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Abstract

The Virtual Flute is a web service that provides many
thousands of machine-predicted alternative fingerings.
Alternative fingerings can offer variations in intonation
and timbre, and can be easier to play in different
musical contexts. Many play multiphonics. An advanced
fingering guide is invaluable when exotic effects and
demanding passages are required of the player. The
Virtual Flute uses an expert system that predicts
musical properties from acoustic impedance spectra.
Impedance spectra for the 39,744 acoustic configurations
of the flute are generated by a physical model of the
instrument, some parameters of which are machine-
learned. We report the construction and use of The
Virtual Flute (http://www.phys.unsw.edu.au/music/flute/
virtual/).

1. Introduction

When a musician is faced with a technically difficult
phrase in a performance, a resource that offers an
extensive guide to the instrument’s available options is
invaluable. One of the primary goals of music acoustics is
to offer assistance to performing musicians, and The
Virtual Flute does just that. By making appropriate
physical approximations and taking advantage of com-
putational power, The Virtual Flute maps the entire
fingering space of the modern flute for the benefit of
performers and composers.

A fingering is a given combination of pressed keys on
a woodwind instrument. A pressed key closes or opens

particular tone holes along the length of the instrument;
thus, a fingering defines an acoustic configuration. For
the modern Boehm flute, there are 39,744 unique
acoustic configurations (including both B foot and C
foot models).

The range of the flute spans 44 notes in the equal
tempered scale (from B3 to F,7), and for most notes, one
or two fingerings are recognized as standard. Thus, given
the many thousands of acoustic configurations available,
alternative fingerings abound. In compositions since the
1950s, woodwind players are increasingly required to
play multiphonics (chords, in which two or more notes
are sounded simultaneously), microtones (notes that fall
between those of standard temperaments), and notes
with various timbre effects (e.g. Berio, 1958; Bartolozzi,
1967). Alternative fingerings can offer differences in
pitch and pitch flexibility, timbre, stability, ease of
production, or ease of fingering (particularly in rapid
passages), all of which may be desirable in a given
musical context.

We know of no previous attempt to present the
entire list of alternative fingerings for the flute. Dick
(1989) gives an extensive collection of fingerings but it is
far from complete. Hence, The Virtual Flute completes
the flute fingering landscape for many musicians world-
wide.

2. An overview of The Virtual Flute

The musical response of the flute for a given fingering can
be largely determined from the spectrum of the acoustical
impedance Z(f) — the ratio of acoustic pressure to
volume flow of air — measured at the embouchure hole of
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the flute'. The resonances of the flute correspond closely
to the minima of acoustic impedance, and flutes play
notes whose frequencies are close to these resonances.

For many standard fingerings, all tone holes are closed
down to a certain point and mostly open beyond that. In
such a configuration, the flute acts like a tube, open at
both ends, whose resonances occur approximately in a
harmonic series. The effective tube length L is approxi-
mately that between the embouchure hole and the first
open tone hole; the minima of Z(f) correspond to
standing waves with wavelengths of 21 /n, where n is an
integer. The flute can operate using one of these
resonances as the fundamental, with higher harmonics
contributing to the overall brightness of the played note.

Amongst all fingerings however, such simple finger-
ings are greatly outnumbered by cross-fingerings, where
one or more tone holes are closed downstream from
the first open hole. Within the instrument bore, some of
the travelling wave is reflected at each open hole whilst
some is transmitted downstream to the remaining open
holes (Wolfe & Smith, 2003). These separate reflections
can give rise to different standing waves, which the player
may be able to excite simultaneously. As the lengths
involved are not in general simple harmonic ratios,
multiphonics can be produced. Additionally, the lack of
simple harmonic resonances in cross-fingerings leads
to significant differences in timbre. The Virtual Flute
examines thousands of cross-fingerings that have not
been previously documented.

Our technique for measuring the acoustic impedance
of flutes provides sufficiently many accurate data for
modelling purposes (Wolfe et al., 2001a, b). At the core of
The Virtual Flute is a simple model of acoustic impedance
that agrees well with our experimental measurements.
Secondly, The Virtual Flute consists of an expert system
that relates features of impedance spectra to key musical
properties, such as the playability of the note associated
with any given impedance minimum. Armed with these
two models, a machine analyses every fingering of the
flute (Figures 1 and 8 — see Section 5 — illustrate this for
the fingering Th 1 -3 | 1 2 - D; C?). The Virtual Flute is the
interface to these musical data.

The Virtual Flute was first available in 2001 (Botros
et al., 2002, 2003). In 2005, a second release of The
Virtual Flute was launched, offering a more accurate and

"Throughout this paper, impedance is specified on a logarithmic
scale: Z(dB) =20 log;o (|Z|/Pa s m ™). Z is a complex quantity,
but examination of the phase spectrum gives little extra
information (Wolfe et al., 2001a). Consequently, we show only
magnitude spectra.

Flutists write fingerings using the numbers 1, 2, 3 for the keys
usually operated by the long fingers of each hand (left given
first), Th for the left thumb key, and then individual names for
the other keys (such as the D, key). A vertical line separates the
two hands.

elegant physical model and a wider set of features for
musicians. In particular, a machine learning approach
is employed, resulting in an automated and woodwind-
generic method of modelling acoustic impedance. This
paper describes the current release of The Virtual Flute in
its entirety.

3. A machine-learned model of acoustic
impedance

3.1 One-dimensional acoustical waveguide (transmission
line) models

The flute has no strong resonances above about 3 kHz,
and hence cannot play in this range. Consequently, the
wavelengths of the sounds of interest are much longer
than the diameter, and the propagating waves within the
bore are pre-dominantly planar®. Hence, a one-dimen-
sional approximation of woodwind geometries can
achieve acceptable precision with some semi-empirical
corrections.

To calculate Z(f) given such an approximation, a
woodwind is first represented as a network of small
cylindrical and conical sections. For the flute, each tone
hole and each bore segment of the body is represented as
a cylindrical section, whereas the tapered head joint and
embouchure hole can be represented as a sequence of
cylindrical or conical sections. To make a numerical
calculation, one starts from the downstream end of the
instrument and works back towards the embouchure.
The acoustic impedance at the end of a pipe is that of
the radiation field. This is used as the load impedance
for the section of the bore leading to the first tone hole.
The input impedance of the section is calculated using a
transfer matrix (for relevant formulae, see Fletcher &
Rossing, 1998). The hole is also a (short) cylindrical
section whose load is either another radiation load
(if open) or infinite (if closed). These two sections are
combined in parallel to form the load for the next section
of the bore:

Z bore Z hole

7 = ——horefhole
H Zbore + Zhole

(1)

The process continues to the input of the instrument, and
the entire calculation is repeated at different frequencies
to create an impedance spectrum. To compensate
for higher-dimensional effects, one-dimensional models
typically include a few adjustable parameters, such as end
corrections at each section.

3Thus the flute is an acoustical waveguide, and many of the
techniques developed for waveguide analysis, e.g. in micro-
waves may be applied. (The use of “waveguide” is distinct from
digital waveguide modelling used in synthesis.)
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Fig. 1. The Virtual Flute’s impedance model and expert system predictions for a randomly chosen cross-fingering (open holes denoted
white, closed holes black). Each playable minimum is labelled with its intonation (offset from equal temperament in cents) and its
playability level (3 maximum). A4 is predicted to be dark in timbre. Predicted multiphonics are A;4&BS, B5&F6, F6&B6.

Using essentially these methods, impedance calcula-
tions have been made of a variety of wind instruments,
such as the oboe (Plitnik & Strong, 1979), the flute
(Coltman, 1979; Strong et al., 1985; Nederveen, 1998)
and brass instruments (Caussé et al., 1984).

3.2 Adjusting parameters by machine learning

As mentioned, previous one-dimensional models have
included empirical parameters to compensate for the
inherent inaccuracies of their approximations. Plitnik
and Strong (1979) used the measured end corrections of
Benade and Murday (1967) at open tone holes. Coltman
(1979) measured the end corrections of open flute tone
holes, and the same end corrections were used in the
model of Strong et al. (1985). Strong et al. (1985) also
widened the diameter of the flute bore underneath each
tone hole, and energy loss factors were increased at each
hole. Coltman (1979) used increased energy loss factors
throughout the entire flute.

Previous models have not had the benefit of large sets
of precise Z( /) measurements to validate their parameter
choices. Furthermore, each parameter value is typically
chosen by measurements at isolated sections of the instru-
ment (such as a single hole), rather than by evaluating
the interaction of all parameters at the instrument input
(the ultimate point of interest).

Our novel approach is to use a machine to adjust
multiple parameters simultaneously, iteratively improv-
ing the agreement with our database of experimental
measurements. The database provides a training set for
the machine learning algorithm LEARNIMPEDANCE.
Whereas the first version of The Virtual Flute used an

impedance model with manually adjusted parameters
(much like previous models), the current version has been
optimized in a completely automated fashion. Moreover,
the impedance software defines a generic schema (written
in XML) for an arbitrary woodwind geometry -
LEARNIMPEDANCE can be applied to various woodwinds
without alteration.

3.3 Model parameters

We model a Pearl PF-661 B foot flute, configured in the
same manner as Wolfe et al. (2001a). A total of six
adjustable parameters are used — five end corrections and
an energy loss factor. All of the parameters represent
well-known physical effects and have been incorporated
in previous models. The model geometry and adjustable
parameters are shown in Figure 2 and specified in detail
in Appendix A.

3.4 The LEARNIMPEDANCE algorithm

The goal of the LEARNIMPEDANCE algorithm is to mini-
mize the error between the physical model described
above and our experimental measurements. This is
achieved by searching for an optimal setting of the
adjustable parameters (a total of six for the flute).
Given the expensive computational requirements, an
exhaustive search through all parameter combinations is
impossible — for the required parameter resolution, the
total number of combinations is in excess of billions, and
each impedance spectrum takes ~1 s to compute. Thus,
our algorithm must perform a “greedy’ search through
parameter space.
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The algorithm we designed is, in essence, a combina-
tion of a gradient descent search and the expectation-
maximization (EM) algorithm (Dempster et al., 1977).
LEARNIMPEDANCE iterates over a two-step process until
little improvement is gained between iterations:

1. Determine which parameter, when adjusted in
isolation, would reduce the error between the model
and the experimental measurements (training set) by
the largest amount.

2. Following the ordering established in step 1, adjust
each parameter in turn to minimize the error.

The algorithm is specified in detail in Appendix B.

Ten impedance spectra are used to train the model —
standard fingerings for B3, C4, Cy4, F,4/5, B4/5, D6, D;6,
C7, D47 and E7 are included. Of these, five are cross-
fingerings. The error at any point during the algorithm’s
execution is the mean squared difference between the
model and measured spectra (in log terms), averaged
over the ten training spectra. Note that the use of log Z
means that both maxima and minima contribute equally
to the quality of the fit. One might argue that a flute
model should favour impedance minima. We prefer,
however, to use a single model for all woodwinds and
thereby to constrain more tightly the performance of the
acoustical model.

All end corrections are initially set to 0 and the energy
loss factor is set to 1. The algorithm may only adjust
parameters within a small window at each iteration (+0.1
for the end corrections and +2.5 for the energy loss
factor). This ensures that the model is not too heavily
influenced by the first parameters that are adjusted. End
corrections can be adjusted without bound, but the
energy loss factor must not be less than 1.

3.5 Results and discussion

LEARNIMPEDANCE was executed over 13 iterations, a total
time of 4.5 h. The final parameter values are shown in
Table 1. Figure 3 compares the model with experimental
measurements for three fingerings that have not been
used for training.

When calculated over the frequency range of 0.2—
4.0 kHz, the average root mean squared (RMS) error for

10mm 10mm

bore-emb m

a

2N T

40 standard fingerings was 1.16 dB. When calculated
over 0.2—3.0 kHz — the musical range of the flute — the
RMS error over the 40 fingerings was 1.28 dB. This
compares favourably with the first impedance model of
The Virtual Flute (Botros et al., 2002). To 4 kHz, the
original model results in an error of 1.47 dB; to 3 kHz,
the error is 1.67 dB. Furthermore, whereas the current
impedance model uses six adjustable parameters, the
original model used nine. The advantages of the current
approach are clear: it is more accurate, less complex,
automated and woodwind-generic.

To demonstrate the woodwind-generic framework of
LearNIMPEDANCE, We applied the algorithm to a wooden
classical flute. The instrument consisted of eight finger
holes and one hole covered by a keypad. In addition to
the six adjustable parameters of the modern flute, we
added two end corrections (open and closed) for a
fingered hole. This is necessitated because, when closed,
the ball of the finger intrudes into the hole; when open, a
finger lifts further from the hole than does a keypad. All
other parameters matched those of the modern flute.
LEARNIMPEDANCE was trained by eight impedance spec-
tra, three of them from cross-fingerings.

LearNIMPEDANCE was executed over 19 iterations for
the classical flute (6.5 h). The final parameter values are
shown in Table 1. Figure 4 compares the model with
experiment for an unseen cross-fingering. Over the
frequency range of 0.2—4.0 kHz, the RMS error was
0.99 dB when averaged over our full dataset of

Table 1. Final LeEaRNIMPEDANCE parameter values for the
modern flute and classical flute models (parameter specifica-
tions given in Appendix A).

Parameter Modern flute value  Classical flute value
m, 14.75 14.00
Alborc: emb —0.15 —0.02
Albore—hole —0.06 —0.01
A/cmb—borc 0.63 0.63
Alholre bore 0.41 0.35
Alopenhole —keypad 1.07 1.90
Alopcnholc—ﬁngcr - 0.47
Alclosehole finger - —0.83

Al

1 2 openhole-keypad

Fig. 2. The geometry and adjustable parameters of the modern flute impedance model. Bore segments and tone hole segments are
modelled by cylindrical sections; head joint and embouchure hole modelled by conical sections. The adjustable parameters include five
end corrections and one energy loss factor localized at the embouchure region.
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Fig. 3. Comparison of impedance model and experimental

measurement for three standard fingerings of the modern flute.

The measurements were not used to train LEARNIMPEDANCE. B6

is the worst fit in our dataset; Gy4/5 and D7 are typical fits.

19 impedance spectra. With the possible exception of
Aljpenhole—keypad — keypad design varies across instru-
ments — the parameter values generally agree with those
for the modern flute.

Six adjustable parameters may seem extravagant in a
theoretical model: in many experimental datasets, a fit
with six parameters would be doomed to success. Here,
however, the datasets are very demanding. In the impe-
dance spectrum for each measured fingering, the impe-
dance varies by a factor exceeding a thousand, and it has
typically about 20 very sharp extrema, with well-defined
impedance and frequencies. Fitting the many detailed
features of one such spectrum is difficult; further, there
are tens of spectra to be fitted with just the one set of six
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Fig. 4. Comparison of impedance model and experimental
measurement for a classical flute cross-fingering. The measure-
ment was not used to train LEARNIMPEDANCE.

parameters. Our empirical approach provides a flexible
means of building accurate models. Adjustable para-
meters are easily added and subtracted from the model;
the algorithm uses the parameters if they significantly
improve the model. Whereas more complex, higher
dimensional models exist for specific geometries such as
single tone holes, our simple model adapts to the instru-
ment of interest and quickly provides useful musical data.

4. Predicting musical responses from acoustic
impedance spectra

4.1 Extracting features from Z(f)

To study the relationship between Z(f) and musical
response, 76 impedance spectra were selected from our
experimental database for analysis (cf. Botros et al.,
2002). The frequency range studied was 0.2—4.0 kHz,
covering the range of all playable notes on the instrument.
957 minima are contained within the selected spectra.

For each extremum (minimum or maximum), a set of
features were calculated: f., the frequency of the
extremum; Z., the magnitude of Z(f) at frequency f.;
and B., the bandwidth of the extremum. In addition to
these three parameters, each minimum was characterized
by a further 11 features: the Q factor (Q =f,./Bm); the
absolute frequency difference and relative impedance
difference of the adjacent left minimum (Af min, AZLmin)>
right minimum (AfRmin, AZRmin), left maximum (Aff max
AZLmax) and I’ight maximum (A.meax, AZRmaX); the
number of harmonic minima (Ny,,,); and the weighted
average impedance of those harmonics (Zy,m)-

Minima at frequencies above f;, were deemed to be
harmonic if their frequencies were in the range n(1 + 0.05)
fm, Where n is a positive integer. Ny, is the total of such
harmonic minima. The harmonicity function Z,,., is the
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average impedance of the harmonic minima, where each
minimum has a weighting of 1/n.

Collectively, the 14 features represent physical para-
meters that we initially suspected to be musically
important — for example, we expect notes to be easy to
play if they are associated with strong resonances (i.e. at
minima that are deep and isolated), and the harmonicity
of higher minima might be important in “mode locking”
of the nonlinear oscillation régime of the jet (Fletcher,
1978).

4.2 Predicting playability

The presence of a minimum in Z( /) does not necessarily
mean that a note can be played at that pitch. To
distinguish between playable and unplayable minima, an
expert system that predicts the playability of minima
based on their physical features was constructed. An
experienced flutist ranked the playability of notes
corresponding to each of the 957 minima in our selected
dataset. Minima were ranked subjectively into four levels
of playability, from 3 (most playable) to 0 (unplayable).
Thus, our training dataset consists of 957 instances, each
consisting of the 14 minima features and the expert
determination of playability.

The playability expert system of The Virtual Flute
consists of two separate models: (i) minima are firstly
predicted as playable or unplayable; (ii) thereafter,
playable minima are ranked on a continuous scale of
0-3.

The first model was machine-learned using the C5.0
decision tree algorithm (Quinlan, 1993, 2005a). Cross-
validation was used to test the performance of the
decision tree with unseen data. In this process the expert
data are randomly divided into F subsets (folds), and in
each iteration a single subset is withheld from the C5.0
algorithm and used as a test set. A decision tree may be
pruned to remove spurious dependence on any of the
minima parameters that do not improve the error rate of
the tree — C5.0 allows the analyst to specify a minimum
number of training instances that at least two branches
must carry at a decision node. Guided by cross-
validation results, the analyst may prune a decision tree
to an appropriate size. The playability tree was selected
in this manner. Table 2 shows the tree size and error rate
at different levels of pruning. The error rate is the 10-fold
cross-validation error, averaged over 10 trials. As can be
seen from the results, large trees overfit the training data
with insignificant branches, performing no better than
smaller trees. The selected tree, shown in Figure 5,
specifies a minimum of 30 instances at each branch,
resulting in a 5.2% error rate. At higher levels of
pruning, the error rate rises.

The second model was also machine-learned, using the
Cubist model tree algorithm (Quinlan, 1992, 2005b). The
training dataset consists of only the playable minima

Table 2. C5.0 playability tree size (number of leaf nodes) and
10-fold cross-validation error rate at different levels of pruning.
The pruning level is the minimum number of instances that at
least two branches must carry at a decision node. Results are
averaged over 10 trials. Selected model is highlighted.

Pruning level Tree size Error rate (%)
2 17.7 5.9
10 10.1 5.3
20 7.3 5.5
30 5.9 5.2
40 5.7 59
50 5.1 8.2
100 2.7 11.3
200 2.0 11.7

from the original dataset, providing 329 instances. Model
trees work with continuous target functions, as required;
other techniques include linear regression, instance-based
locally-weighted learning and neural networks. These
four techniques were compared using the Weka
Experimenter (Witten & Frank, 2000); based on cross-
validation results over the training data, model trees
consistently performed the best. Similar to C5.0 pruning,
Cubist allows the analyst to specify a minimum
percentage of instances that a rule must cover. The
playability model tree was selected by comparing the
correlation between the training data and model tree
predictions at different levels of rule coverage. Table 3
shows the cross-validation correlation at different levels
of rule coverage. A level of 20% was selected based on
the results, giving the following playability model (f'and
Af'in Hz, Z and AZ in dB):

RULE 1: If Z,, > 103.2 dB and no left-neighbouring
minimum exists

Play=4.4 — 0.022Z,, + 0.0002f,, + 0.0005AfR max
RULE 2: If Z,;, > 103.2 dB and AZy 1, <0.4 dB
Play =2.340.034AZ} 1nax — 0.011Z,, + 0.000031,
RULE 3: If Z,, > 103.2 dB
Play =6.4+0.025AZ1 nax — 0.041Z,, + 0.00005f,,
RULE 4: If Z,,<103.2 dB
Play =3
If more than one rule applies to a given instance, the
average of the rule outputs is used as the prediction.

It is important to note that the playability models are
far from definitive — indeed, there are many different
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Fig. 5. The playability decision tree, constructed using C5.0.

Table 3. Cubist playability model correlation at different levels
of rule coverage (10-fold cross-validation used). Selected model
is highlighted.

MIN instances per rule (%) Correlation
1 0.54
2 0.58
5 0.60

10 0.58

15 0.58

20 0.59

25 0.58

30 0.55

40 0.56

models that could have been constructed from the train-
ing data. Fundamentally, the minima parameters them-
selves are strongly correlated and can therefore appear
interchangeably in relationships (hence, it would be mis-
leading to regard any of the coefficients as simple
weighting factors). Nevertheless, the two playability
models perform reasonably well and were constructed
in a robust manner. Furthermore, the data-mined rules
of the models are intuitive: in general, playability
is greater at lower impedance minima that are not
closely neighboured by deep minima at lower or higher
frequencies.

Finally, for each fingering, pairs and triplets of play-
able notes whose frequencies are not in a simple ratio of
small integers are predicted as multiphonics.

<261.1Hz

\:6.7dB
a1,

Rmin

>261.1Hz

PLAYABLE

4.3 Predicting timbre

The timbre of notes associated with minima — or, more
specifically, the brightness or darkness — is predicted in a
way similar to that used for playability. Our expert flutist
ranked the brightness of playable minima (329 in total)
into four levels, from 4 (brightest) to 1 (darkest — dark
notes are characterized by a diffuse, dull quality; stan-
dard fingerings are all bright). Interestingly, the play-
ability and brightness rankings of the 329 minima are
only weakly correlated (r=0.12).

As for the continuous playability scale, the brightness
model was created using the Cubist model tree algorithm.
Again, the Weka Experimenter demonstrated that
model trees consistently outperformed the remaining three
learning schemes. Table 4 shows the cross-validation cor-
relation at different levels of rule coverage. A level of 20%
was selected based on the results, giving the following
brightness model (fand Af'in Hz, Z and AZ in dB):

RULE 1: If Afimax > 139.2 Hz
Bright =2.1+0.067AZ1 max — 0.0153Af max
1 0.0064A Romin — 0.054AZrimax
10.00026, — 0.0007AfRmax + 0.018 Nparm
RULE 2: If Afymax < 139.2 Hz
Bright =0.5+0.00132f,, + 0.037AZrmax

10.023AZ 1 max — 0.0013A Romin
- OOOO4Ame4x + 0-012Nharm
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RULE 3: If no left-neighbouring maximum exists

Bright = 1.3 +0.00124f,, + 0.03AZ g max
—0.0032AfRmax+ 0.085Nparm + 0.0015A R min

As is intuitive, the number of harmonics is a factor in the
brightness model (more harmonics give a brighter
sound). We also note that a given minimum’s impedance
magnitude is not directly included in the model,
supporting the observation that brightness is not strongly
correlated with playability (where Z,, is a strong
influence). Similarly, the harmonicity of minima is not
included in the model of playability.

4.4 Predicting pitch

The playing frequencies of the flute do not exactly
match those of the minima in Z(f), measured at room

Table 4. Cubist brightness model correlation at different levels
of rule coverage (10-fold cross-validation used). Selected model
is highlighted.

MIN instances per rule (%) Correlation
1 0.65
2 0.67
5 0.68

10 0.66

15 0.67

20 0.67

25 0.65

30 0.65

40 0.56

4 - -FL1 A

60

--FL2 - - @ - -FL3

temperature. Although the differences are a few percent
or less, the effect is noticeable — up to a quarter of a
semitone or so. Flutists raise the temperature and
humidity of the air in the instrument, and thus raise
the pitch overall. They can also vary the frequency of the
resonance by varying the extent to which the lower lip
covers the embouchure hole. They also vary the speed of
the jet.

We choose to include all these factors (and some more
subtle effects) in a single empirical function. Three exp-
erienced flutists were asked to play the same flute that was
used in the experimental impedance measurements. They
were asked to use their normal embouchure and to avoid
correcting the pitch when and if the instrument was out of
tune. Using standard fingerings, each note in the range C4
to D;7 was played four times in an ordering that decreases
pitch memory. Deutsch (1978) has demonstrated that
pitch memory is weakest when test tones differ by large
intervals. We ordered the test notes in such a way that (i)
intervals between notes were mostly large; and (ii)
harmonicity between successive notes was minimized
(for example, no octave intervals appear in the sequence).
The sequence begins as such: D4, F;6, G;5, C4, C;5, B6,
A4, DS ..

The pitch of each note was recorded on a tuning meter
and compared to the corresponding impedance minima
frequencies. The results are shown in Figure 6. The trend
in pitch difference is consistent across the three flutists
and agrees well with our previous study (Botros et al.,
2002). We fit the results (averaged over all subjects and
all four attempts per note) by a 3rd-order polynomial

(fin Hz):

APitch(cents) = 6.9475(log, /')’ — 197.53(log, f)*
+1841.6(log, /) — 5618.5. (2)

Poly. (MEAN)

50

40

30

20

APitch (cents)

-20

-30

40

Fig. 6. Pitch difference (played frequency minus corresponding impedance minimum frequency) for three flutists. The mean difference

is fit by a 3rd-order polynomial.
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Different flutes and different players will give different musical contexts. Thus in general, more accurate predic-
results, and players vary frequency by more than 10 cents tions of pitch cannot be made, and so this empirical pitch
(a tenth of a semitone) in different circumstances and correction suffices for our purposes.
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Fig. 7. The front page of The Virtual Flute, showing the three available fingering search tools.
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5. The Virtual Flute web service
5.1 Implementation

The Virtual Flute is a database-backed website that
presents the machine-predicted notes and multiphonics
of all flute fingerings in a manner useful to musicians.
The database is preloaded with the results of a 12 h
computation: for all 39,744 fingerings, (i) an impedance
spectrum Z(f) is calculated; (i) minima features are
extracted from Z(f); (iii)) playability and timbre are
predicted of each minimum; (iv) pitches of playable notes
are adjusted for playing conditions; and (v) multiphonics
are predicted from the harmonicity of playable notes.
The web service was developed following the principles
of Greenspun (1999). It is located at http://www.phys.
unsw.edu.au/music/flute/virtual/.

The Virtual Flute provides three tools (Figure 7). The
first allows the user to enter a fingering via a graphical
interface and then returns the predicted playable notes
with their predicted playability, brightness and pitches.
Multiphonic possibilities are also given. The second tool
allows the input of a note name to search for all suitable
fingerings. The third allows the user to search for
multiphonics. The Virtual Flute caters for B foot and C
foot models, with or without a “split E”” mechanism.

Figure 8 shows The Virtual Flute’s predictions for the
fingering Th 1-3 |12 - D, C. For each note listed at left,
a star rating is given to indicate playability (in half-star
steps, from half a star to three stars), and notes with dark
timbre are indicated by the outline of a moon. Our expert
flutist subjectively judged dark notes as those with
Bright < 2.75. Multiphonic possibilities are listed at
right. Multiphonics that consist of adjacent notes in the
fingering’s frequency-ordered sequence are denoted with
a star. We expect these multiphonics to be the most
playable.

Th1l 3 |12 D4C

* Cfoot
* Split E mechamsm
+ Unconventional fingering

Acoustic Model Z(f)

When searching for fingerings that play a given note,
the user may filter the search results by (i) restricting the
search to a specific flute model (e.g. C foot, split E); (ii)
removing fingerings that include unconventional keys or
more than one key per finger; and (iii) specifying keys
that must or must not be included in the returned
fingerings. The search results may be ranked by intona-
tion (particularly useful for microtone searches), play-
ability or darkness.

Similarly, when searching for fingerings that play a
given multiphonic, the user may filter the search by items
(i) and (ii) above. The user may specify a particular two-
note or three-note multiphonic, or the user can provide a
single note to find all multiphonics that include the given
note. The latter feature is especially useful for composers.
Multiphonic fingerings are ranked in a three-tiered
scheme: (i) by the adjacency of the multiphonic notes
in the fingering’s frequency-ordered sequence (a star
denoting perfect adjacency); (ii) by the geometric mean of
the individual note playabilities of the multiphonic; and
(iii) by the sum of squares of the individual note pitch
offsets from standard temperament (in cents).

The user can run the theoretical model for any fing-
ering to produce Z( f), calculated in real-time. The user
can also post a comment on any fingering, increasing the
value of The Virtual Flute over time.

5.2 Musical applications

Cavanagh (2005) describes a number of practical applica-
tions in performance contexts. Here we provide a few
selected examples to illustrate the musical significance of
The Virtual Flute.

Stravinsky’s The Firebird requires an acciaccatura
from BS to E6 to BS. The standard fingering for BS
(also used for B4) will comfortably play F.6, the third

[ X N N
Enter new search the VII’tUﬂ' ﬂllte

Wiew user comments on this

NOTE Pitches are only approximate - actual pitches depend on your embouchure and blowing speed, the type of flute, key adjustments and temperature.

Playable Notes Explain: Notes and keys | lcons @
Note Playability

. % 1#4 minus 35 cents

. & B5 plus 0 cents

tiig

1
2
3 % F6 minus 10 cents
4

. ® E6 minus 20 cents

Multiphonic Possibilities  Explain: Notes and keys | Icons @

K & psers
* ¢ FEgB6

L L#45ES

¢ L#4cEG

Fig. 8. Search results for the fingering Th 1-3 |12 - D, C (cf. Figure 1).
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Fig. 9. Impedance model for the standard fingerings for E6
(top) and B5 (middle), and for the alternative E6 fingering
(bottom). The alternative fingering has no playable minima
near B5, making it an excellent B5-E6 trill.

harmonic of B4. The standard fingering for E6 will also
play G35 and A6. For a slow transition, the flutist would
shorten and/or quicken the jet by just the right amount to
play E6 whilst avoiding G;5 and A6. The flutist would
then lengthen or slow the jet to play the BS as before.

To play this acciaccatura (or a trill between these two
notes), there is no time to adjust embouchure — one
simply forms an intermediate embouchure and lets the
flute fingering select the note. The danger here is that, if
the embouchure compromise favours the high note, one
risks playing B5-E6-F,6-B5, because the unwanted F,6
(the “split”) is only a tone above the originating E6. If
the compromise is too low, one will play B5-G;5-B5, or
B5-nothing-B35, because the E6 is not a particularly stable
note.

Cavanagh (2005) searched for an alternative EG6
fingering on The Virtual Flute and found Th 12 - |1 -
- trl tr2 Dy. (The search was structured in such a way
that the returned fingerings included similar keys to the
standard fingering.) The note is stable and easy to sound.
Figure 9 explains how this alternative fingering proves
useful. According to The Virtual Flute (and confirmed by
players), the minimum immediately below that corre-
sponding to E6 is unplayable, so there is little danger of
the E6 “dropping down”. Consequently, the embouchure
may be compromised more towards B5 and less to E6,
which minimizes the chance of sounding F;6. It is a
comfortable, safe solution which directly improves the
quality of a performance. Although we provide an in-
depth insight by analysing impedance spectra (readily
provided by The Virtual Flute), no such expertise was
required of the player. The user simply searched for E6
alternatives and experimented with the first few returned
fingerings until a solution was found.

Kathleen Gallagher, who specializes in the contem-
porary repertoire, cites an example from Richard
Barrett’s What Remains, composed for flute, bass clarinet
and piano. The composer calls for a slurred, fast passage
sharp C7, sharp B6, E7, flat D7, flat E7, D7, E,7, B,6.
Kathleen used standard fingerings for B,6, D7 and flat
D7, but found the rest of the fingerings on The Virtual
Flute, thereby creating a unique solution for a bar that
has produced anxiety and performance approximations
for all flutists attempting this work.

High notes are often difficult to play softly, or in tune,
and flutists are keen to find improvements. Take for
example F7 (the second highest note in the flute’s range):
The Virtual Flute offers a split E fingering (12 -] -2 - tr2)
whose minimum is about 30% lower than that of the
standard fingering. The Virtual Flute lists the fingering at
the top of its search list when ranked by playability
(Figure 10). It allows flutists of modest ability to play this
very high note, and even to play it softly.

Indeed, with a database containing over 500,000
records, there’s a very strong chance that musicians will
find the fingering they need in a given performance or
composition. Since its launch in 2001, The Virtual Flute
has been enthusiastically received by musicians and
scientists alike. It is used hundreds of times each day,
offering an easily accessible, prized service as part of our
extensive Music Acoustics website.
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section with input and output areas matching those of
the hole on each side of the lip plate, and length
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e a 5 mm long cylindrical stub is added at the input of
the instrument, in accordance with the experimental
setup. (The impedance of this element models the
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The adjustable parameters of the model consist of end
corrections at each hole, as follows:

® Alore_holes an end correction to each bore section
at a tone hole, expressed as a fraction of the bore
radius;

® Aliore_emb, an end correction to each bore section at
the embouchure hole, expressed as a fraction of the
bore radius;

® Al bore> an end correction to each tone hole at the
bore, expressed as a fraction of the hole radius;

®  Alypenhole—keypad> all €nd correction to each open tone
hole at the keypad, expressed as a fraction of the hole
radius; and

®  Alemb-_bore> an end correction to the embouchure hole
at the bore, expressed as a fraction of the embouchure
radius at the bore end.

In addition to the end corrections, a multiplicative energy
loss factor m, is used for the bore within 10 mm of the
embouchure hole centre (roughly a bore radius on each
side). Specifically, the wave vector k can be written as the
complex number:

)
k=——ja. (3)

v
o 1s the radial frequency of the wave, v is the phase
velocity and « is the attenuation coefficient per unit
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length of path. The present model uses Benade’s (1968)
formulas for v and o:

VR C [1 — —1.6541)\(/]_1"03} , (4)

oc~3 x 1073/f

_ 5)
where fis the frequency of the wave within the pipe and a
is the radius of the pipe. To increase the energy loss
within the bore near the embouchure hole, o is multiplied
by an adjustable parameter. Whilst previous models have
increased attenuation factors throughout the entire flute,
we choose to focus the correction at the large disconti-
nuity between the embouchure hole and the flute bore.
At a large discontinuity in an acoustical waveguide, some
energy is usually lost by turbulence.

The radiation impedance of an unflanged pipe is used
at the end of the flute, whereas the radiation impedance
of a flanged pipe is used at open tone holes (Levine &
Schwinger, 1948; Beranek, 1954). The approximation
of an open tone hole by a pipe set in an infinite baffle is
somewhat crude; although more involved analyses
of woodwind radiation impedances have been made
(Dalmont et al., 2001), we choose to absorb any
differences within the selected end correction parameters.

Appendix B — The LEaARNIMPEDANCE algorithm

SET end correction Parameter(i) := 0.0
SET a correction Parameter(i) := 1.0
REPEAT
ForeacH Parameter(i)
SeET ParameterOld(i) := Parameter(i)
EnD
FOREACH Parameter(i)
For Parameter(i) := Low(Parameter(i)) TO
Higu(Parameter(i)) IN INCREMENT(Parameter(i))
SET Error(Parameter(i)) = average mean
squared error over training spectra
EnD

SeT ParameterError(i) := MinmmuMm(Error)
SET Parameter(i) := ParameterOld(i)
ExD
Order parameters by increasing ParameterError(i)
ForeacH Parameter(i) in order
For Parameter(i) := Low(Parameter(i)) To
Higu(Parameter(i)) IN INCREMENT(Parameter(i))
SET Error(Parameter(i)) = average mean
squared error over training spectra

EnD
SET ParameterError(i) := MinimuM(Error)
SET Parameter(i) := value corresponding to
ParameterError(i)
EnD

IF iteration error has not improved by more than
0.01 dB RMS
Exit LEARNIMPEDANCE
ExD
ExD

For each parameter, LEARNIMPEDANCE accepts the
following input:

INC: the parameter resolution

MAXINC: the window (+MAXINC) in which the
parameter may change in a given iteration

MIN: the absolute minimum value that a parameter
may have (MIN =? if no minimum is set)

MAX: the absolute maximum value that a parameter
may have (MAX =? if no maximum is set)

Thus, the ForeacH loops in LEARNIMPEDANCE are
bounded as such:

Low(Parameter(i)): the higher value of (Parameter
(1) — MAXINC(i)) and MIN()

HicgH(Parameter(i)): the lower value of (Parameter
(1) + MAXINC(i)) and MAX(i)
IncrEMENT(Parameter(i)): INC(i)

For the flute, end corrections have the following
specification: INC=0.01, MAXINC=0.1, MIN=2?,
MAX =7; the a correction has the following specification:
INC=0.25, MAXINC =2.5, MIN=1.0, MAX =".



