
Acoustic impedance measurements—correction for probe
geometry mismatch

N. H. Fletcher,a) J. Smith, A. Z. Tarnopolsky, and J. Wolfe
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 28 October 2004; revised 27 January 2005; accepted 2 February 2005!

The effect of evanescent mode generation, due to geometrical mismatch, in acoustic impedance
measurements is investigated. The particular geometry considered is that of a impedance probe with
an annular flow port and a central microphone, but the techniques are applicable to other geometries.
It is found that the imaginary part of the measured impedance error is proportional to frequency, and
that the sign of the error is positive for measurements made on tubes with diameter much larger than
that of the inlet port, but negative for tubes with diameter close to that of the inlet. The result is a
distortion of the measured frequencies of the impedance minima of the duct while the maxima are
largely unaffected. There is, in addition, a real resistive component to the error that varies
approximately as the square root of the frequency. Experiment confirms the results of the analysis
and calculations, and a calibration procedure is proposed that allows impedance probes that have
been calibrated on a semi-infinite tube of one diameter to be employed for measurements on
components with an inlet duct of some very different diameter. ©2005 Acoustical Society of
America. @DOI: 10.1121/1.1879192#

PACS numbers: 43.58.Bh, 43.20.Ye, 43.20.Mv, 43.20.Ks@AJZ# Pages: 2889–2895
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I. INTRODUCTION

The measurement of acoustic impedance is of great
portance in many branches of the subject, typical cases b
the input impedance of mufflers or, in contrast, of musi
wind instruments. Most methods involve injecting a know
acoustic flow and measuring the resultant acoustic press
the only significantly different approach being that using t
spaced microphones in a tube leading to the device to
measured so as to evaluate the reflection coefficient. A tr
ment from the viewpoint of general acoustics has been gi
by Beranek,1 and surveys from the more precise viewpoint
musical instrument acoustics by Benade and Ibisi2 and by
Fletcher and Rossing.3 The resulting analysis is straightfo
ward and the results reliable if the diameter of the impeda
head duct through which the flow is injected is equal to
diameter of the inlet to the device under measurement,
such a match is not generally possible. In the case of a
nificant mismatch of diameters, or in geometry, there i
corresponding error in the measured acoustic impedanc
is the purpose of this note to calculate the effect of t
geometrical mismatch and to show how the error can
compensated for by a simple calculation.

In the impedance-measuring heads with which one u
ally deals, as shown in Fig. 1, the acoustic flow is injec
through a high acoustic resistance located coaxially with
pipe inlet to the object being measured, and with eithe
circular or annular cross-section, the latter having advanta
because a very narrow annulus can be less than one vis
diffusion length in width, thus providing a high and near
frequency-independent acoustic resistance.4 A small micro-
phone measures the pressure, either at the center of the
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of this inlet resistance or sometimes in an asymmetrical m
ner by being inserted from one side of the duct. The resid
area of the pipe inlet is sealed by a flat rigid plate. For si
plicity this situation will be idealized in what follows to pla
nar probe geometry and the symmetrical microphone p
tion shown in Fig. 1~a!, though it is clearly possible to us
the same techniques to calculate more complex geomet
Some such extensions are discussed.

II. EVANESCENT MODES

When a sound wave enters a pipe from a pipe of sma
diameter, localized modes are generated close to the
wall in the larger pipe. The effect in the smaller duct can
neglected here, since the injected acoustic flow is assume
be constant across its whole area in impedance measu
devices. This situation is described by the wave equation
cylindrical polar coordinates,

1

r

]

]r S r
]p

]r D1
1

r 2

]2p

]f2
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]2p

]x2
5
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c2

]2p

]t2
, ~1!

wherep is the acoustic pressure,c is the speed of sound in
air, x is the axial coordinate, andr, f are polar coordinates in
the cross section. Since it has been assumed that there
angular variation around the pipe, the coordinatef can be
neglected, and the solution has the form

p~x,r ,t !5 (
n50

`

AnJ0~anr /R!exp@ j ~2knx1vt !#

1B exp@ j ~k0x1vt !#, ~2!

whereJ0 is the Bessel function of order zero,v is the angu-
lar frequency of the signal, andAn , an , andkn are constants
to be determined. TheAn are complex amplitudes associate
with the injected wave, and the final term with complex a

ring
:
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plitudeB represents the reflected wave, assumed to be pla
which carries information about the acoustic impedance
ing measured. Restriction of the frequency range so
higher modes withn.0 are all nonpropagating and the r
turning wave is planar is necessary for the definition
acoustic impedance, since otherwise it would be a multip
valued function with a different value for each propagati
mode.

The values of the quantitiesan are derived from the
assumed condition that the walls of the duct are rigid so t
taking the pipe radius to beR, it is required that]p/]r 50 at
r 5R for each of the modesn. This leads to the condition

dJ0~anr /R!

dr U
r 5R

52
an

R
J1~an!50, ~3!

and hence5 to the series of approximate values 3.83, 7.
10.17,... foran . Substituting~2! back in~1! then leads to the
result

kn
25S v

c D 2

2
an

2

R2
. ~4!

If the frequency is low enough thatv/c,an /R, then kn

becomes imaginary and the corresponding mode is n
propagating or ‘‘evanescent.’’ Such modes are exponenti
attenuated along the axis of the pipe and are essentially
fined to within an axial distance less than a few timesR/an ,
or at most about one pipe-radius from the place where t
are generated. In contrast, the plane-wave moden50, for
which a050, propagates at all frequencies, although in t
casek0 is still complex because of wall losses along the tu
and has the value4,6

k05v/c2 j
1025bv1/2

R
, ~5!

whereb.1 is a factor to allow for the nonideal smoothne
of the walls. Typicallyb'3 for moderately smooth tubes.

FIG. 1. ~a! Geometry of a typical impedance probe connected to a duc
radiusR. For the calculation the diameter 2a of the annulus that acts as th
flow injection port is taken as 7 mm and the microphone diameter as z
~b! An alternative geometry with the microphone displaced a distancb
from the axis of the inlet annulus.
2890 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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In acoustic impedance measurements of the type w
which we are concerned here, a one-dimensional plane-w
approximation is assumed in the object being studied,
attention is directed towards the plane wave amplitudesA0

andB, with the other terms regarded as undesired byprodu
of the mismatch between the impedance head and the e
duct. The aim of the present analysis is to identify the co
tributions of these higher modes and show how they can
corrected for.

To simplify matters, the inlet to the object under test
assumed to be an unobstructed circular tube of radiusR with
rigid boundaries, at least for a distance away from the m
suring plane about equal to its radius. The impedance pr
is also assumed to have circular symmetry, and a longitud
cross section is shown in Fig. 1~a!. The flow injection port is
assumed to be a narrow annulus of radiusa, and the radius of
the central microphone diaphragm, assumed to be of v
high acoustic impedance, is assumed to be sufficiently sm
that it can be taken as zero. Geometrical mismatch is t
defined in terms of the ratioR/a.

The additional condition imposed by the rigid boun
aries at the entry to the pipe is then that

]p

]x
50 if x50 and rÞa, ~6!

while the boundary condition across the acoustic flow inle
x50 requires that

v~r !5
U

2pr
d~r 2a! ~7!

whereU is the total acoustic inlet flow andd(r 2a) is the
Dirac delta function. Now]p/]x52 j vrv, so that

]p

]xU
x50

52 j
vrU

2pa
d~r 2a!. ~8!

Combining ~8! with ~2!, multiplying by rJ0(anr /R), and
integrating from 0 toR then gives

knAnMn2k0BM0dn,05
vrU

2p
J0S ana

R D , ~9!

where,7 sinceJ1(an)50 for all n,

Mn5E
0

R

J0
2S anr

R D r dr 5
R2

2
J0

2~an!, ~10!

and dmn is the Kronecker delta function which equals 1
m5n and 0 otherwise. Equation~9! then gives, for the case
nÞ0,

An5
vrU

2pknMn
J0S ana

R D ~11!

and for the casen50.

B5A02
vrU

2pk0M0
. ~12!

Now the measured value of the input impedance is

f

o.
Fletcher et al.: Acoustic impedance measurements
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Zmeas5
p

UU
x50,r 50

5
1

U S (
n50

`

An1BD , ~13!

while the true plane-wave impedance is

Ztrue5
A01B

U
. ~14!

These equations can be combined to give

Zmeas5Ztrue1 (
n51

`
vr

2pknMn
J0S ana

R D , ~15!

and this equation will be the basis of the calculations
follow. A rather similar equation could be derived, followin
the same method, for other probe geometries, as discu
later. Despite the exponential decay of evanescent wa
along the measurement axis, it is found by numerical exp
ration that a large number of modes must be taken into
count to ensure smooth convergence. For the calculation
be reported later, 100 modes were included since the com
tation is quite simple.8 A reasonable result can, however,
achieved with as few as ten modes.

This analysis is inapplicable at frequencies that are h
enough thatk>a1 /R, for then the evanescent modes beg
to propagate and higher modes appear in the reflected w
In practical terms, this occurs in a cylindrical conduit
radiusR for frequencies above about 210/R Hz, whereR is in
meters. The analysis also omits consideration of viscous
thermal losses from the evanescent waves at the plane
terminating the duct atx50. A discussion of this point and
an estimate of the form and magnitude of the resistive e
is given in Sec. V. While, if the end wall is smooth and rigi
the resistive error contributed by these losses is very sm
compared with the imaginary part, its inclusion is found
Sec. VII to be necessary to give a complete measurem
correction.

It is instructive to write the result~15! in terms of di-
mensionless parameters. Since the quantitiesan are dimen-
sionless, it follows from ~4! that we can write kn

5R21f (vR/c), where the functionf can be written down
explicitly, while from ~10!, Mn}R2. Thus ~15! can be ex-
pressed in the form

Zmeas5Ztrue1
j rv

a
GS R

a
,
va

c D , ~16!

where the functionG(x,y) can be written explicitly. As will
be shown below by means of a numerical calculation,
error termZerror5Zmeas2Ztrue in ~16! turns out to be almos
exactly proportional to frequency over quite a large range
the ratioR/a, which implies that

Zerror

Z0~R!
'

j va

c
FS R

a D , ~17!

whereZ0(R)5rc/pR2 is the characteristic impedance of th
pipe being measured, and the functionF(R/a) can be de-
rived from Eqs.~15! and ~16! and can be evaluated numer
cally. The form of this measurement error and its numeri
evaluation will be discussed further in Sec. III.
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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III. A SPECIFIC EXAMPLE

It is interesting to examine the trend of the calculat
results for cases in which the exact solution is known, and
obvious candidate is the simple stopped tube of lengthL and
radiusR.a, for which the input impedance is known to b

Z52 j
rc

pR2
cot~kL!, ~18!

where wall losses are taken into account as in Eq.~5!.
For the specific case calculated, the tube to be meas

was assumed to have a diameter of 53 mm and a lengt
300 mm, while the input annulus was taken to have a dia
eter of 7 mm, this being a very substantial mismatch. T
wall loss magnification factorb of ~5! in the tube being
measured is taken to have the valueb53, which is fairly
typical for tubes of the particular material used. The calc
lated results for the magnitude of the measured impeda
and that of the actual plane-wave impedance are show
Fig. 2. As will be discussed later, it is necessary to inclu
almost 100 terms in the summation in~15! in order to
achieve an accurate result, but this presents no computat
difficulty, and indeed a summation with only ten terms giv
moderate accuracy. The impedance can readily be split
real and imaginary parts in the calculation if desired. T
first higher mode becomes propagating at about 8 kHz in
case of this tube, so the measurement is necessarily lim
to significantly below this frequency. Clearly there is a ve
large discrepancy between the true and measured imped
values even below 3 kHz, so that the measurement in
unadjusted state is of little use unless one is interested sim
in the frequencies of the impedance maxima.

Let the acoustic impedance of the device being m
sured beZsub5Rsub1 jXsub, with appropriate descriptive
subscripts. Then exploration of the reactive part of the m
surement errorXerror5Xmeas2Xtrue as a function of frequency
and of the tube diameter mismatch shows that the erro
quite closely proportional to frequency over the frequen

FIG. 2. Calculated magnitude of the impedance for a closed tube of di
eter 50 mm and length 300 mm, as would be measured with an ann
probe of diameter 7 mm. The broken curve shows the true impeda
assuming a wall loss factor of 3, while the full curve shows the impeda
that would be measured.
2891Fletcher et al.: Acoustic impedance measurements
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range 0–3 kHz. The deviation from proportionality is neg

gible for tubes up to 50 mm in diameter, and amounts to o
about 5% for a 100-mm tube at 3 kHz. This proportional
to frequency means that, to a good approximation, the
pedance error can be thought of as the effect of an iner
impedancejXerror in series with the input to the duct bein
measured. For tube diameters less than about twice tha
the inlet annulus, however, the inertanceXerror is actually
negative and is effectively subtracted rather than added.

Exploration of the trend of the error as the diame
mismatch is varied is shown in Fig. 3, where the quan
plotted isXerror/v. For this calculation the contributions o
100 evanescent modes were included in the calculation, s
this presents no computational difficulty. If only a muc
smaller number of modes, say ten, is included, then
curve, while following the same trend as in Fig. 3, exhib
oscillations as a function of tube diameter. The error is
most exactly proportional to frequency over the measu
ment range 0–3 kHz used, so that the curve in Fig. 3 app
at all frequencies in this range. For large tube diameters,
still below the higher-mode propagation frequency,Xerror/v
→40 Pa s2 m23, which is about equal to the impedance of
short stub tube matching the inlet annulus in diameter
with a length about equal to 0.4 times its radius. This is,
might be expected, comparable to the magnitude of
imaginary part of the radiation impedance for a vibrati
circular disc of this size set in an infinite plane baffle. Int
estingly, the mismatch error passes cleanly through zero f
tube diameter of about 15 mm, about twice the probe in
diameter, and then increases in magnitude again, but w
negative sign, for narrower tubes. The reason for this cha
is that, as the diameter is increased, zeros of the lower-o
Bessel functionsJ0(anr /R) pass successively across the
let annulus so that their excitation, as seen from the mic
phone position atr 50, shifts from negative to positive. Th
mode withn51 is particularly important in this connection

What is important, however, is not the absolute value
the error but rather its magnitude relative to the impeda
quantity being measured. A useful measure of this can

FIG. 3. Calculated frequency-weighted errorXerror/v in the imaginary part
of the impedance~in units of Pa s2 m23! as a function of the diameter of th
sample tube, for an annular probe of diameter 7 mm. The real part o
error is smaller by at least a factor of 10.
2892 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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reached by dividing the frequency-weighted absolute e
Xerror/v of Fig. 3 by the characteristic impedanceZ0(R)
5rc/pR2 of the tube being measured. This frequenc
weighted relative errorXerror/vZ0(R) is shown in Fig. 4 as a
function of tube radiusR. The mismatch range covered is th
same as in Fig. 3. From Fig. 4 it is clear that the relative er
is small for ducts up to about three times the probe annu
diameter, while for ducts of larger diameter the relative er
increases about as the square of the diameter mismatch t
probe. For mismatch ratios larger than about 7 the error is
large that accuracy is severely compromised even after
rection. Note incidentally that, from the form of~17!, the
curve in Fig. 4 is not universal, but must be scaled by
further factorva/c.

IV. ALTERNATIVE PROBE GEOMETRIES

The first geometrical variant that should be considere
the assumption made in the previous analysis that the w
of the inlet annulus is essentially zero and that the diam
of the microphone is also zero. The first of these assumpt
is generally a good approximation, since the diameter of
annulus is typically of order 10 mm while its width is typ
cally only about 0.1 mm. The second assumption is, ho
ever, far from being realized in practice, since the mic
phone diameter is typically about 2 mm, which is a
appreciable fraction of the annulus diameter. The effect
this is that, if the probe is connected to a duct of match
diameter for calibration, the contributions of modes f
which the first radial zero lies within the radius of the micr
phone will be very greatly reduced, since positive and ne
tive contributions will be averaged over the microphone s
face. Since the sharp minimum inXerror shown in Fig. 3 for a
microphone of zero diameter in a tube closely matching
probe diameter is largely due to these high-order modes,
impedance correction implied for this situation is actua

e

FIG. 4. Calculated frequency-weighted relative errorXerror/vZ0 in the
imaginary part of the impedance~in units of seconds! as a function of the
diameter of the sample tube for the case of an annular probe diameter
mm. The real part of the error is smaller by at least a factor of 10. Si
typically v;104 s21, the error is comparable to the value ofZ0 over most
of the diameter range shown for frequencies below about 3 kHz. As
cussed in the text, this curve is not universal but must be further scaled
factor va/c.
Fletcher et al.: Acoustic impedance measurements
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exaggerated, typically by as much as a factor of 2. A deta
analysis will not be given here, but essentially it involv
integration over the area of the microphone, though to a
sonable approximation a similar result is obtained simply
ignoring the contributions of the higher modes. This mat
will be revisited in Sec. VII. As shown in Fig. 4, howeve
the relative correction for tubes with diameter mismatch l
than about a factor of 2 is actually very small, so that
problem is not serious until large mismatches are involv
and a solution for this practical problem is presented in t
section.

As an alternative, consider the geometry illustrated
Fig. 1~b!, in which the measurement microphone is now o
set from the axis defined by the inlet annulus. The analysi
this case proceeds just as before except that allowance
be made for the offset of the microphone. Let us take t
offset to ber 5b for generality. Equation~13! then becomes

Zmeas5
p

UU
x50,r 5b

5
1

U S (
n50

`

AnJ0S anb

R D1BD , ~19!

and ~15! becomes

Zmeas5Ztrue1 (
n51

`
vr

2pknMn
J0S ana

R D J0S anb

R D . ~20!

For the particular case in whichb5a and the micro-
phone is set at a point upon the inlet annulus, the final te
of ~20! contains the factorJ0

2(ana/R), which is always posi-
tive, so that the error term is itself always positive, rath
than becoming negative for values ofR less than about 3a,
as calculated for the central microphone withb50. Other
geometries are similarly easily calculated.

Another probe geometry of interest is that in which t
microphone is set forward of the plane of the injection a
nulus by a small amountd. Clearly, if d.R, then most of the
evanescent waves will have decayed to negligible amplit
at the microphone position and will not influence the me
surement. The impedance that is measured, however,
then not be the true impedance at the inlet port but rather
at the displaced position. While calculation of the necess
correction is possible, its value depends upon the impeda
being measured, so that this is not a realistic approach f
general-purpose impedance probe if the diameter mism
is large.

In real probe geometries, of course, the microphone
ameter is not zero, and this must be taken into accoun
integrating the sensed pressure signal across the microp
area. In most cases this will slightly reduce the value of
necessary correction, since the higher evanescent modes
wavelength smaller than the microphone diameter will ha
a much reduced effect.

V. RESISTIVE CORRECTION

There is, however, one significant thing that has be
omitted from the analysis detailed so far, and that is
possibility of a resistive component to the error contribu
by the evanescent modes. Because all the acoustic mo
associated with these modes is localized within a distanc
aboutR/an of the entry plane, and because there is a sign
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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cant component of acoustic motion that is tangential to t
plane, certain losses are to be expected. The magnitud
these losses should be about inversely proportional to
boundary layer thickness, and should thus vary asv1/2.

In a formal sense, these effects lead to the argument
the Bessel functions in Eq.~2! being complex rather than
real, but this formal analysis has not been carried out beca
there will inevitably be a significant correction factor th
depends upon the roughness of the surface of the inlet pl
including the microphone, and the possible presence of sh
edges. Since the correction due to this effect is small co
pared to the reactive component of the error already con
ered, it will therefore be left as a small adjustable parame

VI. APPLICATION TO A CALIBRATED PROBE

Researchers at this laboratory have developed an ac
tic impedance probe of the general type shown in Fig.
though with several geometrical variations, and have devi
a calibration procedure that makes its results very accu
for inlet tubes of specified diameter.9,10 In the calibration
procedure, the probe is connected to an effectively se
infinite pipe ~actually 40–200 m in length, depending upo
the pipe diameter, so as to produce an attenuation of abou
dB in the reflected wave for the frequency range of intere!
closely matching it in diameter. The flow annulus is fed w
a sound pressure signal made up of a very large numbe
independently adjustable components with a frequency s
ration of typically about 2.7 Hz. The response of t
computer-controlled pressure measurement system is
adjusted in phase and amplitude so that both these meas
quantities are constant over the frequency range of inter
~There are actually some experimental subtleties about
that need not be considered here.! The acoustic volume flow
is then taken to be this pressure divided by the character
impedancerc/S of the effectively semi-infinite calibration
tube, and these settings are then used in subsequent mea
ments. This procedure cancels out all evanescent mode
fects as well as all irregularities in phase or amplitude of
injected flow or the microphone response for this tube dia
eter. Measurements on objects with an input duct clos
matching the calibration tube in diameter are theref
highly accurate.

It is clearly impractical to have such very long calibr
tion tubes of all diameters available, so that there are res
tions on the applicability of this calibration technique. If th
probe is calibrated on a tube closely matching the inlet
nulus in diameter, as is usual, then the calibration proced
effectively adds an inertive impedance in order to cancel
the negative imaginary part of the impedance error shown
Fig. 3. If this calibrated probe is then used to make meas
ments on an object with a much larger inlet pipe diameter
additional positive error will be introduced into the imag
nary part of the measured impedance. The effect of the
rection will then be effectively added to the error. This com
plication can, however, be largely removed by programm
the measurement system to subtract off a positive imagin
impedance of magnitude appropriate to correct for the diff
ence between the errors for the measurement tube and
calibration tube.
2893Fletcher et al.: Acoustic impedance measurements
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Fortunately, the laboratory for which the impedan
probe was designed studies the acoustics of musical w
instruments and of the vocal tract, so that only a narr
range of tube diameters is involved, and a set of calibra
pipes with appropriate diameters~from 3 to 26 mm! and
lengths between 42 and 197 m has been installed with
undue expense.

VII. EXPERIMENTAL VERIFICATION

As a check with experiment, an impedance probe w
the geometry shown in Fig. 1~a!, with inlet annulus mean
diameter 6.5 mm and width 0.1 mm and with a centra
located microphone of diameter 1.9 mm was calibrated o
long tube of diameter 7.8 mm, using the procedure pre
ously described.9,10When this probe was used to measure
magnitude of the impedance of a rigidly stopped brass p
of diameter 48 mm and length 300 mm, the results were
shown in Fig. 5. The magnitude and phase of the impeda
were measured at each point, and the measurement poin
shown in the figure. The characteristic impedancerc/S for
this pipe is about 0.23 MPa s m23, and the minima should be
located centrally between successive maxima, so that
clear that the raw measurements are greatly in error.
resemblance of the graph to that calculated in Fig. 2 is cl
The poor signal-to-noise ratio apparent below about 300
is the result of the peculiar measurement configuration c
sen for this test. Normally a much smaller mismatch in
ameter would have been chosen for the measurement,
the concentric geometry used here for the test transmi
much larger vibration signal to the microphone than does
off-axis geometry normally used in this particular probe.9,10

To correct the measurements, the errors for both the c
bration tube and the measurement tube must be consid
To further refine the correction, use can be made of the s
ing law ~17! since the actual diameter of the inlet annul
was 6.5 mm rather than the 7 mm used to calculate Fig
This involves small changes to both the ratioR/a and the
factorva/c, but these will be neglected here. It is first not

FIG. 5. Measured magnitude, without correction, of the impedance o
stopped tube 300 mm long and 48 mm in diameter, as measured usin
impedance probe described, with an inlet annulus diameter of 6.5 mm,
brated on a tube of diameter 7.8 mm. Individual measurement points
shown.
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from Fig. 3 that the correction for the calibration pipe
negative, since its diameter is close to that of the inlet an
lus. Its value from Fig. 3, which assumed a microphone
zero diameter, is about230j v Pa s m23. As discussed
briefly in Sec. IV, however, the fact that the micropho
diameter is actually nearly 2 mm eliminates most of the c
tribution of modes withn.10 so that the real correction i
only about half this much, or about215j v Pa s m23. The
large pipe, then, is about seven times the diameter of
annulus, so that the equivalent value of diameter in Fig. 3
about 45 mm, for which the correction is positive and eq
to about 30j v Pa s m23. Since the probe was calibrated so
to give zero error on the narrow calibration pipe, it is t
difference between the two errors, and thus ab
45j v Pa s m23, that must be used in correcting the measu
ment error on the wide pipe. A certain amount of latitude
allowable when making this correction, however, since
effect of nonzero microphone diameter and the slight diff
ence in annulus diameter were only approximately allow
for. A value of 41j v Pa s m23, which is quite close to the
estimate of 45j v Pa s m23, gives a well-corrected result fo
the frequencies of the impedance minima, as shown in Fig

If only the imaginary contribution to the correction
considered, however, then the impedance minima are ra
shallow, and it is necessary to include the resistive contri
tion as well. As discussed in Sec. V, it is difficult to estima
the magnitude of this correction, so that trial-and-error is
best approach. In the present case it turns out to be nece
to subtract a resistive correction of 200v1/2Pa s m23 in order
to achieve the appropriate symmetry between impeda
maxima and minima, as shown in Fig. 6. Over the frequen
range considered, this resistive correction is less than 10%
the inductive correction and affects only the sharpness of
impedance minima.

The correction for the case illustrated in Figs. 5 and 6
an extreme one, and would not ordinarily be used beca
the noise in the measurement then becomes noticeabl
would, however, be adequate if an approximate measurem
were required and only a narrow probe were availab
Rather than relying upon the calculations outlined in t

a
the
li-
re

FIG. 6. Measured magnitude of the impedance of the stopped tube of F
when corrected by subtracting a series impedance of (200v1/2

141j v) Pa s m23.
Fletcher et al.: Acoustic impedance measurements
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present paper, however, the best method for determining
applying the necessary correction is probably as follows:

~1! Calibrate the probe in the usual way on a semi-infin
pipe.

~2! Use this calibrated probe to measure the impedance
stopped pipe with diameter equal to that of the objec
be measured and of such a length that it shows sev
impedance maxima and minima in the proposed m
surement range. Record the results.~The maxima will be
correct but the minima will be displaced.!

~3! Write a computer program to subtract from the measu
impedance a correctionAv1/21 jBv, with A and B as
real constants andA.0, and display the result. Vary th
magnitude ofB until the minima are as nearly as po
sible half-way between the maxima; then vary the m
nitude of A until the envelope of the minima matche
that of the maxima. If a very wide frequency rang
and/or a very large geometrical mismatch is involve
then the correction can be of the formAv1/21 jBv(1
1Cv) with uCvu!1 at the upper frequency limit.

~4! Record this correction and use it to correct all measu
ments made on devices coupled to the impedance p
through tubes of that diameter.

VIII. CONCLUSIONS

A method has been described that allows calculation
the errors introduced in acoustic impedance measurem
when there is a geometrical mismatch, particularly a s
mismatch, between the impedance probe and the inlet tub
the device being measured. While this calculation has b
carried out for the simplest and most symmetrical geome
cal mismatch situations, the methods can clearly be exten
to apply to more complex cases, including those in which
microphone is offset both from the axis of the probe a
from its inlet plane, or in which the geometry has a symm
try other than circular. Comparison with experiment sho
that even quite extreme mismatches in diameter can be
rected for in this way.

This correction approach is not advocated when pre
measurements are required, since the experimental nois
the measurements is then exaggerated when the large s
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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inductance is subtracted. For such measurements, a pro
comparable diameter should be used, and this should be
brated using an effectively infinite pipe closely matching
diameter the input diameter of the object under test.

While this analysis has been performed for the case
an acoustic probe using a high-impedance inlet duct, a v
similar result would be obtained for the case of a probe in
form of a standard standing-wave impedance tube. Ther
however, an additional complication in this case since
input flow cannot be assumed to be uniform across the wh
inlet tube—the influence of evanescent modes within t
inlet tube itself must therefore be taken into account.

An ideal design of impedance probe that would ov
come these problems would be one in which, instead of
ing a localized acoustic flow inlet in the form of a ver
narrow annulus or other convenient geometry, the flow w
injected instead through a high-impedance porous-solid p
extending across the whole area of the inlet to the ob
being measured. Even in this case, however, a calibra
procedure using an effectively infinite pipe is desirable
order to compensate for any possible frequency depend
of the flow impedance or of the associated electronic equ
ment.
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