulfur-containing acids that are similar in structure, but which are not coded by DNA, and are not part of the primary structure of proteins. Many important cellular enzymes use prosthetic groups ending with -SH moieties to handle reactions involving acyl-containing biochemicals: two common examples from basic metabolism are coenzyme A and alpha-lipoic acid.[58] Two of the 13 classical vitamins, biotin and thiamine contain sulfur, with the latter being named for its sulfur content. Sulfur plays an important part, as a carrier of reducing hydrogen and its electrons, for cellular repair of oxidation. Reduced glutathione, a sulfur-containing tripeptide, is a reducing agent through its sulfhydryl (-SH) moiety derived from cysteine. The thioredoxins, a class of small protein essential to all known life, using neighboring pairs of reduced cysteines to act as general protein reducing agents, to similar effect.

Methanogenesis, the route to most of the world's methane, is a multistep biochemical transformation of carbon dioxide. This conversion requires several organosulfur cofactors. These include coenzyme M, CH3SCH2CH2SO3, the immediate precursor to methane.[59]

Metalloproteins and inorganic cofactors

Inorganic sulfur forms a part of iron-sulfur clusters as well as many copper, nickel, and iron proteins. Most pervasive are the ferrodoxins, which serve as electron shuttles in cells. In bacteria, the important nitrogenase enzymes contains an Fe-Mo-S cluster, is a catalyst that performs the important function of nitrogen fixation, converting atmospheric nitrogen to ammonia that can be used by microorganisms and plants to make proteins, DNA, RNA, alkaloids, and the other organic nitrogen compounds necessary for life.[60]

FdRedox.png

Sulfur metabolism

Sulfur may serve as energy (chemical food) source for bacteria that use hydrogen sulfide (H2S) in the place of water as the electron donor in a primitive photosynthesis-like process in which oxygen is the electron receptor. The photosynthetic green sulfur bacteria and purple sulfur bacteria and some chemolithotrophs use elemental oxygen to carry out such oxidization of hydrogen sulfide to produce elemental sulfur (S0), oxidation state = 0. Primitive bacteria which live around deep ocean volcanic vents oxidize hydrogen sulfide in this way with oxygen: see giant tube worm for an example of large organisms (via bacteria) making metabolic use of hydrogen sulfide as food to be oxidized.

The so-called sulfate-reducing bacteria, by contrast, "breathe sulfate" instead of oxygen. They use sulfur as the electron acceptor, and reduce various oxidized sulfur compounds back into sulfide, often into hydrogen sulfide. They can grow on a number of other partially oxidized sulfur compounds (e. g. thiosulfates, thionates, polysulfides, sulfites). The hydrogen sulfide produced by these bacteria is responsible for some of the smell of intestinal gases (flatus) and decomposition products.

Sulfur is absorbed by plants via the roots from soil as the sulfate and transported as a phosphate ester. Sulfate is reduced to sulfide via sulfite before it is incorporated into cysteine and other organosulfur compounds.[61]

SO42– → SO32– → H2S → cysteine

Precautions

Effect of acid rain on a forest, Jizera Mountains, Czech Republic

Elemental sulfur is non-toxic, as generally are the soluble sulfate salts, such as Epsom salts. Soluble sulfate salts are poorly absorbed and laxitive. However, when injected parenterally, they are freely filtered by the kidneys and elimimated with very little toxicity in multi-gram amounts.

When sulfur burns in air it produces sulfur dioxide. In water, this gas produces sulfurous acid and sulfites which are antioxidants, inhibiting the growth of aerobic bacteria, and allowing it to be used as a food additive in small amounts. However, at high concentrations these acids harm the lungs, eyes or other tissues. In organisms without lungs such as insects or plants, it otherwise prevents respiration in high concentrations. Sulfur trioxide (made by catalysis from sulfur dioxide) and sulfuric acid are similarly highly corrosive, due to the strong acids that form on contact with water.

The burning of coal and/or petroleum by industry and power plants generates sulfur dioxide (SO2), which reacts with atmospheric water and oxygen to produce sulfuric acid (H2SO4) and sulfurous acid (H2SO3). These acids are components of acid rain, which lower the pH of soil and freshwater bodies, sometimes resulting in substantial damage to the environment and chemical weathering of statues and structures. Fuel standards increasingly require sulfur to be extracted from fossil fuels to prevent the formation of acid rain. This extracted sulfur is then refined and represents a large portion of sulfur production. In coal-fired power plants, the flue gases are sometimes purified. In more modern power plants that use synthesis gas the sulfur is extracted before the gas is burned.

Hydrogen sulfide is as toxic as hydrogen cyanide and kills by the same mechanism, although hydrogen sulfide is less likely to result in surprise poisonings from small inhaled amounts, due to its more disagreeable warning odor. However, although very pungent at first awareness to the human nose, hydrogen sulfide quickly deadens the sense of smell, so potential victims breathing larger and larger quantities of it may be unaware of its presence until severe symptoms occur (these can then quickly lead to death). Dissolved sulfide and hydrosulfide salts are also toxic by the same mechanism.

See also

References

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics. CRC press. 2000. ISBN 0849304814. http://www-d0.fnal.gov/hardware/cal/lvps_info/engineering/elementmagn.pdf. 
  2. ^ a b c Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
  3. ^ A strong odor called "smell of sulfur" actually is given off by several sulfur compounds, such as hydrogen sulfide and organosulfur compounds.
  4. ^ a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. pp. 645–662. ISBN 0080379419. 
  5. ^ Steudel, Ralf; Eckert, Bodo (2003). "Solid Sulfur Allotropes Sulfur Allotropes". Topics in Current Chemistry 230: 1–80. doi:10.1007/b12110. 
  6. ^ Steudel, R. (1982). "Homocyclic Sulfur Molecules". Topics in Current Chemistry 102: 149–176. doi:10.1007/3-540-11345-2_10. 
  7. ^ Tebbe, Fred N.; Wasserman, E.; Peet, William G.; Vatvars, Arturs; Hayman, Alan C. (1982). "Composition of Elemental Sulfur in Solution: Equilibrium of S6, S7, and S8 at Ambient Temperatures". Journal of the American Chemical Society 104 (18): 4971–4972. doi:10.1021/ja00382a050. 
  8. ^ Meyer, Beat (1964). "Solid Allotropes of Sulfur". Chemical Reviews 64 (4): 429–451. doi:10.1021/cr60230a004. 
  9. ^ Meyer, Beat (1976). "Elemental sulfur". Chemical Reviews 76 (3): 367–388. doi:10.1021/cr60301a003. 
  10. ^ Cameron, A. G. W. (1957). "Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis". CRL-41. http://www.fas.org/sgp/eprint/CRL-41.pdf. 
  11. ^ Mason, B. (1962). Meteorites. New York: John Wiley & Sons. p. 160. ISBN 0908678843. 
  12. ^ Lopes, Rosaly M. C.; Williams, David A. (2005). "Io after Galileo". Reports on Progress in Physics 68 (2): 303–340. Bibcode 2005RPPh...68..303L. doi:10.1088/0034-4885/68/2/R02. 
  13. ^ Rickwood, P. C. (1981). "The largest crystals". American Mineralogist 66: 885–907. http://www.minsocam.org/ammin/AM66/AM66_885.pdf. 
  14. ^ Kutney, Gerald (2007). Sulfur: history, technology, applications & industry. Toronto: ChemTec Publications. p. 43. ISBN 9781895198379. OCLC 79256100. 
  15. ^ a b c d e Nehb, Wolfgang; Vydra, Karel (2006). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag. doi:10.1002/14356007.a25_507.pub2. ISBN 3527306730. 
  16. ^ Riegel, Emil; Kent, James (2007). Kent and Riegel's handbook of industrial chemistry and biotechnology, Volume 1. New York: Springer. p. 1171. ISBN 9780387278421. OCLC 74650396. 
  17. ^ a b c Eow, John S. (2002). "Recovery of sulfur from sour acid gas: A review of the technology". Environmental Progress 21 (3): 143–162. doi:10.1002/ep.670210312. 
  18. ^ a b c Schreiner, Bernhard (2008). "Der Claus-Prozess. Reich an Jahren und bedeutender denn je". Chemie in unserer Zeit 42 (6): 378–392. doi:10.1002/ciuz.200800461. 
  19. ^ Hyndman, A. W.; Liu, J. K.; Denney, D. W. (1982). "Sulfur Recovery from Oil Sands". Sulfur: New Sources and Uses. ACS Symposium Series. 183. pp. 69–82. doi:10.1021/bk-1982-0183.ch005. ISBN 0-8412-0713-5. 
  20. ^ Mohamed, Abdel-Mohsen; El-Gamal, Maisa (2010). Sulfur concrete for the construction industry: a sustainable development approach. Fort Lauderdale: J. Ross Publishing. p. 109. ISBN 9781604270051. OCLC 531718953. 
  21. ^ The United States Geological Survey's 2008 Minerals Yearbook for Sulfur. Accessed 27-08-2011.
  22. ^ Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 421.
  23. ^ Hasek, W. R. (1961), "1,1,1-Trifluoroheptane", Org. Synth. 41: 104, http://www.orgsyn.org/orgsyn/pdfs/CV5P1082.pdf 
  24. ^ Rutenberg, M. W; Horning, E. C. (1950), "1-Methyl-3-ethyloxindole", Org. Synth. 30: 62, http://www.orgsyn.org/orgsyn/pdfs/CV4P0620.pdf 
  25. ^ Heal, H. G. (1980). The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen, and Phosphorus. London: Academic Press. ISBN 0123356806. 
  26. ^ Chivers, T. (2004). A Guide To Chalcogen-Nitrogen Chemistry. Singapore: World Scientific. ISBN 9812560955. 
  27. ^ Vaughan, D. J.; Craig, J. R. "Mineral Chemistry of Metal Sulfides" Cambridge University Press, Cambridge (1978) ISBN 0-521-21489-0
  28. ^ a b Cremlyn R. J.; “An Introduction to Organosulfur Chemistry” John Wiley and Sons: Chichester (1996). ISBN 0 471 95512 4.
  29. ^ Wilson, R. W.; Penzias, A. A.; Wannier, P. G.; Linke, R. A. (March 15, 1976). "Isotopic abundances in interstellar carbon monosulfide". Astrophysical Journal 204: L135-L137. Bibcode 1976ApJ...204L.135W. doi:10.1086/182072. 
  30. ^ Banoub, Joseph (2011). Detection of Biological Agents for the Prevention of Bioterrorism. Dordrecht: Springer. p. 183. ISBN 9789048198153. OCLC 697506461. 
  31. ^ Rapp, George Robert (2009-02-04). Archaeomineralogy. pp. 242. ISBN 978-3-540-78593-4. http://books.google.com/books?id=ed0yC98aAKYC&pg=PA242. 
  32. ^ Odyssey, book 22, lines 480–495.
  33. ^ Pliny the Elder on science and technology, John F. Healy, Oxford University Press, 1999, ISBN 0198146876 pp. 247–249.
  34. ^ a b c Zhang Yunming (1986). "The History of Science Society: Ancient Chinese Sulfur Manufacturing Processes". Isis 77 (3): 487. doi:10.1086/354207. 
  35. ^ Lin, A. N.; Reimer, R. J.; Carter, D. M. (1988). "Sulfur revisited". Journal of the American Academy of Dermatology 18 (3): 553–558. doi:10.1016/S0190-9622(88)70079-1. PMID 2450900. http://www.eblue.org/article/S0190-9622%2888%2970079-1. 
  36. ^ Maibach, HI; Surber, C.; Orkin, M. (1990). "Sulfur revisited". Journal of the American Academy of Dermatology 23 (1): 154–156. doi:10.1016/S0190-9622(08)81225-X. PMID 2365870. 
  37. ^ Gupta, A. K.; Nicol, K. (2004). "The use of sulfur in dermatology". Journal of drugs in dermatology : JDD 3 (4): 427–31. PMID 15303787. 
  38. ^ "Prelude to the Sulphur War of 1840: The Neapolitan Perspective". European History Quarterly 25: 163–180. April 1995. doi:10.1177/026569149502500201. 
  39. ^ Botsch, Walter (2001). "Chemiker, Techniker, Unternehmer: Zum 150. Geburtstag von Hermann Frasch" (in German). Chemie in unserer Zeit 35 (5): 324–331. doi:10.1002/1521-3781(200110)35:5<324::AID-CIUZ324>3.0.CO;2-9. 
  40. ^ Kogel, Jessica (2006). Industrial minerals & rocks: commodities, markets, and uses (7th ed.). Colorado: Littleton. p. 935. ISBN 9780873352338. OCLC 62805047. 
  41. ^ Online Etymology Dictionary entry for sulfur. Retrieved 18-08-2011.
  42. ^ a b Michie, C. A.; Langslow, D. R. (1988). "Sulphur or sulfur? A tale of two spellings". Britisch Medical Journal 297 (6664): 1697–1699. doi:10.1136/bmj.297.6664.1697. 
  43. ^ McNaught, Alan (1991). "Journal style update". The Analyst 116 (11): 1094. Bibcode 1991Ana...116.1094M. doi:10.1039/AN9911601094. 
  44. ^ Sulphur, Worldwidewords
  45. ^ "General Certificate of Secondary Education (Science A Chemistry". Foundation Tier and Higher Tier. March 2010. http://store.aqa.org.uk/qual/gcse/qp-ms/AQA-CHY1AP-W-QP-MAR10.PDF. Retrieved 2011-02-27. 
  46. ^ Ask Oxford, accessed 12 November 2010.
  47. ^ "Sulphuricum Sulphur". Vanderkrogt.net. http://elements.vanderkrogt.net/element.php?sym=S. Retrieved 2011-02-27. 
  48. ^ Kelly, Donovan P. (1995). "Sulfur and its Doppelgänger". Archives of Microbiology 163 (3): 157–158. doi:10.1007/BF00305347. 
  49. ^ Sulfuric Acid Growth
  50. ^ Ober, Joyce A.. "Mineral Yearbook 2007: Sulfur". United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/sulfur/myb1-2007-sulfu.pdf. 
  51. ^ Sulfur as a fertilizer
  52. ^ Zhao, F. (1999). "Sulphur Assimilation and Effects on Yield and Quality of Wheat". Journal of Cereal Science 30 (1): 1–17. doi:10.1006/jcrs.1998.0241. 
  53. ^ Blake-Kalff, M. M. A. (2000). Plant and Soil 225 (1/2): 95–107. doi:10.1023/A:1026503812267. 
  54. ^ Ceccotti, S. P. (1996). "Plant nutrient sulphur-a review of nutrient balance, environmental impact and fertilizers". Fertilizer Research 43 (1–3): 117–125. doi:10.1007/BF00747690. 
  55. ^ Mohamed, Abdel-Mohsen Onsy; El Gamal, M. M (2010-07-13). Sulfur Concrete for the Construction Industry: A Sustainable Development Approach. pp. 104–105. ISBN 9781604270051. http://books.google.com/books?id=OYecyRmnTEkC&pg=PA104. 
  56. ^ Every, Richard L., et al. (1968-08-20). "Method for Preparation of Wettable Sulfur". http://www.freepatentsonline.com/3398227.pdf. Retrieved 2010-05-20. 
  57. ^ [1] Sulfur in wine demystified. Retrieved Oct. 26, 2011.
  58. ^ a b Nelson, D. L.; Cox, M. M. (2000.). Lehninger, Principles of Biochemistry (3rd ed.). New York: Worth Publishing. ISBN 1-57259-153-6. 
  59. ^ Thauer, R. K. (1998). "Biochemistry of methanogenesis: a tribute to Marjory Stephenson:1998 Marjory Stephenson Prize Lecture". Microbiology 144 (9): 2377–2406. doi:10.1099/00221287-144-9-2377. PMID 9782487. 
  60. ^ Lippard, S. J.; Berg, J. M. (1994). Principles of Bioinorganic Chemistry. University Science Books. ISBN 0-935702-73-3. 
  61. ^ Heldt, Hans-Walter (1996). Pflanzenbiochemie. Heidelberg: Spektrum Akademischer Verlag. pp. 321–333. ISBN 3-8274-0103-8. 

External links


 
 
Related topics:
sulfurated
thiemia
sulfur oxide (inorganic chemistry)

Related answers:
Is it spelled sulfur or sulfur? Read answer...
How do you get sulfur? Read answer...
What does sulfur do? Read answer...

Help us answer these:
Are sulfur pills as beneficial as pure sulfur if not where can you get pure sulfur?
What you sulfur?
What can you do with sulfur?

Post a question - any question - to the WikiAnswers community:

 

Copyrights:

American Heritage Dictionary. The American Heritage® Dictionary of the English Language, Fourth Edition Copyright © 2007, 2000 by Houghton Mifflin Company. Updated in 2009. Published by Houghton Mifflin Company. All rights reserved.  Read more
Britannica Concise Encyclopedia. Britannica Concise Encyclopedia. © 1994-2012 Encyclopædia Britannica, Inc. All rights reserved.  Read more
McGraw-Hill Science & Technology Encyclopedia. McGraw-Hill Encyclopedia of Science and Technology. Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved.  Read more
Columbia Encyclopedia. The Columbia Electronic Encyclopedia, Sixth Edition Copyright © 2012, Columbia University Press. Licensed from Columbia University Press. All rights reserved. www.cc.columbia.edu/cu/cup/ Read more
Peterson Field Guide to Rocks & Minerals. Peterson Field Guide to Rocks and Minerals, by Frederick H. Pough. Copyright © 1998 by Houghton Mifflin Company. Published by Houghton Mifflin Company. All rights reserved.  Read more
Cosmic Lexicon. Copyright 1996 Planetary Science Research Discoveries Read more
Wiley Dictionary of Flavors. Copyright © 2008 by Wiley-Blackwell. Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries. Used here by license.  Read more
 Oxford Dictionary of Biochemistry. Oxford University Press. Oxford Dictionary of Biochemistry and Molecular Biology © 1997, 2000, 2006 All rights reserved.  Read more
Mosby's Dental Dictionary. Mosby's Dental Dictionary. Copyright © 2004 by Elsevier, Inc. All rights reserved.  Read more
Random House Word Menu. © 2010 Write Brothers Inc. Word Menu is a registered trademark of the Estate of Stephen Glazier. Write Brothers Inc. All rights reserved.  Read more
 Rhymes. Oxford University Press. © 2006, 2007 All rights reserved.  Read more
Wikipedia on Answers.com. This article is licensed under the Creative Commons Attribution/Share-Alike License. It uses material from the Wikipedia article Sulfur Read more

Follow us
Facebook Twitter
YouTube

Mentioned in

» More» More