
A Real-Time Algorithm for Mobile Robot Mapping With Applications to
Multi-Robot and 3D Mapping

Sebastian Thrun1 Wolfram Burgard2 Dieter Fox1

1Computer Science Department 2Computer Science Department
Carnegie Mellon University University of Freiburg

Pittsburgh, PA Freiburg, Germany

Best Conference Paper Award
IEEE International Conference on Robotics
and Automation, San Francisco, April 2000

Abstract

We present an incremental method for concurrent mapping
and localization for mobile robots equipped with 2D laser
range finders. The approach uses a fast implementation
of scan-matching for mapping, paired with a sample-based
probabilistic method for localization. Compact 3D maps
are generated using a multi-resolution approach adopted
from the computer graphics literature, fed by data from a
dual laser system. Our approach builds 3D maps of large,
cyclic environments in real-time. It is remarkably robust.
Experimental results illustrate that accurate maps of large,
cyclic environments can be generated even in the absence
of any odometric data.

1 Introduction

Building maps of indoor environments is a pivotal problem
in mobile robotics. The problem of mapping is often re-
ferred to as theconcurrent mapping and localization prob-
lem, to indicate its chicken-and-egg nature: Building maps
when a robot’s locations are known is relatively straight-
forward, as early work by Moravec and Elfes has demon-
strated more than a decade ago [10]. Conversely, localizing
a robot when a map is readily available is also relatively
well-understood, as a flurry of algorithms has successfully
demonstrated [1]. In combination, however, the problem is
hard.

Recent progress has led to a range of new methods. Most
of these approaches build maps incrementally, by iterating
localization and incremental mapping for each new sensor
scan the robot receives [8, 13, 19, 20]. While these methods
are fast and can well be applied in real-time, they typically
fail when mapping large cyclic environments. This is be-
cause in environments with cycles, the robot’s cumulative
error can grow without bounds, and when closing the cycle
error has to be corrected backwards in time (which most
existing methods are incapable of doing). A recent fam-
ily of probabilistic methods based on EM overcome this
problem [15, 18]. EM searches the most likely map by si-

multaneously considering the locations of all past scans,
using a probabilistic argument for iterative refinement dur-
ing map construction. While these approaches have suc-
cessfully mapped large cyclic environments, they are batch
algorithms that cannot be run in real-time. Thus, a natural
goal is to devise methods that combine the advantages of
both methodologies, without giving up too much of the full
power of EM so that large cycles can be mapped in real-
time.
Most previous approaches also construct 2D maps only, and
they only address single-robot mapping. Here our focus is
also on multi-robot mapping and 3D maps.
This paper presents a novel algorithm that combines ideas
from the EM approach, but nevertheless is strictly incre-
mental. The basic idea is to combine the idea of posterior
estimation—a key element of the EM-based approach—
with that of incremental map construction using maximum
likelihood estimators—a key element of previous incre-
mental approaches. The result is an algorithm that can
build large maps in environments with cycles, in real-time
on a low-end computer. The posterior estimation approach
makes it possible to integrate data collected my more than
one robot, since it enables robots to globally localize them-
selves in maps built by other robots. We also extend our
approach to the generation of 3D maps, where a multi-
resolution algorithm is used to generate low-complexity 3D
models of indoor environments.
In evaluations using a range of mobile robots, we found that
our approach is extremely robust. Figure 1 shows some of
the robots used in our experiments; not shown there are
RWI B21 and Nomad Scout robots which we also used
in evaluating our approach. Some of our robots have ex-
tremely poor odometry, such as the robot shown in Fig-
ure 1c. We show a collection of results obtained under a
vast range of conditions, including cases wherenoodome-
try was available for mapping at all.

(a) (b) (c)
Figure 1: Robots: (a) Pioneer robots used for multi-robot mapping. (b) Pioneer robot with 2 laser range finders used for 3D mapping. (c) Urban robot for
indoor and outdoor exploration. The urban robot’s odometry is extremely poor. All robots have been manufactured by RWI/ISR.

2 Mapping

At the most fundamental level, the problem of concurrent
mapping and localization can be treated as a maximum like-
lihood estimation problem, in which one seeks to find the
most likely map given the data. In this section, we will
briefly restate the well-known map likelihood function, and
then discuss a family of incremental on-line algorithms that
approximate the maximum likelihood solution. Our ap-
proach is somewhat specific to robots equipped with 2D
laser range finders or similar proximity sensors, which have
become very popular in recent years. As we will show,
our approach works well even in the complete absence of
odometry data, and it also extends to the generation of 3D
with laser range finders.

2.1 Likelihood Function

Let m be a map. Following the literature on laser scan
matching [6, 9], we assume that a map is a collection of
scans and their poses; the term pose refers to thex-y loca-
tion relative to some hypothetical coordinate system and a
scan’s orientationθ. At time t, the map is written

mt = {〈oτ , ŝτ〉}τ=0,...,t (1)

whereoτ denotes a laser scan andŝτ its pose, andτ is
a time index. Pictures of maps can be found pervasively
throughout this paper.

The goal of mapping is to find the most likely map given
the data, that is,

argmax
m

P (m | dt) (2)

The datadt is a sequence of laser range measurements and
odometry readings:

dt = {s0, a0, s1, a1, . . . , st} (3)

wheresτ denotes an observation (laser range scan),aτ de-
notes an odometry reading, andt andτ are time indexes.
Without loss of generality, we assume here that observa-
tions and odometry readings are alternated.

As shown in [18], the map likelihood functionP (m | dt)
can be transformed into the following product:

P (m | dt) = η P (m)
∫
· · ·
∫ t∏

τ=0

P (oτ | m, sτ)

·
t−1∏
τ=0

P (sτ+1 | aτ , sτ) ds1 . . . dst (4)

whereη is a normalizer (which is irrelevant when comput-
ing (3)) andP (m) is prior over maps which, if assumed to
be uniform, can safely be omitted. Thus, the map likelihood
is a function of two terms, the motion model,P (sτ+1 |
aτ , sτ), and the perceptual model,P (oτ | mt, sτ). Since
we can safely assume stationarity (i.e., neither model de-
pends on the time indexτ), we omit the time index and
instead writeP (s | a, s′) for the motion model andP (o |
m, s) for the perceptual model.
Throughout this paper, we adopt the probabilistic motion
model shown in Figure 2. This figure depicts (projected
into 2D) the probability of being at poses, if the robot pre-
viously was ats′ and executed actiona. As can be seen,
the shape of this conditional density resembles that of a
banana. This distribution is obtained by the (obvious) kine-
matic equations, assuming that robot motion is noisy along
its rotational and translational component.

The perceptual model is inherited from the rich literature
on scan matching and projection filtering [6, 9]. Here the
assumption is that when a robot receives a sensor scan, it
is unlikely that future measurements perceive an obstacle
within space previously perceived as free. The larger the
distance between current and previous measurements, the
lower the likelihood. This is illustrated in Figure 3. This
figure shows a sensor scan (dots at the outside), along with
the likelihood function (grayly shaded area): the darker a
region, the smaller the likelihood of observing an obstacle.
Notice that the likelihood function only applies a “penalty”
to regions in the visual range of the scan; it is usually com-
puted using ray-tracing.

A key feature of both models, the motion model and the
perceptual model, is the fact that they are differentiable.

Figure 2: The motion model: shown here is the probability distribution
P (s | a, s′) for the robot’s posterior poses after moving distancea be-
ginning at locations′ , for two example trajectories.

More specifically, our approach uses the gradients

∂P (s | a, s′)
∂s

∂P (o | m, s)
∂s

(5)

for efficiently searching the most likely pose of a robot
given its sensor measurements. The derivation of the equa-
tions is relatively straightforward (though tedious) and will
not be given for brevity. However, in our implementation
the gradient computation is carried out highly efficiently,
enabling us to compute 1,000 or more gradients per sec-
ond on a low-end PC. Further down, we will exploit the
fact that the gradient can be computed so quickly, and use
hill climbing for determining the most likely solution of
mapping-related subproblems.

Let us briefly get back to the general likelihood function
(4). Obviously, maximization of (4) yields the most likely
map. Unfortunately, it is infeasible to maximize (4) in real-
time, while the robot moves. This is because the likeli-
hood cannot be maximized incrementally; instead, sensor
measurements often carry information about past robot lo-
cations, which makes it necessary to revise past estimates
as new information arrives. As noticed on [6, 9], this is
most obvious when a robot “closes a loop,” that is, when
it traverses a cyclic environment. When closing a loop,
the robot’s error might be arbitrarily large, and generating
a consistent map requires the correction of the map back-
wards in time. Therefore, past approaches, such as the EM
algorithm presented in [15, 18], are off-line algorithms that
may sometimes take multiple hours for computing the most
likely map.

2.2 Conventional Incremental Mapping

Before describing our approach for incremental likelihood
maximization, let us first consider a baseline approach,
which is extremely popular in the literature. This approach
is incremental, is attacks the concurrent localization and
mapping problem, but it is unable to revise the map back-
wards the time and therefore is unable to handle cyclic en-
vironments (and close a loop). Nevertheless, it is used as a
subcomponent in our algorithm which follows.

Figure 3: Likelihood function generated from a single sensor scan. The
robot is on the left (circle), and the scan is depicted by 180 dots in front of
the robot. The likelihood function is shown by the grey shading: the darker
a region, the smaller the likelihood for sensing an object there. Notice that
occluded regions are white (and hence incur no penalty).

The idea is simple, and probably because of its simplicity
it is popular:Given a scan and an odometry reading, deter-
mine the most likely pose. Then append the pose and the
scan to the map, and freeze it once and forever.

Mathematically, the most likely pose at timet is given by

ŝt = argmax
st

P (st | ot, at−1, ŝt−1) (6)

which is usually determined using hill climbing (gradient
ascent). The result of the search,ŝt is then appended to the
map along with the corresponding scanot:

mt+1 = mt ∪ {〈ot, , ŝt〉} (7)

As noticed above, this approach typically works well in
non-cyclic environments. When closing cycle, however,
this approach suffers form two crucial shortcomings:

1. Pose errors can grow arbitrarily large. When closing the
loop in a cyclic environment, search algorithms like gra-
dient descent might fail to find the optimal solution.

2. When closing a loop in a cyclic environment, Past poses
may have to be revised to generate a consistent map,
which this approach is incapable of doing.

The brittleness of the approach, thus, is due to two factors:
Past estimates are never revised, and only a single guess is
maintained as to where the robot is, instead of a full distri-
bution. Notice that neither of these restrictions applies to
the EM family of mapping algorithms [15, 18].

2.3 Incremental Mapping Using Posteriors

Following the literature on probabilistic mapping with
EM [15, 18] and the literature on Markov localization [16,
3], our approach computes the fullposterior over robot
poses, instead of the maximum likelihood pose only (as
given in (6)). The posterior is a probability distributionover
poses conditioned on past sensor data:

Bel(st) = P (st | dt, mt−1) (8)

The short notationBel indicates that the posterior is the
robot’s subjective belief as to where it might be. In past

-mismatch

-robot

6

path

Figure 4: Result obtained using the most simple incremental approach,
which is common in the literature. This approach fails to close the cycle
and leads to inconsistent maps.

work, various researchers have found that algorithms that
maintain a posterior estimation—instead of a single max-
imum likelihood guess—are typically more robust and
hence lead to more scalable solutions.

The algorithm for computing the posterior is identical to
the Markov localization algorithm [16]. It is incremental.
Initially, at time t = 0, the beliefBel(s0) is centered on
a (fictitious) origin of the coordinate system〈x = 0, y =
0, θ = 0〉. Thus,Bel(s0) is initialized by a Dirac distri-
bution (point distribution). Suppose at timet we know the
previous beliefBel(st−1), which is distribution over poses
st−1 at timet − 1, and we just executed actionat−1 and
observedot. Then the new belief is obtained through:

Bel(st) (9)

= η P (ot | st, mt−1)
∫
P (st | at−1, st−1) Bel(st−1) dst−1

where η is (different) normalizer, andmt−1 is the best
available map.

Update equation (9) is derived using the common Markov
localization approach (see also [16, 3]), assuming a static
map:

Bel(st) = P (st | dt, mt−1)
= P (st | dt−1, at−1, ot, mt−1)
= η P (ot | st, dt−1, at−1, mt−1)

P (st | dt−1, at−1, mt−1)
= η P (ot | st, mt−1) (10)∫

P (st | dt−1, at−1, st−1, mt−1)

P (st−1 | dt−1, at−1, mt−1) dst−1

Figure 5: Sample-based approximation for the posteriorBel(s). Here
each density is represented by a set of samples, weighted by numerical
importance factors. Particle filters are used to generate the sample sets.

= η P (ot | st, mt−1)∫
P (st | at−1, st−1) Bel(st−1) dst−1

After computing the posterior, the new map is generated by
maximizing a slightly different expression for pose estima-
tion (c.f., ŝt in Equation (6)):

s̄t = argmax
st

Bel(st) (11)

which leads to the new map

mt+1 = mt ∪ {〈ot, , s̄t〉} (12)

Just as in (6) and (7), the map is grown by adding a scan
at locations̄t. However, here we use the entire posterior
Bel(st) for determining the most likely pose, not just the
most recent sensor scan and its pose (as in (6)). As a re-
sult, the increasing diameter of uncertainty is modeled so
that, when closing the loop, the correct uncertainty can be
taken into account: the larger the loop, the wider the margin
of uncertainty. This difference is important when mapping
large cyclic environments—where a robot needs to know
where to search when closing a loop.

Our approach usessamplesto approximate the posterior.
Figure 5 shows an example, for a sequence of robot poses
along a U-shaped trajectory. Here each of the sample sets
is an approximation of densities (of the type shown in Fig-
ure 2). The idea of using samples goes back to Rubin’s
importance sampler [14] and, in the context of temporal
posterior estimation is known asparticle filters[12]. It has,
with great success, been applied for tracking in computer
vision [7] and mobile robot localization [2, 3]. As argued
in the statistical literature, this representation can approx-
imate almost arbitrary posteriors at a convergence rate of

1√
N

[17]. It is convenient for robotics, since it is easy to

(a)

�
��

robot
and samples

(b)

�
��

robot and
samples

(c)

� robot and samples

Figure 6: Incremental algorithm for concurrent mapping and localization. The dots, centered around the robot, indicate the posterior belief which grows
over time (a and b). When the cycle is closed as in (c), the posterior becomes small again.

implement, and both more efficient and more general than
most alternatives [3].
The sample-based representation directly facilitates the op-
timization of (11) using gradient descent. Our approach
performs gradient descent using each sample as a start-
ing point, then computes the goodness of the result using
the obvious likelihood function. If the samples are spaced
reasonably densely (which is easily done with only a few
dozen samples), one can guarantee that the global maxi-
mum of the likelihood function can be found. This dif-
fers from the simple-minded approach above, where only a
single starting pose is used for hill-climbing search, and
which hence might fail to produce the global maximum
(and hence the best map).

2.4 Backwards Correction

As argued above, when closing cycles it is imperative that
maps are adjusted backwards in time. The amount of back-
wards correction is given by the difference (denoted∆st):

∆st = s̄t − ŝt (13)

wheres̄t is computed according to Equation (11) andŝt is
obtained through Equation (6). This expression is the dif-
ference between theincrementalbest guess (c.f., our base-
line approach) and the best guess using the full posterior.

If ∆st = 0, which is typically the case whennot closing
a loop, no backwards correction has to take place. When
∆st 6= 0, however, a shift occurred due to reconnection
with a previously mapped area, and poses have to be revised
backwards in time.
Our approach does this in three steps:

1. First, the size of the loop is determined by determining
the scan in the map which led to the adjustment (this is a
trivial side-result in the posterior computation).

2. Second, the error∆st is distributed proportionally
among all poses in the loop. This computation doesnot

yield a maximum likelihood match; however, it places
the intermediate poses in a good starting position for sub-
sequent gradient descent search.

3. Finally, gradient descent search is applied iteratively for
all poses inside the loop, until the map is maximally con-
sistent (maximizes likelihood) under this new constraint
arising from the cycle.

These three steps implement an efficient approximation to
the maximum likelihood estimator for the entire loop. Our
approach has been found to be extremely robust in prac-
tice (we never obtained a single wrong result) and also ex-
tremely fast (the entire maximization can be carried out
between two sensor measurements for all experiments re-
ported in this paper).

2.5 Multi-Robot Mapping

The posterior estimation component of our approach makes
it straightforward to generate maps with multiple robots.
Here we assume that the initial pose of the robots relative
to each other isunknown; however, we make the important
restrictive assumption that each robotstarts within the map
of a specific robot, called the team leader. To generate a
single, unified map, each robot must localize itself in the
map of the team leader.
The insight for multi-robot mapping is closely tight to the
notion of posterior estimation. As the reader might have
noticed, our posterior computation is equivalent toMonte
Carlo localization[2, 3], a version of Markov localization
capable of performingglobal localization. Thus, to local-
ize a robot in the map of the team leader, its initial samples
are distributed uniformly across the team leader’s map, as
shown in Figure 7a. The posterior estimation then quickly
localizes the robot (see [2, 3]), which then enables both
robots to build a single, uniform map.

(a)

�
��

robot

� team leader

(b)

�
��

robot

� team leader

(c)

���
robot

� team leader

Figure 7: A second robot localizes itself in the map of the first, then contributes to building a single unified map. In (a), the initial uncertainty of the relative
pose is expressed by a uniform sample in the existing map. The robot on the left found its pose in (b), and then maintains a sense of location in (c).

2.6 3D Mapping

Finally, a key goal of this research is to generate accu-
rate 3D maps. With accurate localization in place, this ex-
tension is obtained using a robot equipped with two laser
range finder, such as the one shown in Figure 1b. Here the
forward-looking laser is used for concurrent mapping and
localization in 2D, and the upward-pointed laser is used to
build a 3D map of the environment.

At first glance, one might simply generate 3D maps by
connecting nearby laser measurements into small polygons.
However, this approach has two disadvantages: First, it is
prone to noise, and second, the number of measurements
are excessively large, and the resulting maps are therefore
overly complex.
Our approach filters our outliers based on distance; if two
measurements are further than a factor 2 apart from the ex-
pected measurement under the robot motion (and assum-
ing the robot faces a straight wall), this measurement does
not become part of a polygone. We also apply a sim-
plification algorithm [4, 5], previously developed to sim-
plify polygonal models for real-time rendering in computer
graphics.1 In a nutshell, this approach iteratively simplifies
multi-polygon surface models by fusing polygons that look
similar when rendered. The result is a model with much
reduced complexity, which nevertheless is similarly accu-
rate and looks about as good as the original when rendered.
The simplification uses only a small fraction of the avail-
able time, hence is easily applied in real-time.

3 Results

3.1 Mapping A Cycle

In our experiments, scans were only appended to the map
when the robot moved a presprecified distance (2 meters);

1We gratefully acknowledge Michael Garland’s assistance in using the
software.

Figure 8: Mapping without odometry. Left: Raw data, right: map, gener-
ated on-line in real-time.

all scans, however, were used in localization. This kept
the complexity of maps manageable (a few hundred scans,
instead of several thousand). Also, to make the mapping
problem more challenging, we occasionally introduced ran-
dom error into the odometry (30 degrees or 1 meter shifts).
Figure 6 shows results obtained using the same data set as
in Figure 4. Here the robot traverses the cycle, but it also
keeps track of its posterior beliefBel(s) represented by
samples, as shown by the dots centered around the maxi-
mum likelihood pose in Figure 6. When the cycle is closed
(Figure 6b), the robot’s error is significant; however, the
“true” pose is well within its posterior at this time. Our ap-
proach quickly identifies the true pose, corrects past beliefs,
and reduces the robot’s uncertaintyaccordingly. The final
map is shown in Figure 6c. As can be seen there, the map
is highly accurate and the error in the cycle has been elim-
inated. All these results have been obtained in real-time on
a low-end PC.

3.2 Mapping Without Odometry

To test the robustness of the approach, we attempted to
build the same map but in theabsence of odometry data.
The raw data, stripped of the odometry information, is
shown in Figure 8a. Obviously, these data are difficult to
interpret (we are not aware of an algorithm for mapping

Figure 9: Autonomous exploration and mapping using the urban robot:
Raw data and final map, generated in teal-time during exploration.

that works well without odometry information). Figure 8b
shows the resulting map. This map has been generated us-
ing identical software settings. When traversing the cycle,
this map is less accurate than the one generated withodom-
etry data. However, when closing the cycle, these errors are
identified and eliminated, and the final result is optically
equivalent to the one with odometry. The reader should no-
tice, however, that the odometry-free results are only pos-
sible because the environment possess sufficient variation.
In a long, featureless corridor, our approach would clearly
fail in the absence of odometry data. Nevertheless, these
results illustrate the robustness of our approach.

3.3 Autonomous Exploration

Figure 9 shows results of an autonomously exploring robot,
obtained at a recent DARPA demonstration. These results
were obtained using the Urban Robot shown in Figure 1c.
This robot is able to traverse extremely rugged terrain.
However, its skid-steering mechanism using tracks is ex-
tremely erroneous, and odometry errors are often as large
as 100%, depending on the conditions of the floor.
Figure 9 shows the raw data (left diagram) and the map
(right diagram) along with the robot’s trajectory. This is
the worst map ever generates using our approach: some of
the walls are not aligned perfectly, but instead are rotated
by approximately 2 degrees. However, given the extremely
poor odometry of the robot, and the fact that our approach
does not resort to assumptions like recto-orthogonal walls,
these results are actually surprisingly accurate. The map
is clearly sufficient for navigation. We suspect if the envi-
ronment possessed a loop, the final result would be more
accurate.

3.4 Multi-Robot Mapping

Figure 7 illustrates our approach to multi-robot mapping.
Here a second robot localizes itself in the map built by
the team leader (left diagram), as explained above. After
a short motion segment, the posterior is focused on a single
location (center diagram) and the incoming sensor data is
now used to further the map. The right diagram shows the

Figure 10: 3D Map.

situation after a few more seconds, Here the second robot
has progressed through the map of the team leader. It still
knows its position with highaccuracy.

3.5 3D Mapping

Results for 3D mapping are shown in Figures 10 and 11.
Figure 10 shows a short corridor segment. The free-flying
surfaces are ceiling regions inside offices, which the robot’s
lasers sensed while moving through the corridor.
Figure 11 shows a sequence of rendered views of a larger
(cyclic) map, which is approximately 60 meters long. The
rendering algorithm is a standard virtual reality tool (VR-
web), which enables the user to remotely inspect the build-
ing by “flying through the map.” The top rowin Figure 11
has been generated from raw laser data; this model contains
82,899 polygons. The bottom row is the simplified polyg-
onal model, which contains only 8,289 polygons. The ap-
pearance of both is similar; however, rendering the more
compact one is an order of magnitude faster.

4 Discussion

This paper presented a new, online method for robust map-
ping and localization in indoor environments. The ap-
proach combines ideas from incremental mapping (maxi-
mum likelihood, incremental map construction) with ideas
of more powerful, non-incremental approaches (posterior
estimation, backwards correction). The result is a fast and
robust algorithm for real-time mapping of indoor environ-
ments, which extends to multi-robot mapping and mapping
in 3D. A fast algorithm was employed to generate compact
3D models of indoor environments.
Experimental results illustrated that large-scale environ-
ments can be mapped in real-time. The resulting maps
were highly accurate. We also demonstrated that our ap-
proach can generate 3D maps, and it can fuse information
collected though multiple robot platforms.
When compared to EM, the ability to generate maps in real

Figure 11: Views of the 3D map, for the high-res model (top row) and the lower resolution model (bottom row).

time comes at a price of increased brittleness. EM is a
principled approach to finding the best map, which simul-
taneously revises beliefs arbitrarily far in the past—which
makes it necessarily inapplicable in real-time. However,
our approach inherits some of the power of EM by us-
ing posterior estimations and a fast mechanisms for back-
wards revision, specifically tuned for mapping cyclic en-
vironments. As a result, our approach can handle a large
range of environments in real-time.

Nevertheless, our approach surpasses previous incremental
approaches in robustness, specifically in environments with
cycles. Our results make us confident that the approach is
very robust to errors, in particular odometry errors.

Acknowledgments

We thank Michael Garland for his assistance with the polygon fusing soft-
ware, Todd Pack and RWI/ISR for their superb support with the robot
hardware, and the members of CMU’s Robot Learning Lab for many fruit-
ful discussions. The idea to build 3D maps was brought to our attention
by our DARPA-PM LTC John Blitch, which we gratefully acknowledge.

This research is sponsored in part by DARPA via TACOM (contract num-
ber DAAE07-98-C-L032) and Rome Labs (contract number F30602-98-
2-0137), and by the National Science Foundation (regular grant number
IIS-9877033 and CAREER grant number IIS-9876136), which is grate-
fully acknowledged.

References
[1] J. Borenstein, B. Everett, and L. Feng.Navigating Mobile Robots:

Systems and Techniques. A. K. Peters, 1996.
[2] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the condensa-

tion algorithm for robust, vision-based mobile robot localization. In
CVPR-99.

[3] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localiza-
tion: Efficient position estimation for mobile robots. InAAAI-99.

[4] M. Garland and P. Heckbert. Surface simplification using quadric
error metrics. InSIGGRAPH-97.

[5] M. Garland and P. Heckbert. Simplifying surfaces with color and
texture using quadric error metrics. InIEEE Visualization-98.

[6] J.-S. Gutmann and C. Schlegel. Amos: Comparison of scan match-
ing approaches for self-localization in indoor environments. In
EUROMICRO-96.

[7] M. Isard and A. Blake. Condensation: conditional density propaga-
tion for visual tracking.International Journal of Computer Vision,
1998.

[8] J.J. Leonard, H.F. Durrant-Whyte, and I.J. Cox. Dynamic map
building for an autonomous mobile robot.International Journal of
Robotics Research, 11(4), 1992.

[9] F. Lu and E. Milios. Robot pose estimation in unknown envi-
ronments by matching 2d range scans.Journal of Intelligent and
Robotic Systems, 1998.

[10] H. P. Moravec and A. Elfes. High resolution maps from wide angle
sonar. InICRA-85..

[11] H.P. Moravec and M.C. Martin. Robot navigation by 3D spatial
evidence grids. Internal Report, CMU, 1994.

[12] M. Pitt and N. Shephard. Filtering via simulation: auxiliary particle
filter. Journal of the American Statistical Association, 1999.

[13] W.D. Rencken. Concurrent localisation and map building for mobile
robots using ultrasonic sensors. InIROS-93.

[14] D.B. Rubin. Using the SIR algorithm to simulate posterior distribu-
tions. InBayesian Statistics 3, 1988.

[15] H. Shatkay. Learning Models for Robot Navigation. PhD thesis,
CSD, Brown University, 1998.

[16] R. Simmons and S. Koenig. Probabilistic robot navigation in par-
tially observable environments. InIJCAI-95.

[17] M.A. Tanner.Tools for Statistical Inference. Springer, 1993.
[18] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to con-

current mapping and localization for mobile robots.Machine Learn-
ing, 31, 1998.

[19] B. Yamauchi and R. Beer. Spatial learning for navigation in dynamic
environments.IEEE Transactions on Systems, Man, and Cybernet-
ics - Part B: Cybernetics, 1996.

[20] B. Yamauchi, P. Langley, A.C. Schultz, J. Grefenstette, and
W. Adams. Magellan: An integrated adaptive architecture for mo-
bile robots. TR 98-2, ISLE, Palo Alto, 1998.

