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Abstract

Although current global warming may have a large anthropogenic component, its
quantification relies primarily on complex General Circulation Models (GCM’s)
assumptions and codes; it is desirable to complement this with empirically based
methodologies. Previous attempts to use the recent climate record have concentrated on
“fingerprinting” or otherwise comparing the record with GCM outputs. By using CO:
radiative forcings as a linear surrogate for all anthropogenic effects we estimate the

total anthropogenic warming and (effective) climate sensitivity finding: AT, = 0.87+0.11 K,
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Axcorerr = 3.08 £0.58 K. These are close the IPPC AR4, AR5 values ATy, = 0.74+0.18 K
and Ay o, = 1.5 - 4.5 K (equilibrium) climate sensitivity and are independent of GCM
models, radiative transfer calculations and emission histories. We statistically formulate
the hypothesis of warming through natural variability by using centennial scale probabilities
of natural fluctuations estimated using scaling, fluctuation analysis on multiproxy data. We
take into account two nonclassical statistical features - long range statistical dependencies
and “fat tailed” probability distributions (both of which greatly amplify the probability of
extremes). Even in the most unfavourable cases, we may reject the natural variability
hypothesis at confidence levels > 99%.

1. Introduction

Well before the advent of General Circulation Models (GCM’s), [Arrhenius, 1896],
proposed that greenhouse gases could cause global warming and he even made a surprisingly
modern quantitative prediction. Today, GCM’s are so much the dominant tool for
investigating the climate that debate centers on the climate sensitivity to a doubling of the
CO, concentration which - whether “equilibrium” or “transient” - is defined as a purely
theoretical quantity being accessible only through models. Strictly speaking - short of a
controlled multicentennial global scale experiment - it cannot be empirically measured at all.
A consequence is that not enough attention has been paid to directly analyzing our ongoing
uncontrolled experiment. For example, when attempts are made to test climate sensitivity
predictions from the climate record, the tests still rely on GCM defined “fingerprints” (e.g.
[Santer et al., 2013] or the review in section 9.2.2 of 4™ Assessment Report (AR4) of the
International Panel on Climate Change (IPCC) or on other comparisons of the record with

GCM outputs (e.g. [Wigley et al., 1997], [Foster and Rahmstorf, 2011 ]). This
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situation can easily lead to the impression that complex GCM codes are indispensible
for inferring connections between greenhouse gases and global warming. An
unfortunate side effect of this reliance on models is that it allows GCM skeptics to bring
into question the anthropogenic causation of the warming. If only for these reasons, it
is desirable to complement model based approaches with empirically based methodologies.
But there is yet another reason for seeking non-GCM approaches: the most
convincing demonstration of anthropogenic warming has not yet been made - the
statistical comparison of the observed warming during the industrial epoch against the
null hypothesis for natural variability. To be as rigorous as possible, we must
demonstrate that the probability that the current warming is no more than a natural
fluctuation is so low that the natural variability may be rejected with high levels of
confidence. Although the rejection of natural variability hypothesis would not “prove”
anthropogenic causation, it would certainly enhance it's credibility. Until this is done,
there will remain some legitimate grounds for doubting the anthropogenic provenance
of the warming. Such statistical testing requires knowledge of the probability
distributions of natural fluctuations over roughly centennial scales (i.e. the duration of
the industrial epoch). To achieve this using GCM’s one would need to construct a
statistical ensemble of realistic pre-industrial climates at centennial scales.
Unfortunately the GCM variability at these (and longer) scales under natural (especially
solar and volcanic) forcings is still the object of active research (e.g. “Millennium”
simulations). At present, the variability at these long time scales is apparently
somewhat underestimated ([Lovejoy, 2013]) so that it is premature to use GCM’s for

this purpose. Indeed, at the moment, the only way of estimating the centennial scale
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natural variability is to use observations (via multicentennial length multiproxies) and
a (modest) use of scaling ideas.

The purpose of this paper is thus to establish an empirically based GCM-free
methodology for quantifying anthropogenic warming. This involves two parts. The
first part is to estimate both the total amplitude of the anthropogenic warming and the
(empirically accessible) “effective” climate sensitivity. It is perhaps surprising that this
is apparently the first time that the latter has been directly and simply estimated from
surface temperature data. Two innovations were needed. First, we used a stochastic
approach that combines all the (nonlinear) responses to natural forcings as well as the
(natural) internal nonlinear variability into a single global stochastic quantity Trae(t)
that thus takes into account all the natural variability. In contrast, the anthropogenic
warming (Tanen(t)) is treated as deterministic. The second innovation is to use the CO>
radiative forcing as a surrogate for all anthropogenic forcings. This includes not only
the relatively well understood warmings due to the other long lived Green House Gases
(GHG’s) but also the poorly understood cooling due to aerosols. The use of the CO;
forcing as a broad surrogate is justified by the common dependence (and high
correlations) between the various anthropogenic effects due to their mutual
dependencies on global economic activity (see fig. 2 a, b below).

The method employed in the first part (section 2) leads to conclusions not very
different from those obtained from GCM’s and other approaches. In contrast, the main
part of the paper (section 3), outlines the first attempt to statistically test the null
hypothesis using the statistics of centennial scale natural fluctuations estimated from

pre-industrial multiproxies. To make the statistical test strong enough, we use scaling
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ideas to parametrically bound the tails of the extreme fluctuations using extreme (“fat-
tailed”, power law) probability distributions and we scale up the observed distributions
from 64 to 125 years using a scaling assumption. Even in the most unfavourable cases,
we may reject the natural variability hypothesis at confidence levels > 99%. These
conclusions are robust because they take into account two nonclassical statistical features
which greatly amplify the probability of extremes - long range statistical dependencies and

the fat tails.

2. A stochastic approach:

2.1 A simple stochastic hypothesis about the warming

Within the scientific community, there is a general consensus that in the recent epoch
(here, since 1880) that anthropogenic radiative forcings have dominated natural ones so that
solar and volcanic forcings and changes in land use are relatively unimportant in explaining
the overall warming. This conclusion applies to centennial scales but by using fluctuation
analysis on global temperatures it can be extended to somewhat shorter time scales (=20-30
years for the global average temperature [Lovejoy et al., 2013b]).

Let us therefore make the hypothesis that anthropogenic forcings are indeed dominant
(skeptics may be assured that this hypothesis will be tested and indeed quantified in the
following analysis). If this is true, then it is plausible that they do not significantly affect the
type or amplitude of the natural variability so that a simple model may suffice:

Tglz)be(t):Tantl1(t)+Tnal(t)+€(t) (1)

Toiope 1s the measured mean global temperature anomaly, 7., is the deterministic

anthropogenic contribution, 7, is the (stochastic) natural variability (including the responses
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to the natural forcings) and € is the measurement error. The latter can be estimated from the
differences between the various observed global series and their means; it is nearly
independent of time scale [Lovejoy et al., 2013a] and sufficiently small (= £0.03 K) that we
ignore it.

While eq. 1 appears straightforward, it requires a few comments. The first point is that
the anthropogenic contribution 7,,,(f) is taken to be deterministic whereas the natural
variability 7,,(¢) is assumed to be stochastic. The second point is that this definition of
T,.(f) includes the responses to both volcanic, solar and any other natural forcings so that
T,.(f) does not represent pure “internal” variability. While at first sight this may seem
reasonable, it is actually quite different from the usual treatments of solar and volcanic
forcings and the corresponding responses which are deterministic and where stochasticity is
restricted to (“pure”) internal variability (see e.g. [Lean and Rind, 2008]). One of the
reasons for the classical approach is that there is enough data to allow one to make
“reconstructions” of past forcings. If they can be trusted, these hybrid model - data products
allow GCM’s to model and isolate the corresponding responses. However, we suspect that
another reason for these deterministic treatments — especially in the case of volcanic forcing
— is that the intermittency of the process is so large that it is often assumed that the
generating process could not be stationary. If it were true that solar and volcanic processes
were nonstationary then their statistics would have to be specified as functions of time. In
this case, little would be gained by lumping them in with the internal variability which even
in the presence of large anthropogenic forcing - is quite plausibly stationary since — as
assumed in GCM climate modelling —the effect of anthropogenic forcings is essentially to

change the boundary conditions but not the internal dynamics.
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However, it is quite likely that the basic solar and terrestrial stochastic processes
responsible for variable solar output and volcanic activity are unchanged over the last
millennium, yet that the corresponding stochastic realizations of these processes are highly
intermittent, scaling and multifractal giving a spurious appearance of nonstationarity
(multifractals have nonclassical scaling behviours: unlike quasi-Gaussian processes, each
statistical moment is characterized by a different exponent and there are strong resolution
dependencies). While the basic analyses were presented in [Lovejoy and Schertzer,
2012c] we revisit and reanalyze them here. Consider fig. 1a which shows the [Gao et al.,
2008] volcanic reconstruction from 500 - 2000 A.D. along with three realizations of a
multifractal process with identical statistical parameters (estimated by the analysis of
the reconstructions in [Lovejoy and Schertzer, 2012c]), calibrated so that the overall
process (but not each realization!) has the observed mean. It is very hard to
distinguish the reconstruction from the three independent realizations. Since by
construction, the multifractal process is stationary, this strongly supports the
hypothesis that the mechanism behind terrestrial volcanism during the last 1500 years
has not changed. Similar conclusions apply to the solar output (excluding the 11 year
cycle) although - since its intermittency is much smaller- this is perhaps less surprising.
Further support for this comes from the fluctuation analysis in fig. 1b which compares
the RMS fluctuations of the reconstruction over the (mostly) pre-industrial period
1500-1900 and the industrial period 1880-2000 with the RMS fluctuations of the
corresponding multifractal simulations. We see that although the amplitude of the
industrial period fluctuations is a factor 2 lower than for the pre-industrial period,

that this is well within what is expected due to the (very high) natural variability of
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volcanic processes (note that the fluctuations isolate the variability as a function of time
scale, they are independent of the absolute level of the forcing; for more analysis, see
[Lovejoy and Schertzer, 2012c] and [Lovejoy et al., 2014]). Finally, fig. 1c shows the
corresponding analyses for the volcanic reconstruction as well as two solar
reconstructions, with the same basic conclusions: they may all be considered stationary
and there is nothing unusual about the statistics in the recent epoch when compared to
the pre-industrial epoch. In any event, we shall see below that eq. 1 can be justified ex-
post-facto by empirically estimating 7, and verifying directly that it has the same industrial

and pre industrial statistics.
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Fig. 1a: The 1500 year [Gao et al., 2008] volcanic reconstruction of the radiative
forcing (over the period 500 - 2000 A.D.) along with three multifractal simulations with
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the measured parameters (C1 = 0.2, H = -0.3, o = 1.8; parameters estimated in [Lovejoy
and Schertzer, 2012c]). The simulations differed only by their random seeds and were
calibrated to have the same average forcing value (0.15 W/m?). The fact that the
reconstruction is essentially indistinguishable from these statistically stationary
multifractal simulations strongly supports the hypothesis that the basic volcanism
responsible for eruptions over this period is constant. The reconstruction is in the
upper right, the others are “fakes”.
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0.0 10°
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Fig. 1b: The RMS fluctuations for the [Gao et al., 2008] reconstruction (green, thick) for
the period 500-2000 (solid) and 1880-2000 (dashed; see fig. 1c for the slightly different
curve for the period 1500-1900). The fluctuations over a lag At are defined by the
difference of the average over the first and second halves of the interval (“Haar”
fluctuations, see section 3.1). Also shown is the ensemble average (thin black line) of
ten realizations of the multifractal process with the fig. 1a parameters. The thin dashed
black lines indicate the one standard deviation bounds of the log of the RMS
fluctuations estimated from the realization to realization variability for 500 year
simulated segments. The thin red lines are for the bounds for 100 year segments (they
are wider since the variability is less averaged out than for the 500 year bounds).

The wide bounds indicated by the one standard deviation limits show that the
variability of the process is so large that in spite of the fact that the RMS amplitude of
the volcanic forcing over the industrial period is roughly a factor = 2 lower than over
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the pre-industrial period (compare the dashed and solid green lines), that it is
nevertheless generally within the one standard deviation bounds (red) of the stochastic
multifractal process (i.e. the dashed green line generally lies between the thin red lines).
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Fig. 1c: The RMS radiative forcing fluctuations for the [Gao et al., 2008], volcanic
reconstruction (since 1500) as well as the same from sunspot based solar
reconstructions [Wang et al., 2005], [Krivova et al., 2007] (from 1610). The full lines
are for the period up to 1900, the dashed lines for the period since 1880. One can see
that the industrial and preindustrial solar fluctuations are of nearly the same. In
contrast, the amplitude of the volcanic forcing fluctuations have decreased by a factor
=2 in the recent period (note that this does not imply a change in the amplitude of the
forcing itself). For a more complete analysis of the fluctuations over the whole period,
see [Lovejoy and Schertzer, 2012c].

2.2 CO; radiative forcing as a linear surrogate for anthropogenic effects
The first step in testing eq. 1 is to empirically estimate 7,,,. The main contribution is

from CO,, for which there are fairly reliable reconstructions from 1880 as well as from

10
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reliable in situ measurements from Mauna Loa and Antarctica from 1959. In addition, there

is general agreement about its radiative forcing (Rr) as a function of concentration pco.:

Ry co, = Rp 24c0,108, (pco2 /Pco, ,pre) . Rrzico, =3TW /m? Pco, pre =277 ppm @)

where Rr 2oz 1s the forcing for CO, doubling; the basic logarithmic form is a semi-analytic
result from radiative transfer models, the values of the parameters are from the ARA4.
Beyond CO,, the main other anthropogenic forcings are from other long-lived greenhouse
gases (warming) as well as the effect of aerosols (cooling). While the reconstruction of the
global GHG forcing since 1880 is reasonably well estimated, that is not the case for aerosols
which are short lived, poorly mixed (regionally concentrated), and whose effects (especially
the indirect ones) are poorly understood (see below).

However, all the key anthropogenic effects are functions of economic activity, the
CO; levels provide a convenient surrogate for the latter (over the period 1880-2004, log>pco:
varies by only =0.5 — half an octave in pco. - so that pco, and log>pco. are linear to within

+1.5% and there is not so much difference between using pco» or Rrcoz as a surrogate). The

strong connection with the economy can be seen using the recent [Frank et al., 2010] CO;
reconstruction from 1880-2004 to estimate logz(pw2 /pcoz,m) , fig. 2a shows its

correlation with the global Gross Domestic Product (GDP; correlation coefficient 7rrcozcpp
= 0.963). Also shown is the annual global production of sulfates which is a proxy for the
total (mostly sulfate) aerosol production. The high correlation coefficient (v rrcozsuifure =

0.983) indicates that whatever cooling effect the aerosols have, that they are likely to be

roughly linear in logz(pw2 Pco, ,m). Also shown in the figure (using data from [Myhre et

al., 2001]), is the total forcing of all GHG’s (including CO,); we find the very high

11
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correlation rgpcozrrere = 0.997. This justifies the simple strategy adopted here of
considering Rrco2 to be a well measured linear surrogate for Rpgu. (i.e. the two are
considered to be equal to within a constant factor).

Concentrating on the total GHG radiative forcing (Rrcuc) as well as the total
anthropogenic RF (including aerosols, Rr..;) we present fig. 2b. We see that Rrco, and
Rrgne are closely related with regressions yielding:

Ry gy =—0.190£0.019+(1.793£0.027)R, ¢, 3)

(as in fig. 2a, rrrcozrrene = 0.997) so that Rrco, may be considered “enhanced” by the other
GHG by = 79%. Although ozone, biomass and other effects contribute, the main additional
contribution — and uncertainty - in the total anthropogenic Rggum, is from the direct and
indirect cooling effects of aerosols, and is still under debate. Recent estimates (for both
effects) are =~ -1.2 (AR4), -1.0 W/m?, [Myhre, 2009] and ~ -0.6 W/m?, [Bauer and Menon,
2012] (all with large uncertainties). Using the Mauna Loa estimate for pco, in 2012 (393.8

ppm, http://co2now.org/), these estimates can be compared to =~ 1.9 W/m?* for CO, and ~

3.1 W/m® for all GHG (the above relation). Using the Ry .. data in [Myhre et al., 2001]
we obtain:

Ry = 0.034 £0.033+(0.645+0.048) R, ,, (4)

Fanth
with 7cozann = 0.944 (fig. 2b). This is tantamount to assuming -1.5 W/m? for aerosol
cooling at the end of the [Myhre et al., 2001] series (1995). If the most recent cooling
estimates (Bauer and Menon, 2012]) are correct (-0.6 W/m?), the amplitude of the
cooling is diminished by 60%, so that in eq. 4 we obtain a proportionality constant =

1.25 rather than 0.645.

12
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Fig. 2a: This shows the annual world sulfate aerosol production from 1880-1990 (top, pink,
from [Smith et al., 2004]), the total Greenhouse Gas radiative forcing from 1880-1995
(orange, from [Myhre et al., 2001], including CO,), and the world Gross Domestic Product
(GDP, 1880-2000, blue, from J. Bradford DeL.ong of the Department of Economics, U.C.
Berkeley:

http://holtz.org/Library/Social %20Science/Economics/Estimating%20World %20GDP%?20by
%?20DeLong/Estimating%20World%20GDP .htm) all nondimensionalized by their maximum
values (6.9x107 metric tons/yr, 2.29 W/m?, $4.1x10" respectively). The regression lines
have slopes corresponding to an increase of 2.8x10® metric tons of sulfate for each CO,
doubling, and an increase of GHG forcing by 6.63 W/m’ for each CO, doubling, an increase
of GDP by $1.1x10" for every CO, doubling. The correlation coefficients are 0.983, 0.997,
0.963 for sulfate production, total GHG forcing and GDP respectively.
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Fig. 2b: Over the period 1880-1995, the relationship between the radiative forcing of
CO2 (R, coz ), the radiative forcing of all the long lived Greenhouse Gases (including CO2:
Rr, cuc) and the total radiative forcing of all the anthropogenic emission including
aerosols; data from [Myhre et al., 2001]. For reference, current (2012) Rrcoz is
estimated as 1.9 W/m2. The slopes and correlation coefficients are: 1.79 and 0.997
(top) and 0.645 and 0.944 (bottom).

2.3 The instrumental data and the effective climate sensitivity

If we take Rr,co2 to be a well-measured linear surrogate for R (1.e. T, < Ry ¢o,)
we can define the “effective” climate sensitivity A to a doubling of CO; by:

T (1) = Aarcor e 108, (pco2 (t)/ Pco, ,pre) (5)
In order to empirically test eq. 1, it therefore suffices to perform a regression of Tgipe ()

against logz(pw2 (t)/pcoz,p,e); the slope yields A, oy and the residues 7T,.(7). As

14
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mentioned above, empirical estimates of the annually, globally averaged surface
temperatures do not perfectly agree with each other, the differences between the series may
be used to quantify the uncertainty in the estimates. For example, in this analysis, we used
data over the period 1880 - 2008 from three sources: the NOAA NCDC (National
Climatic Data Center) merged land, air and sea surface temperature dataset
(abbreviated NOAA NCDC below), on a 5°x5° grid [Smith et al., 2008], the NASA GISS
(Goddard Institute for Space Studies) dataset [Hansen et al., 2010] (from 1880 on a 2°x
2°) and the HadCRUT3 dataset [Rayner et al., 2006] (on a 5°x5° grid), and as
mentioned earlier, these series only agree to within about #0.03 K even at centennial
scales. There are several reasons for the differences: HadCRUT3 is a merged product
created out of the HadSST2 Sea Surface Temperature (SST) dataset and its companion
dataset of atmospheric temperatures over land, CRUTEM3 [Brohan et al., 2006]. Both

the NOAA NCDC and the NASA GISS data were taken from http://www.esrl.

noaa.gov/psd/; the others from http://www.cru.uea. ac.uk/cru/data/temperature/.

The NOAA NCDC and NASA GISS are both heavily based on the Global Historical
Climatology Network [Peterson and Vose, 1997], and have many similarities including
the use of sophisticated statistical methods to smooth and reduce noise. In contrast, the
HadCRUT3 data are less processed, with corresponding advantages and disadvantages.
Analysis of the space-time densities of the measurements shows that they are sparse
(scaling) in both space and time [Lovejoy and Schertzer, 2013]. Even without other
differences between the data sets, this strong sparseness means that we should not be
surprised that the resulting global series are somewhat dependent on the assumptions

about missing data.
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The mean and standard deviation of the Tyhe(t) series is shown in fig. 3a as
functions of logz(pco2 (t)/pcozm) ; the result is indeed quite linear with slope equal to

the effective climate sensitivity to CO2 doubling. We find:

A2xcozeff = 2.3320.22 K (6)
(note that for the northern hemisphere only, Azxcozett = 2.59£0.25 K so that hemispheric
differences are not very large). For 5 year averages for 1880-2004 (the CO; from the
reconstruction) and 1959-2004 (using the mean of the instrumental Mauna Loa and
Antarctica COz), the correlation coefficients are respectively rrrcozr = 0.920, 0.968.
Note that this simple direct estimate of A,, can be compared with several fairly
similar but more complex analyses (notably multiple regressions which include CO,), see
[Lean and Rind, 2008], [Muller et al., 2013]. By use of the proportionality constants
between Rranen and Rrcoz we can estimate the effects of a pure COz doubling. For the
strongly cooling aerosols ([Myhre et al., 2001]) we obtained 0.645 (eq. 4) whereas for
the weakly cooling [Bauer and Menon, 2012], aerosols we obtained 1.25. These lead to
the pure CO2 doubling estimates Azx,coz,pure = 3.61+0.34 and 1.86+0.18 K respectively.

If we plot the temperatures in the usual way as functions of time, we obtain figs.
3b, c where we also show the anthropogenic contribution estimated with Axcoz.eff from
eq. 6 and Tanen from eq. 5. It follows the temperatures very well, and we can already see
that the residues (Tna(t)) are fairly small. Using these estimates of the anthropogenic
contribution, we can estimate the total change in temperature as Tan:: =0.85+0.08 over

the entire industrial period (see the discussion below). Note that the same
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methodology can be used to analyze the postwar cooling and the recent “pause” in the

warming; this is the subject of current work in progress.
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Fig. 3a: The mean global temperature estimated from NASA-GISS, NOAA NCDC,
HADCrut3 data bases as a functions of the logarithm of the mean CO; concentration
from [Frank et al., 2010]. The dashed lines represent the one standard deviation
variations of the three series at one year resolution, the thick line is the mean with a
five year running average. Also shown is the linear regression with the effective
climate sensitivity to CO2 doubling: 2.33 +0.22 K.
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Fig. 3b: Five year running average of the average temperature. The brown line is the
estimate of Tunen(t) from eq. 6 with Azxco2 = 2.33 and the difference (residue) is the
estimate of the natural variability Tua(t). Also shown in the regression of the latter
with time (straight line) as well the overall estimates ATann =0.85£0.08 for the unlagged
relation and the overall range ATjobe range =1.04£0.03 K which presumably bounds ATan¢n.

18



345

346
347
348
349
350
351
352
353
354
355
356
357

358

04| Tglobe (K)

Lag 20 years

Fig. 3c: The comparison of the mean global temperature series (red), one standard
deviation limits (dashed, all from the three surface series discussed above, all with a
five year running average), compared with the unlagged (brown, corresponding to fig.

3a) and 20 year lagged (blue) estimates obtained from logzpcoz versus Tgiope regressions
as discussed in the text.

2.4 The time Lagged sensitivities

It may be objected that the most immediate consequence of R is to warm the oceans
[Lyman et al., 2010] so that we expect a time lag between the forcing and atmospheric
response, for example, with GCM’s [Hansen et al., 2005] finds a lag of 25- 50 years, and
[Lean and Rind, 2008] empirically find a lag of 10 years (of course, the situation is not
quite so simple due to feedbacks). By considering the time lagged cross correlation

between Rrcoz and Tgope (fig. 4) it is found that the cross correlations are so high (with
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maximum 0.94) that the maximally correlated lag is not well pronounced. To clarify this,
we also calculated the corresponding curves for the cross correlation of the
temperature fluctuations (AT, differences) at a five year resolution. The fluctuations are
more weakly correlated than with the temperatures themselves so that this is a bit
more sensitive to varying lags. In all cases, we can see that the maximum is roughly
between a lag of zero and 20 years. However, the effective climate sensitivity to
doubling CO2 increases from 2.33+£0.22 (zero lag) to 3.82+0.54 with a 20 year lag (see
fig. 3c for a comparison with the zero lag anthropogenic and empirical global
temperatures). If we use a Bayesian approach and assign equal a priori probabilities to all
the lags between zero and 20 years, then we obtain the estimate A, oo = 3.08 £0.58 K
which is (unsurprisingly) quite close to the ten year lag value (fig. 4). Note that we could
use a general linear relation between forcings and responses using Green’s functions,

but this would require additional assumptions and is not necessary at this point.
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Fig. 4: The green curve is the cross correlation coefficient of the lagged Rrcoz (from the
COz reconstruction of [Frank et al., 2010]) and the global mean temperatures
(averaged at 5 year resolution) with dashed lines indicating one standard deviation
variations (as estimated from the three global mean temperature series). As can be
seen, the cross correlations are so high that the maximally correlated lag is not well
pronounced. To bring out the maximum more clearly, we also calculated (red) the
corresponding curves for the cross correlation of the fluctuations (differences) of five
year averages. We can see that the maximum is roughly between zero and lag 20 years.
However, the effective climate sensitivity to doubling CO2 (purple, divided by 10)
increases from 2.33+0.22 (zero lag) to 3.82+0.54 with a 20 year lag.

2.5. Effective and equilibrium Climate sensitivities
Our estimate of Azxcozert has the advantage of being not only independent of
GCM’s, but also with respect to assumptions about radiative transfer, historical (non

CO2) GHG and aerosol emission histories. However, A2y coz.efr is an “effective” sensitivity
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both because it uses CO2 as a surrogate for all the anthropogenic Rr, and also because it
is not a usual “equilibrium climate sensitivity” defined as “the equilibrium annual global
mean temperature response to a doubling of equivalent atmospheric CO, from pre-industrial
levels” (AR4). Since only GCM’s can truly attain “equilibrium” (and this only
asymptotically in a slow power law manner [Lovejoy et al., 2013a]), this climate sensitivity
is really a theoretical / model concept that can at best only be approximated with real world
data. From an empirical point of view, whereas the effective climate sensitivity is the actual
sensitivity to our current (uncontrolled) experiment, the equilibrium and transient
sensitivities are the analogues for various (impractical) controlled experiments.

Because of the differences in the definitions of climate sensitivity, it would be an
exaggeration to claim that we have empirically validated the model based results, even
though our value Ascozep= 3.08+0.58 (taking into account the uncertainty in the lag) is very
close to literature values (c.f. the ARS range 1.5- 4.5 K, the AR4 range 2 - 4.5 K, and the
value 3+1.5 K adopted by the National Academy of Sciences (1979) and the AR1 — 3
reports). It is not obvious whether effective or equilibrium sensitivities are more relevant for

predicting the temperature rise in the 21* century.

3. Statistical analysis

3.1 The stationarity of the residuals Tha: and comparison with the pre-industrial
That

While the linearity of fig. 3a, ¢ is encouraging (even impressive), its interpretation as
representing an anthropogenic component is only credible if the residuals (7h.(f)) have

statistics very similar to those of Ty in pre-industrial epochs (when 7, = 0) so that as
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hypothesized in eq. 1, they could all be realizations of the same stochastic process.

As a

first confirmation of this, in the top two curves of fig. 5 we plot both Ty and T, estimated

from the residuals (i.e. Thadl#) = Taiobe(?) = Aoxcozefr logz(pco2 (1)/ pcoz,,,,e) ). Even without

any formal statistical analysis, we see - as expected - that whereas T is clearly increasing,

T,a: 1s roughly flat. However, for eq. 1 to be verified, we also require that the residuals have

similar statistics to the preindustrial fluctuations when 7., = 0 and Tyiope = Tyar. In order to

establish this, we must use multiproxy reconstructions which are the only source of annual

resolution preindustrial global scale temperatures.

T (K)

1880-2004
temperature

/\/\/\T\/\ M /\/\/\ .

+0.260

1880-2004
(residuals)

+0.108

1750-1874

+0.084

1625-1749

+0.083

1500-1624
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Fig. 5: The three lower curves are the means of the three multiproxies discussed in the
text over three consecutive 125 year periods starting in the year 1500 with their
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standard deviations indicated. Each segment had its overall mean removed and was
displaced by 0.3K in vertical for clarity. The fourth curve from the bottom is from the
(unlagged) residuals with respect to the CO; regression in fig. 3a (1880-2004). The top
(dashed) curve is the annual resolution mean temperature. Whereas the curves from
the three multiproxy epochs are quite similar to the residuals in the recent epoch, the
actual recent epoch temperature shows a fairly systematic increase.

Following the analysis in [Lovejoy and Schertzer, 2012a], the more recent
(mostly post 2003) multiproxies (those developed after 2003) were argued to be more
faithful to the low frequency (multicentennial) variability.  In particular, when
compared to ice core paleotemperatures the low frequencies in [Huang, 2004],
[Moberg et al., 2005] and [Ljundqvist, 2010] were found to be more realistic with
fluctuations starting to increase in amplitude for At > = 100 years (preindustrial).
However, one of these series ([Ljundqvist, 2010]) was at 10 year resolution and was
not suited for the present study which required annual series. It was therefore
replaced by the [Ammann and Wahl, 2007] update of the original [Mann et al., 1998]
reconstruction which although having somewhat smaller multicentennial variability
was statistically not too different (see fig. 6 for a comparison of the probability
distributions of the differences at lags of one year). This shows that at one year
resolution, fluctuations from the different multiproxies have nearly the same
probability distributions although with slightly different amplitudes (c.f. the left-right
shift on the log-log plot). Changes in the amplitude arise due to varying degrees of
spatial averaging so that - given the different types and quantities of data contributing
to each multiproxy - these amplitude differences are not surprising (see [Lovejoy and

Schertzer, 2013]). In the figure we also see the residuals of the unlagged estimate of

Thae- At this scale the residuals have slightly larger variability (see the comparison of the
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standard deviations as functions of scale in fig. 7), although after At = 4 years, it falls

within the epoch to epoch variations of the mean of the multiproxies.

Log,,Pr
— 0.5 - Log,,s
-05)
- 10}
- 15!
Unlagged
residuals -0l
Ammann L
Moberg L
-25¢
Huang |
-30}

Fig. 6: The temperature differences for At = 1 year for the three multiproxies (red,
1500-1900) compared with the (unlagged) residuals from fig. 1. “Pr” indicates
Pr(AT>s) which is the probability that a random temperature difference AT exceeds a
fixed threshold s. The smooth curves are the Gaussians with the same standard
deviations. We see that the multiproxies are quite close to each other - although with
some small variations in amplitude - about 10% between each curve - but not much in
shape.

We can now make a first comparison between the industrial epoch residuals and
the pre-industrial anomalies; see the bottom three curves in fig. 5. To mimick the 125
year industrial period, the multiproxies were divided into 3x125 pre-industrial periods
(1500-1624, 1625-1749, 1750-1875) as shown, each with its overall mean removed. We

see that while the industrial epoch temperatures increase strongly as functions of time,
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that the amplitudes and visual appearances of the residuals and the multiproxies are
strikingly similar.

We now turn to the problem of making this similitude quantitative. The
traditional way to characterize the variability over a wide range of scales is by spectral
analysis. It is typically found that climate spectra are dominated by red noise “backgrounds”
and over wide ranges, these are roughly power laws (scaling) indicating that over the range,
there is no characteristic scale and (in general) that there are long range statistical
dependencies (e.g. correlations; see [Lovejoy, 2014] for recent overview and disucssion).
However spectral analysis has disadvantages, the most important of which is that its
interpretation is not as straightforward as real-space alternatives. This has lead to the
development of wavelets and other methods of defining fluctuations (e.g. Detrended
Fluctuation Analysis [Peng et al., 1994]). However [Lovejoy and Schertzer, 2012b]
shows that the simple expedient of defining fluctuations over intervals Az by the differences
in the means over the first and second halves of the interval (“Haar fluctuations™) is
particularly advantageous since unlike differences - which on (ensemble) average cannot
decrease — Haar fluctuations can both increase and decrease. The critical distinction between
increasing and decreasing fluctuations corresponds to a spectral exponent greater or less than
B= 1 (ignoring small intermittency corrections). In regions where the Haar flucutations
increase they are proportional to differences, in regions where they decrease, they are

proportional to averages so that the interpretation is very straightforward.

3.2 Fluctuation analysis of the industrial residuals and preindustrial

multiproxies

26



489

490

491

492

493

494

495

496

497

498

499

500

In figure 7, first note the comparison of the RMS difference fluctuations of the three
surface series (1880-2008) with those of the three multiproxies (1500-1900). Up until A¢

~10 years they are quite close to each other (and slowly decreasing), then they rapidly
diverge with the RMS preindustrial differences (6,,) remaining roughly constant (G,, =

0.20+0.03) until about 125 years. Fig. 8 shows the corresponding figure for the Haar
fluctuations. Again we find that the industrial and preindustrial curves are very close up to =
10 years followed by a divergence due to the high decadal and longer scale industrial period
variability. Note that the preindustrial Haar fluctuations decrease slowly until = 125 years.
When we consider the RMS residuals we find they are mainly within the one standard
deviation error bars of the epoch to epoch multiproxy variability so that removing the
anthropogenic contribution gives residuals 7, with statistics close to those of the pre-

industrial multiproxies (fig. 8).
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Fig. 7: The root mean square difference fluctuations for the mean of the three global
surface series (top right, magenta, 1880-2004; from [Lovejoy and Schertzer, 2012a));
in the notation of section 3; 6,. The corresponding (long blue) curve is for the
northern hemisphere multiproxies from 1500-1900 and the dashed lines show the one
standard deviation error bars estimated from the three 125 year epochs indicated in fig.
5 indicating the epoch to epoch variability. For periods less than about 10 years the
fluctuations are roughly the same so that there is no significant difference in the
northern hemisphere and global multiproxies. The increase in the beyond 10 years is
due to global warming in the recent period.

For the (preindustrial) multiproxies we see that between = 10 and 125 years, the
RMS differences are = constant, this is expected due to the slight decrease of the Haar
fluctuations (fig. 8) over this range, see the appendix for a discussion. The solid line at
the right has a slope 0.4; it shows the increase in the variability in the climate regime.
From the graph at 125 years the RMS difference may be estimated as 0.20+0.03 K.
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Fig. 8: The RMS Haar fluctuations for the surface series (magenta, top) and the
multiproxies from 1500-1900 (long, thick green) with the green straight lines showing
(roughly) the one standard deviation error bars estimated from the three 125 year
epochs (1500-1624, 1625-1749, 1750-1874) indicated in fig. 5. The difference between
the preindustrial multiproxies and industrial epoch surface temperatures is due to
global warming. These are compared with the residuals from 1880-2004 obtained
after subtracting the anthropogenic contribution obtained from the regression in fig. 3a
(thin black line), from the corresponding residuals for a twenty year lag between
forcing and temperature (thick black line), and for a linear CO2 concentration versus
temperature relation (dashed line). Both the lagged and unlagged logzpcoz residuals
are generally within the one standard deviation limits, although the 20 year lagged
residuals are closer to the mean.

The Haar fluctuations were multiplied by a “calibration” factor = 2 so that they
would be close to the difference fluctuations (fig. 7). Note that a straight line slope H
corresponds to a power law spectrum exponent 1+2H so that a flat line has spectrum
E(®w) = o, and hence long range statistical dependencies (Gaussian white noise has
slope -0.5). The roughly linear decline of the multiproxy variability to about At = 125
years is the (fluctuation cancelling, decreasing) macroweather regime, the rise beyond
it, the “wandering” climate regime [Lovejoy, 2013].
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3.3 Estimating the probability that the warming is due to natural
variability

Regressing Rr,cop against the global mean temperature leads to satisfactory results in
the sense that the residuals and preindustrial multiproxies are plausibly realizations of the
same stochastic process. However, this result is not too sensitive to the exact method of
estimating 7., and 7,4 - the 20 year lagged residuals are a bit better although using simply
a linear regression of Tyiobe against time is substantially worse; see fig. 8. From the point of
view of determining the probability that the warming is natural, the key quantity is therefore
the total anthropogenic warming A7, = T4(2004) - T,,(1880). Using the log,p method (fig.
3a) we find AT, = 0.85+0.08 K and with a 20 year lag =0.90+0.13 K (the zero lag northern
hemisphere value is 0.944+0.09 K). With a Bayesian approach, assuming equal a priori
probabilities of any lag between zero and twenty years, we obtain A7,,; = 0.87 +0.11; for
comparison, for the linear in time method, we obtain ~0.75+0.07 K (essentially the same as
the AR4 estimate which used a linear fit to the HadCRUT series over the period 1900 -
2004). We can also estimate an upper bound - the total range ATgioberange = Max(ATgiope) =

1.04+0.03 K so that (presumably) ATanh <ATglobe range-
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Fig. 9: This shows the total probability of random absolute pre 1900 temperature
differences exceeding a threshold s (in K), using all three multiproxies to increase the
sample size (compare this to fig. 6 which shows that the distribution are very similar in
form for each of the multiproxies). To avoid excessive overlapping, the latter were
compensated by multiplying by the lag At (in years, shifting the curves to the right
successively by log102 = 0.3), the data are the pooled annual resolution multiproxies
from 1500-1900. The blue double headed arrow shows the displacement expected if
the difference amplitudes were constant for 4 octaves in time scale (corresponding to
negative H for Haar fluctuations, H =0 for differences, see fig. 7 for the standard
deviations each octave is indicated by a vertical tick mark on the arrow). The (dashed)
reference curves are Gaussians with corresponding standard deviations and with (thin,

straight) tails (Pr ~<3%) corresponding to bounding s* and s behaviors.
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Fig. 10: The probability of anthropogenic warming by ATanen as functions of the
number of standard deviations for the five cases discussed in the text. Also shown for
reference is the equivalent temperature fluctuation using the mean standard deviation
at 125 years. The vertical sides of the boxes are defined by the one standard deviation
limits of ATanen /0, the horizontal sides by the gp =4 (upper) and gp = 6 (lower) limits;
the middle curve (qp = 5) is the mean (most likely) exponent. The classical statistical
hypothesis (Gaussian, corresponding to ¢, =<c ) is indicated for reference. The AR4

ATantn =0.74 % 0.18 is indicated by the thick red line and using logzpcoz as a surrogate
for the RF followed by linear regression (ATann =0.85 + 0.08) is shown in the filled
orange box. The other cases are shown by dashed lines: logzpcoz but with a 20 year lag,
linear regression of Tyipe against time and the upper bound on ATgnen = 1.04+0.03.

We now estimate the probability distribution of the temperature differences from the
multiproxies first over the shorter lags with reliable estimates of extremes (up to Az = 64

years, fig. 9), and then using the scaling of the distributions and RMS fluctuations to deduce
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the form at Az = 125 years, (see the appendix). We find the 125 year RMS temperature

172
difference (<AT(125)2> =0,,; = 0.20+0.03 K (fig. 7). Theoretically, spatial and temporal

scaling are associated with probabilities with power law “fat” tails (i.e. Pr(AT>s) = s for
the probability of a fluctuation exceeding a threshold s; gp is an exponent), hence in fig. 10
we compare gp = 4, 6 and g, = (a pure Gaussian). We see that the former two values
bracket the distributions (including their extremes) over the whole range of large fluctuations
(the extreme 3%).

Stated succinctly, our statistical hypothesis on the natural variability is that its
extreme probabilities (Pr <3%) are bracketed by a modified Gaussian with gp between
4 and 6 and with standard deviation (and uncertainties) given by the scaling of the
multiproxies in fig. 7: 6125 = 0.20+£0.03 K. For large enough probabilities (small s), the
modified Gaussian is simply a Gaussian, but below a probability threshold (above a critical
threshold s,p) the logarithmic slope is equal to —gp; i.e. it is a power law (see the appendix
for details). With this, we can evaluate the corresponding probability bounds for various
estimates of A7, These probabilities are conveniently displayed in fig. 10 by boxes. For
example, the AR4 AT, = 0.74 = 0.18 K (thick red box) yields a probability (p): 0.009% < p
< 0.6% whereas the (unlagged) logapcoz regression (filled red box) yields 0.0009% < p <
0.2% and the 20 year lag (dashed blue) yields 0.002% < p < 0.2%, the northern hemisphere
yields 0.009% < p < 0.1% with most likely values (using gp = 5) of 0.08%, 0.08%, 0.03%,
0.03% respectively. In even the most extreme cases, the hypothesis that the observed

warming is due to natural variability may be rejected at confidence levels 1-p >99%, and
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with the most likely values, at levels >99.9%. The other cases considered do not alter these
conclusions (fig. 10).

4. Conclusions

Two aspects of anthropogenic global warming are frequent sources of
frustration. The first is the lack of a quantitative theory of natural variability with
which to compare the observed warming ATunn, the second is the near exclusive
reliance on GCM’s to estimate it. In this paper we have argued that since = 1880,
anthropogenic warming has dominated the natural variability to such an extent that
straightforward empirical estimates of the total warming can be made. The one
favoured here - using CO2 radiative forcing (Rr) as a surrogate for all anthropogenic Rr -
gives both effective sensitivities Azxcozer and total anthropogenic increases ATane
(3.08+0.58 K and 0.87+0.11 K) comparable to the AR4, AR5 estimates (1.5 - 4.5 K and
0.74+0.18 K for the slightly shorter period 1900-2005). The method was justified
because we showed that over a wide range of scales, the residuals have nearly the same
statistics as the preindustrial multiproxies. An additional advantage of this approach is
that it is independent of many assumptions and uncertainties including radiative
transfer, GCM and emission histories. The main uncertainty is the duration of the lag
between the forcing and the response.

Whether one estimates ATann using the empirical method proposed here, or
using a GCM based alternative, when ATanen is combined with the scaling properties of
multiproxies we may estimate the probabilities as functions of time scale and test the
hypothesis that the warming is due to natural variability. Our statistical hypothesis -

supported by the multiproxy data - is that due to the scaling - there are long range
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correlations in the temperature fluctuations coupled with nonclassical “fat tailed”
probability distributions which bracket the observed probabilities. Both effects lead to
significantly higher probabilities than would be expected from classical “scale bound”
(exponentially decorrelated) processes and/or with “thin” (e.g. Gaussian or
exponential) tails. However, even in the most extreme cases, we are still able to reject
the natural variability hypothesis with confidence levels >99% - and with the most
likely values - at levels >99.9%. Finally, fluctuation analysis shows that the variability
of the recent period solar forcing was close to preindustrial levels (at all scales), and
that volcanic forcing variabilities were a factor 2-3 times weaker (at all scales), so that
they cannot explain the warming either.

While no amount of statistics will ever prove that the warming is indeed

anthropogenic, it is nevertheless difficult to imagine an alternative.

Appendix: Scaling modified Gaussians with fat tails:

In fig. 9 we showed the empirical probability distributions (Pr(AT>s), for the
probability of a random (absolute) temperature difference AT exceeding a threshold s
for time lags At increasing by factors of 2. Note that we loosely use the expression
“distribution function” to mean Pr(AT>s). This is related to the more usual “cumulative
distribution function” (CDF) by: CDF = Pr(AT<s) so that Pr(AT>s) = 1- CDF. Two aspects
of fig. 9 are significant; that the first is their near scaling with lag At: the shapes change
little, this is the type of scaling expected for a monofractal “simple scaling” process, i.e.

one with weak multifractality (as discussed in [Lovejoy and Schertzer, 2013], over
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these time scales, the parameter characterizing the intermittency near the mean, C1 = 0
so that this is a reasonable approximation).

This implies that there is a nondimensional distribution function P(s):

AT (Ar)

Pls)= Pr(i > S); o, =(AT(Ar))"

GAI

O, is the standard deviation. Due to the temporal scaling, we have ¢,,, =A"c,, where

H is the fluctuation exponent and P(s) is independent of time lag At. From fig. 9 it may
be seen that as predicted by the RMS fluctuations (o, fig. 7), H = 0. This is a
consequence of the slight decrease in the RMS Haar fluctuation (with exponent Hyaar
-0.1; fig. 8). Unlike the Haar fluctuation, the ensemble mean RMS differences cannot
decrease but simply remain constant until the Haar fluctuations begin to increase again
(compare figs. 7, 8, beyond At = 125 years).

The second point to note is that the lag invariant distribution function P(s) has
roughly a Gaussian shape for small s, whereas for large enough s, it is nearly algebraic.

This can be simply modelled as:

PG(S); §<S,p
P,,(S): s o
q PG(qu)[S j ;os28,,
gD

where Pg(s) is the cumulative distribution function for the absolute value of a unit
Gaussian random variable. The simple way of determining s,p used here is to define s4p
as the point at which the logarithmic derivative of P; is equal to —gp so that the plot of

log P4p versus log s is continuous:
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dlog P, (s)

dlogs —

$=S4p
this is an implicit equation for the transition point sgp.
In actual fact the only part of the model that is used for the statistical tests is the

extreme large s “tail” which fig. 9 empirically shows could be bracketed between:
P, (s)<P(S)<Pqu(s); dpi > 9p2s S > Sep1 = Sepo

(with gp1 = 6, qp2 =4) hence the Gaussian part of the model is not very important, it only
serves to determine the transition point sqp. In any case, for the extremes we can see
from the figure that this bracketing is apparently quite well respected by the empirical

distributions.
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