LETTERS TO THE EDITOR

A Self-Consistent Solution to the Poisson-Boltzmann Equation
Including the Equilibrium of the Solvent

Standard analytic formulations of the electric double
layer in a solution treat the solvent as a dielectric contin-
wum and so the equilibrium of the solvent is not imposed
as a condition. In such formulations, the ions are treated
as an ideal gas—it is assumed that the ionic volume is
negligible. In this letter we explicitly include the pressure
in the solution and the volumes of ions and solvent, and
we report self-consistent expressions for the equilibrium
concentrations of counterions and solvent. Standard for-

~ mulations also use expressions for the entropy of the ions
which are appropriate to an ideal gas rather than a solution;
in this calculation we use the expressions appropriate for
dilute solutions. We show that the size of these two cor-
rections can be comparable with that calculated for the
effect of dielectric saturation.

In common derivations of the distribution of ions near
a charged interface (8), the treatment of the solvent as a
continuum implicitly neglects the force exerted by the
solvent on the ions. The condition of electrochemical
equilibrium is imposed on the ions, but the condition of
chemical equilibrium for the solvent is not applied.

This omission can be important. Near the surface the
(total) ion concentration varies with position, and so too
must the concentration of the solvent. If the concentration
of the solvent varies in space, and its chemical potential
does not, then the pressure must vary: that is to say, there
is a position-dependent osmotic pressure. If the ionic vol-
ume is neglected, this pressure is exactly equal to the Max-
well stress, but in a general treatment the variation in pres-
sure must affect the distribution of both ions and solvent.
Previous studies have given an expression for the osmotic
pressure variation assuming a distribution of ions obtained
by neglecting the solvent (e.g., Bolt and Miller (3)), but
these authors did not consider the effect on the ion dis-
tribution of this pressure variation. To our knowledge there
is no previous treatment which seeks self-consistent so-
lutions for the equilibrium of both solute and solvent.

Further, in most standard formulations, the entropy
term in the electrochemical potential of the ions is given
as kT In ¢, where ¢ is concentration expressed as the
number of molecules per unit volume and k is Boltzmann's
constant. k In ¢ is the entropy per molecule of an ideal
gas, rather than that of a solute. In this analysis we use
the expression from dilute solution theory in which the
entropy per molecule is written as k In X where X is the
number fraction or mole fraction.'

! The use of Raoult’s law for solutions is empirical:
Measurements of vapor pressure and freezing point
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The correction due to the inclusion of pressure under
the equilibrium condition and that due to the use of the
solution form of the entropy are of comparable order. The
aim of this study is to show the size of these corrections.
For simplicity we shall ignore several other corrections 10
the Poisson-Boltzmann equation which have already been
discussed by other authors, such as the effects of excluded
volume (1), dielectric saturation (5), the ionic concentra-
tion on the dielectric constant (6), and dielectric polar-
ization (2). These are reviewed by Demoiseau (4).

We shall consider the case of a highly charged surface
in the presence of counterions only. Such a case arises
when the ions are provided only by dissociation from the
surfaces. A similar correction however would apply to a
system containing ions of both charge. The effect of vari-
ation in pressure is large only when the Poisson-Boltzmann
equation is strongly nonlinear, i.e., in the region near a
highly charged surface where the co-ion concentration ap-
proaches zero.

Equilibrium of the counterion (subscript i) and water
(subscript w) require

pi=pf + kTln X; + pv; + q¢ (1]
and
pw = us + kTln X,, + pow, [2]

where p is the pressure, v is the partial molecular volume,
g is the ionic charge, and ¢ is the electrostatic potential.
The pressure includes the Maxwell stress and, in the limit
where v; approaches zero, our results reduce to the standard
formulation and the pressure approaches p = {eE? where
¢ is the permittivity of the solution and E is the electric
field.

In the absence of co-ions, Poisson’s equation in one
dimension becomes

d¢

d_y’ = —gci/fe, 3]

where ¢; is the concentration of ions. We assume ¢ to be
independent of concentration and equal to that of water.
(If the solvent molecules and the ions have different po-
larizabilities, then they will experience a differential force
due to the inhomogeneous field. The effect of dielectric
polarization has been treated by Bolt (2).)

depression are better fitted by S = k In X than by § = k
*Ine(7).
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From c;v; + cwty = | it follows that

X| =1=X,= ‘-‘il‘m”l + ciluy - Ul)}- [4]

If vy, < 1. ¢, may be expanded as a power series about its
value ¢ at some reference position y = 0. Quadratic and
higher order terms will be discarded. Making this approx-
imation and using [4], [1] and [2] become

w = u® + kTInvee + kTey(v — va) + pv, + g [5)

and
e = uo — kTuu¢ + pow. [6]

We shall put the zero of the coordinate system y = 0
where the field is zero, and where the counterion concen-
tration is ¢; = ¢ (10 zeroth order), and the surface at y
= L. It may be verified by substitution that the following
are solutions to [3], [§], and [6]. correct to first order in
LY o

exp(—q¢/kT) =

-
COSKY
i 2
v tan-ky + xy tan xy
c(u. - —“] AT m
2 Cos k)
and
¢ . v\ 3tanisy + kytan gy + 2
Ci=—g—= =}V — S .
COS kY 2 cos k)
(8]

where k = Vg?c/2kTe is the reciprocal of the Debye length
(1o zeroth order) at y = 0. The calculations are given in
greater detail by Demoiseau (4).

We impose the boundary condition that all the coun-
terions are contained in 0 < y < L. This corresponds to
the cases of

(i) two like charged surfaces at separation 2L, in which
the osmotic pressure determines the force of interaction
(8);or

(ii) a film of solution on a dissociating surface whose
thickness L is determined by the relative humidity of the
surrounding atmosphere and the extent of dissociation at
the surface ( 3). In this case, vapor pressure depression due
to the concentration at the solution-vapor interface (where
the hvdrostatic pressure is zero) accounts for the relative
humidity being less than 100%.

In both cases the activity of the solvent at y = 0 determines
the chemical potential of the solvent and electroneutrality

relates the surface charge density to the concentration ¢
at y = 0. Integration of charge density yields

-
—a/q = (¢/&)tan kL — e (3 = v_“)(z tanr.
4x v;

+ xLtan® kL + 3tan &L + «L).

To compare the results [7] and [8] with those of the
Verwey and Overbeck analysis, the partial volume of water
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FiG. 1. The ordinate is C/C' — | where C is the con-
centration at the solid surface calculated using the analysis
given in this paper and where ' is the same quantity
calculated using standard double-layer theory. The abscissa
is the relative humidity of an atmosphere in equilibrium
with the solution, so the results are immediately applicable
to a surface layer in equilibrium with vapor. To apply the
results to the solution between two planar surfaces, the
abscissa is the activity of water at the plane of symmetry.

was taken as vy, = 3 ¥ 10" m?, the volume of a hydrated
ionas v, =3 X 107 m? and the dielectric constant of
the solution as 78. Figure | plots the correction; i.e., il
plots (C/C' = 1) where C is the concentration at the y
= [ plane as calculated above and C" is the same quantity
calculated using the analysis of Verwey and Overbeek. The
surface charge densities chosen are 0.05, 0.02, and 0.002
Cm™>

Qualitatively, the results may be explained as follows.
The high ion concentration near the surface implies a lower
concentration of water near the surface. Water molecules
diffuse into this region, establishing the higher pressure
required for equilibrium of water. The gradient in pressure
causes a small redistribution of ions away from the surface,
and so the concentration of ions is lower than that cal-
culated by ignoring this effect. The errors introduced in
concentration and chemical potential by ignoring the ef-
fects considered in this study are of the order of several
percent for highly charged surfaces with typical ions. This
is larger than the correction introduced by the consider-
ation of dielectric saturation effects (5). That these cor-
rections are considerable here in one-dimensional geometry
suggests that consideration of osmotic pressure and use of
the entropy term from solution theory would make a sub-
stantial change 10 calculations in which three-dimensional
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variation in concentration is permitted and where the local
variation in total concentration is rather greater than that
given above.

Nevertheless, for many applications, the disadvantages
of using more complicated analyses (such as Eqs. [7] and
[8]) will outweigh the improved accuracy, especially in
view of the possibly larger errors introduced by the as-
sumptions of mean field theory and “smeared out” charge.
The knowledge that this correction is nonnegligible may
be of most use in molecular dynamics or Monte Carlo
calculations, where the inclusion of the pressure term
would be proportionally a small complication in the al-
gorithm.
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