

Business Process Modeling Language
November 13, 2002

Authors:
Assaf Arkin, Intalio

Copyright © 2002, BPMI.org. All Rights Reserved.

Abstract
The Business Process Modeling Language (BPML) specification provides an abstract model for
expressing business processes and supporting entities. BPML defines a formal model for
expressing abstract and executable processes that address all aspects of enterprise business
processes, including activities of varying complexity, transactions and their compensation, data
management, concurrency, exception handling and operational semantics. BPML also provides
a grammar in the form of an XML Schema for enabling the persistence and interchange of
definitions across heterogeneous systems and modeling tools.

Status of this Document
This is the Last Call Draft of the BPML specification. The BPML working group does not intend
to make any changes to this document, except to make error corrections and update it in
response to comments and requests from the public.

Comments are welcome through December 13, 2002. Comments on this document should be
sent to bpmi-dev@bpmi.org.

This is a draft document and may be updated, replaced, or obsoleted by other documents at any
time.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 2 / 98

Acknowledgements

This specification was edited by:

Michael Dailey mjpdailey@comcast.net

Contributions to the BPML specification were made by:

David Blondeau Intalio

Ismael Ghalimi Intalio

Wolfgang Jekeli SAP

Stefano Pogliani Sun

Matthew Pryor Versata

Karsten Riemer Sun

Howard Smith CSC

Ivana Trickovic SAP

Stephen A. White SeeBeyond

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 3 / 98

Notice of BPMI.org Policies on Intellectual Property Rights & Copyright
BPMI.org takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Information on BPMI.org's procedures with respect to rights in BPMI.org specifications can be
found at the BPMI.org website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementers or users of
this specification, can be obtained from the BPMI.org Chairman.

BPMI.org invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights, which may cover technology that may be required to
implement this specification. Please address the information to the BPMI.org Chairman.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and
derivative works. However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to BPMI.org, except as needed for the purpose of
developing BPMI.org specifications, in which case the procedures for copyrights defined in the
BPMI.org Intellectual Property Rights document must be followed, or as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by BPMI.org or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
BPMI.org DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © The Business Process Management Initiative [BPMI.org], November 7, 2002. All
Rights Reserved.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 4 / 98

Table of Contents

1 Introduction ... 7
1.1 Dependency on Other Specifications 7
1.2 Conventions 7

2 Definitions ... 10
2.1 The Package 10
2.2 Conformance 11
2.3 Use of Documentation 12

3 Activities .. 13
3.1 Activity Types 13
3.2 The Activity Context 14
3.3 Simple and Complex Activities 16
3.4 Activity Instance 17

4 Processes ... 20
4.1 Instantiation 20
4.2 Nested Processes 23
4.3 Process Definition 24
4.4 Parameters 25
4.5 Process Identity 26

5 Contexts .. 28
5.1 Local Definitions 29
5.2 Activities and Processes 30
5.3 Context Definition 31

6 Properties.. 32
6.1 Property Types 32
6.2 Fixed and Implicit 32
6.3 Expressions 33
6.4 Property Definition 34

7 Signals .. 37
8 Schedules ... 42
9 Exceptions... 45

9.1 Exception Processes 45
9.2 Faults and Fault Handlers 46
9.3 Terminating Activities 48
9.4 Compensation 50

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 5 / 98

10 Transactions.. 57
10.1 Atomic Activity 57
10.2 Persistent Processes 59
10.3 Transactions 60

11 Activity Types .. 62
11.1 Action 62
11.2 All 70
11.3 Assign 70
11.4 Call 72
11.5 Choice 75
11.6 Compensate 77
11.7 Delay 79
11.8 Empty 80
11.9 Fault 80
11.10 Foreach 80
11.11 Raise 81
11.12 Sequence 82
11.13 Spawn 82
11.14 Switch 83
11.15 Synch 87
11.16 Until 88
11.17 While 89

12 Functions... 91
12.1 Generic 92
12.2 Instances 93

Appendix A: Implicit Properties .. 95
Appendix B: References .. 96

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 6 / 98

List of all Figures
Figure 1 Activity types defined in the BPML specification... 17
Figure 2 Transition diagram for activity instance states.. 18

List of all Tables
Table 1 Namespace prefixes used in this document .. 9
Table 2 Features supported by BPML 1.0 .. 12
Table 3 Activity types defined by the BPML specification... 14
Table 4 Process instantiation types... 22
Table 5 Implicit properties ... 95

List of all Examples
Example 1 Two loosely coupled top-level process that interact by exchanging messages . Error!

Bookmark not defined.
Example 2 Illustrates the use of nested processes to model complex transitions................ Error!

Bookmark not defined.
Example 3 Package-level and local property definitions... 36
Example 4 Using signals to synchronize activities executing in parallel..................................... 40
Example 5 Using signals to detect completion of an asynchronous process 41
Example 6 Using exceptions, fault handlers and compensations to implement a two-step order

.. 56
Example 7 Sending and receiving messages ... 70
Example 8 Waiting for one of two input messages or a time-out.. 76
Example 9 Using the compensate activity to compensate for nested processes....................... 79
Example 10 Determining whether an order should be approved based on its total value.......... 87
Example 11 Repeating a task until completion, but no more than a specified number of times 89

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 7 / 98

1 Introduction
The BPML specification provides an abstract model and XML syntax for expressing executable
business processes and supporting entities. BPML itself does not define any application semantics
such as particular processes or application of processes in a specific domain; rather it defines an
abstract model and grammar for expressing generic processes. This allows BPML to be used for a
variety of purposes that include, but are not limited to, the definition of enterprise business processes,
the definition of complex Web services, and the definition of multi-party collaborations. This version of
the BPML specification deals specifically with executable business processes.

1.1 Dependency on Other Specifications
The BPML specification depends on the following specifications: XML 1.0, XML-Namespaces, XML-
Schema 1.0 and XPath 1.0. In addition, support for importing and referencing service definitions given
in WSDL 1.1 is a normative part of the BPML specification.

1.2 Conventions
The section introduces the conventions used in this document. This includes notational conventions
and notations for schema components. Also included are designated namespace definitions.

Notational Conventions
This specification incorporates the following notational conventions:

• The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC-2119.

• A term is a word or phrase that has a special meaning. When a term is defined, the term name is
highlighted in bold typeface.

• A reference to another definition, section, or specification is highlighted with underlined typeface
and provides a link to the relevant location in this specification.

• A reference to an element, attribute or BPML construct is highlighted with italic typeface.

• Non-normative examples are set of in boxes and accompanied by a brief explanation.

• XML and pseudo text is highlighted with mono-spaced typeface.

Notations for schema components
• The definition of each kind of schema component is given in XML-like grammar using the mono-

spaced typeface. The definition of an element is shown with the element name enclosed in
angle brackets.

• Notations for attributes are as follows:
- Required attributes appear in bold typeface.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 8 / 98

- Where the attribute type has an enumerated type definition, the values are shown separated
by vertical bars.

- Where the attribute type is given by a simple type definition, the type definition name from
either XML Schema or the BPML schema is used.

- Where the attribute is optional and has a default value, it is shown following a colon.

• Support for extension attributes is shown by {extension attribute}. Where used in the grammar,
it indicates support for any number of attributes defined in a namespace other than the BPML
namespace.

• The allowed content of the schema component is shown using a simple grammar.
- An element name is used for any content part that must be an element of that type.
- A name enclosed in curly braces and appearing in italic typeface refers to a contents part of

some other type. For example, {any activity} refers to any element that defines an activity.

• The cardinality of any content part is specified using the following operators:

Operator Value
? zero or one

* zero or more

+ one or more

If no operator is used, the content part must appear exactly once. Cardinality that cannot be
expressed using any of these operators is shown using curly braces, with the minimum and
maximum values separated by comma. For example, {2,*} denotes two or more.

• Groups of content parts are notated as follows:

- A choice group consists of all consecutive content parts, separated by a vertical bar.

- A sequence group consists of all consecutive content parts that are separated by a comma.

- Content parts may be grouped together using parentheses to form a new content part.

• Support for extension elements is shown by {extension element}. Where used in the grammar,
the content part may be any element defined in a namespace other than the BPML namespace.

• Support for mixed content is shown by {mixed}. Where used in the grammar, the allowed content
is a mix of character data and of elements defined in any namespace.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 9 / 98

Use of namespaces
The following namespace prefixes are used throughout this document:

Prefix Namespace URI Definition
bpml http://www.bpmi.org/2002/BPML/process BPML namespace for BPML process

definitions

inst http://www.bpmi.org/2002/BPML/instance BPML namespace for BPML instance
definitions

func http://www.bpmi.org/2002/BPML/function BPML namespace for BPML function
definitions.

wsdl http://schemas.xmlsoap.org/wsdl WSDL namespace for WSDL definitions

xsd http://www.w3.org/2001/XMLSchema XML Schema namespace for XML Schema
definitions and declarations

tns (various) The “this namespace” prefix is used as a
convention in order to refer to the current
document

(other) (various) All other namespace prefixes are samples only
and represent some application-dependent
namespace as per the example in which they
are used.

Table 1 Namespace prefixes used in this document

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 10 / 98

2 Definitions
BPML constructs are the base parts that comprise the BPML abstract model. The BPML
specification provides the abstract model and XML Syntax for these constructs.

BPML definitions are named constructs that can be referenced. A BPML process definition is by
itself a construct and an assembly of multiple constructs.

A BPML package is a collection of BPML definition and may import definitions made in other
languages, such as XML Schema or WSDL.

A BPML document is the XML representation of a BPML package based on the syntax given in this
specification.

BPML documents can be used for the purpose of exchanging BPML definitions between BPML
processors. There is no requirement that a BPML definition must exist within a BPML document, or
that a BPML document be accessible from a know URL. A definition may exist in a manner that is
independent of any XML representation, and may be accessible when referenced, given its fully
qualified name and type.

2.1 The Package
The package construct is a composition of the following attributes:

Attribute Description
namespace The target namespace.

documentation Documentation. (Optional)

features Zero or more features.

imports Zero or more imports.

identities Zero or more identity definitions.

processes Zero or more process definitions.

properties Zero or more property definitions.

schedules Zero or more schedule definitions.

The namespace attribute provides the namespace associated with all definitions contained in this
package. Definitions imported to the package may be associated with other namespaces.

The features attribute indicates to a BPML implementation that it may not be able to process all
definitions contained in this package element unless it supports all the named features.

The imports attribute provides the namespace names and document locations that contains additional
definitions that must be imported into the package. The imported definitions may be defined in
languages other than BPML. A BPML implementation must be able to import XML Schema and
WSDL definitions and documents.

We say that a definition exists in the package if the definition is contained in that package or is
imported from another package or namespace.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 11 / 98

The qualified name of any definition must be unique within the scope of all definitions of the that type,
such that the definition can be unambiguously referenced by a combination of its qualified name and
type. It is an error if two definitions that have the same type and name exist in the package.

The package element and top-level BPML definition elements are defined in the namespace
http://www.bpmi.org/2002/BPML/process.

The syntax for the package element is given as:
 <package
 targetNamespace = anyURI>
 Content: (documentation?, feature*, import*,
 (identity | process | property | schedule)+)
 </package>

The targetNamespace attribute provides the namespace name for all definitions contained in this
package element.

Feature
The syntax for the feature element is given as:
 <feature
 name = anyURI
 version = NMTOKEN/>

The name attribute provides the name of the feature. This should be a namespace that is associated
with the feature definition.

The version attribute is used when multiple versions of the feature exist and all have the same name.

Import
The syntax for the import element is given as:
 <import
 namespace = anyURI
 location = anyURI/>

The namespace attribute provides the namespace associated with all imported definitions. It is an
error if the imported definitions are not defined in this namespace.

The location attribute provides the location of a document containing these definitions. If this attribute
is missing, a BPML implementation may use other mechanisms to locate the imported definitions.

2.2 Conformance
A BPML implementation is responsible to perform one or more duties based on the semantics
conveyed by BPML definitions. A BPML implementation must understand the semantics of BPML
definitions as set forth in this specification.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 12 / 98

A conformant implementation is any BPML implementation that can process BPML documents and
perform one or more duties based on the semantics conveyed in BPML definitions, as set forth in this
specification.

At the minimum, a fully conformant implementation of version 1.0 of the BPML specification must
support for the following features. There is no need to specify these features in a BPML package.

Specification Feature
BPML 1.0 http://www.bpmi.org/2002/BPML

WSDL 1.1 http://schemas.xmlsoap.org/wsdl

XPath 1.0 http://www.w3.org/TR/xpath

XML Schema 1.0 http://www.w3.org/2001/XMLSchema

Table 2 Features supported by BPML 1.0

A conformant implementation is not required to process any extension elements or attributes, or any
BPML document that contains them. Extension elements and attributes are specified in a namespace
that is other than the BPML namespace and may only appear where allowed.

2.3 Use of Documentation
BPML definitions use the documentation attribute to provide additional information that cannot be
expressed using other attributes. The value of the documentation attribute may include human
readable descriptions as well as meta-data for application processing.

The information provided by the documentation attribute does not affect the semantics of the
definition. A BPML implementation is not required to process that information and must process a
definition in the same manner whether or not the documentation attribute is specified.

The syntax for the documentation element is given as:
 <documentation>
 Content: {mixed}
 </documentation>

The documentation element can contain mixed content, including elements in any namespace. The
contents need not validate against any particular schema.

Authors of BPML documents and tool providers may want to standardize on the following:

• Use of RDF for semantic meta-data that may be human readable or intended for application
processing

• Use of XHTML for expressing information in human readable form

• Use of Dublin Core Meta Data

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 13 / 98

3 Activities
An activity is a component that performs a specific function. Complex activities are composed of
other activities and direct their execution. A process is such a composition and may itself be an
activity within a larger process. The semantics of an activity definition apply to a process definition
with a few noted exceptions.

3.1 Activity Types
An activity definition specifies the manner in which a given activity will execute. The behavior is
defined by specifying the values of the activity’s attributes. An activity type definition specifies the
attributes that are used in the definition of an activity of that type and how the values of these
attributes affect the execution of that activity.

The BPML specification defines 17 activity types, and three process types. All activity types are
derived from a common base type. The base type defines the following attributes:

Attribute Description
name The activity name. (Optional)

documentation Documentation. (Optional)

other Other attributes defined for the specific activity type.

The name attribute provides a name that can be used to reference the activity definition or activity
instance. Two activity definitions are distinct even if they have the same name. It is not an error if
within a given context that name would reference both activity definitions.

With the exception of process definitions, all activity definitions have an ordinal position within an
activity list. If the name attribute is unspecified, the activity name is its ordinal position, for example,
“1” for the first activity in the activity list, “2” for the second activity, and so forth. The name attribute is
optional for all but process definitions.

An activity type may define additional attributes that are specific to that type, for example, the
operation attribute of the action activity, or the condition attribute of the while activity. Other
specifications may introduce additional activity types that are derived from this base type.

The syntax for the base type bpml:activity is given as:
 <{activity type}
 name = NCName
 {other attributes}>
 Content: (documentation?, {other element}*)
 </{activity type}>

Each activity type defines a syntax that specifies additional XML attributes and XML elements that
represent values of the abstract model attributes.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 14 / 98

Other specifications may introduce additional activity types. The XML elements for these activity
types are derived from the type bpml:activity and use the substitution group bpml:otherActivity. They
must be defined in a namespace other than the BPML namespace.

The BPML specification defines the following activity types:

Simple Description
action Performs or invokes an operation involving the exchange of input and output

messages.

assign Assigns a new value to a property.

call Instantiates a process and waits for it to complete.

compensate Invokes compensation for the named processes.

delay Expresses the passage of time.

empty Does nothing.

fault Throws a fault in the current context.

raise Raises a signal.

spawn Instantiates a process without waiting for it to complete.

synch Synchronizes on a signal.

Complex Description
all Executes activities in parallel.

choice Executes activities from one of multiple sets, selected in response to an event.

foreach Executes activities once for each item in an item list.

sequence Executes activities in sequential order.

switch Executes activities from one of multiple sets, selected based on the truth value of a
condition.

until Executes activities once or more based on the truth value of a condition.

while Executes activities zero or more times based on the truth value of a condition.

Table 3 Activity types defined by the BPML specification

3.2 The Activity Context
Activities that execute in the same context use the context to exchange information through
properties defined in that context. For example, an activity that receives an input message sets the
value of a property from the contents of the input message. A subsequent activity uses the value of
that property to construct and send an output message.

The context defines common behavior for all activities executing in that context, such as handling of
exceptional conditions and faults, providing atomic semantics, defining a time constraint, and so forth.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 15 / 98

The context in which an activity executes is referred to its current context. Activities and contexts are
composed hierarchically. The current context of an activity may be the child context of some other
context, and the parent of multiple child contexts. Contexts are covered in 5 Contexts.

The term downstream activity refers to an activity that executes following another activity. The
downstream activity may depend on the value of properties set by the current activity, a signal raised
by the current activity, or the instantiation of another activity from the current activity.

Activities that execute in the same context are grouped together into an activity set. The activity set is
a composition of one or more activity definitions and the definition of the context in which these
activities execute – their current context.

The activity set contains an activity list, an ordered list of activity definitions. Generally, activities from
the activity list are executed in sequential order – an activity must complete before executing the next
activity in the list. The BPML specification defines one activity that causes activities from the activity
list to execute in parallel.

The activity set may define activities that can be executed multiple times in parallel with other
activities defined in the activity set. These activities are modeled as process definitions and are
contained in the activity set’s context definition. We refer to them as nested processes. Nested
processes are covered in 4.2 Nested Processes.

The activity set may define activities that execute in response to exceptional condition and interrupt
the execution of all other activities defined in the activity set. These activities are defined in a similar
manner to nested processes and are referred to as exception processes. Exception processes are
covered in 9.1 Exception Processes.

The activity set construct is a composition of the following attributes:

Attribute Description
context A context definition. (Optional)

activities One or more activity definitions. (Ordered)

The syntax for the activity set is given as:
 Content: (context?, {any activity}+)

The context element is absent if the context definition contains no local definitions (an empty context).

The activity list must contain at least one activity definition. Any activity type may be used in the
activity list including activity types defined in other specification, with the exception of process
definitions. Nested process definitions appear inside the context element.

The occurrence of the bpml:activitySet model group in the content of an XML element indicates that it
contains an activity set.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 16 / 98

3.3 Simple and Complex Activities
A simple activity is an activity that cannot be further decomposed. For example, the action activity
that performs a single operation, or the assign activity that assigns a new value to a property.

A complex activity is a composition of one or more activities. They may be simple activities or
complex activities which recursively are composed of simple and complex activities. A complex
activity definition contains one or more activity sets and directs the execution of activities from one of
these activity sets.

A complex activity that contains multiple activity sets must select which one activity set to use. The
choice activity waits for an event to be triggered and selects the activity set associated with that event
handler. The switch activity evaluates conditions and selects the activity set associated with a
condition that evaluates to true. All other complex activities defined in the BPML specification contain
a single activity set.

A complex activity determines the number of times to execute activities from the activity set. The until
activity repeats executing activities until a condition evaluates to true. The while activity repeats
executing activities while the condition evaluates to true. The foreach activity repeats executing
activities, once for each item in the item list. All other complex activities defined in the BPML
specification execute activities from the activity set exactly once.

A complex activity determines the order in which activities are executed. The sequence activity
executes all activities from the activity set’s list in sequential order. The all activity executes all
activities from the activity set’s list in parallel. All other complex activities defined in the BPML
specification execute activities in sequential order.

The complex activity completes after it has completed executing all activities from the activity set. This
includes all activities that are defined in the activity list, and all processes instantiated from a definition
made in the activity set’s context. Nested processes and exception processes are considered
activities of the activity set.

Simple activities throw faults if they cannot complete due to an unexpected error. Complex activities
throw faults if one of their activities throws a fault and they cannot recover from that fault. The
complex activity aborts when a fault is thrown by one of its activities. In order to abort, the complex
activity terminates all of its executing activities.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 17 / 98

Figure 1 Activity types defined in the BPML specification

3.4 Activity Instance
The activity definition specifies how an activity instance will execute. Multiple instances of that activity
definition may execute in parallel. Although these instances are created from the same activity
definition, they are distinct and not directly related to each other.

An activity instance transitions through the following states:

• ready – The activity instance is not performing any work

• active – The activity instance is performing work specific to its definition

• completing – The activity instance has performed all work specific to its definition, and is now
performing all work required to complete

• completed – The activity instance has performed all work required in order to complete

• aborting – The activity instance cannot complete and is now performing all work required to
abort

• aborted – The activity instance has performed all work required in order to abort

An activity instance always begins in the ready state. In order to perform any work, the activity
instance transitions to the active state. The activity instance remains in this state as long as required.
It may be the duration required to send and receive a message, or to execute all activities from the
activity set.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 18 / 98

Once the activity instance is ready to complete, it transitions to the completing state and from there to
the completed state. The activity is completed when the activity instance transitions to the terminal
completed state. The activity instance uses the completing state to perform additional work that is
required to complete, such as persisting data or waiting for the transaction outcome.

The activity instance transitions to the aborting state and from there to the aborted state, if it cannot
complete successfully, for example, due to an exception or a fault. It may transition to this state from
the active or completing states. The activity is aborted when the activity instance transitions to the
terminal aborted state. The activity instance uses the aborting state to perform additional work that is
required to abort, such as handling a fault, aborting a transaction, performing compensation, and so
forth.

Figure 2 Transition diagram for activity instance states

The ready state is a special state. An activity instance that is in the ready state is not performing any
work and may be terminated without repercussion. When the activity instance terminates it does not
transition to the aborted state, but is simply discarded. We say that the activity instance has been
cancelled.

The action activity is in the ready state while it waits for an input message to be received; the delay
activity is in the ready state while waiting for the specified time instant. Likewise, a sequence activity
that starts with an action activity will stay in the ready state until the action activity transitions to a
different state. A process that is instantiated in response to an input message or raised signal may
use the ready state to wait for the instantiation event.

Since an activity instance that is in the ready state may cease to exist, a BPML implementation
should not provide access to any instance that is in this state. For example, if the BPML
implementation provides monitoring for executing process instances, it should not show activity and
process instances that are in the ready state.

The state transitions of a complex activity affect the execution of activities from its activity set, and are
affected by their state transitions. The complex activity instance must be in the active state before it
can execute any activities from its activity set.

While in the active state, nested processes and exception processes defined in the activity set’s
context may instantiate in response to an input message or a raised signal. While in this state,
schedules defined in the context may fire events. Nested processes and exception processes do not
respond to input messages and raised signals while the parent activity is in any other state.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 19 / 98

The complex activity instance transitions to the completing state after all executing activity instances
have completed, including any instantiated nested processes. If a fault is thrown in the context, the
complex activity instance transitions to the aborting state. In this state, the complex activity instance
attempts to terminate all executing activities from its activity set, and wait for the completion of
activities that cannot be terminated. Refer to 9.3 Terminating Activities for more information on
terminating activities.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 20 / 98

4 Processes
A process is a type of complex activity that defines its own context for execution. Like other complex
activity types, it is a composition of activities and it directs the execution of these activities. A process
can also serve as an activity within a larger composition, either by defining it as part of a parent
process or by invoking it from another process. Processes are often defined as reusable units of
work.

A process that is defined independently of other processes is called a top-level process, since its
definition is found at the package level. A process that is defined to execute within a specific context
is called a nested process, since its definition is part of that context’s definition.

An exception process is defined as part of a parent process to handle exceptional conditions that may
interrupt activities executing in that process. A compensation process provides the compensation
logic for its parent process. Exception processes and compensation processes are specific type of
process definitions and are covered in 9.1 Exception and 9.4 Compensation respectively.

A process can be instantiated from the call, compensate, and spawn activities and from a schedule.
Alternatively, it may define an instantiation event that responds to an input message, or instantiation
event that responds to a raised signal.

A BPML implementation that detects a process definition that violates one of the constraints defined
in the BPML specification should flag the process definition as erroneous. It must not create instances
from an erroneous process definition. A process definition is also erroneous if it references an
erroneous process definition from the call and spawn activities.

4.1 Instantiation
A process may be instantiated in one of three ways. The process may be instantiated in response to
an input message, in response to a raised signal, or invoked from an activity or schedule.. A process
definition is allowed to have one means of instantiation. Depending on the process definition we say
that the process has instantiation type activity, message or signal.

Activity
The call, compensate and spawn activities are used to instantiate a process definition that has
instantiation type activity. The instantiating and instantiated processes must execute in the same
context or a related context. The definition of the instantiating process is dependent on the definition
of the instantiated process. The two processes are tightly coupled.

This form of process definition is commonly used when the process is an activity of a larger
composition, or a reusable activity in multiple compositions. Such processes are often defined as
nested processes, or as sub-processes of other processes defined in the same package.

During instantiation, the process can receive input values that are mapped to properties defined in its
context. Upon completion, the process can map properties defined in its context to output values. The
process definition uses parameters to specify the name and type of input and output values.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 21 / 98

Message
A process that is instantiated in response to an input message can be deployed as an independent
service and can be instantiated from processes deployed in other systems and networks. Such
processes are loosely coupled and can be deployed and executed in heterogeneous environments
and evolve independently from each other.

The process definition indicates the instantiating event using the event attribute. This attribute names
one or more event-triggered activities and indicates whether or not these activities are mutually
exclusive. The process is instantiated each time an event occurs and the event-triggered
activity/activities execute. The event-triggered activities must be the first activities in the process
definition’s activity list.

For instantiation type message, all event-triggered activities must be action activities that respond to
an input message that is received unsolicited. The input message denotes the event and a
composition of event-triggered activities denotes a composite event. For a given process definition, all
event-triggered activities must perform different operations. When using WSDL 1.1, they must
perform the one-way or request-response operations.

If the process definition has one such event-triggered activity, the process is instantiated each time
the activity receives an input message.

If the process definition has multiple event-triggered activities that are mutually exclusive, the process
is instantiated each time one of these activities receives an input message. All other event-triggered
activities of that process instance are canceled.

If the process definition has multiple event-triggered activities that are not exclusive, the process is
instantiated each time all of these activities are able to receive an input message at the same time.

Signal
A process that is instantiated in response to a raised signal can only execute within a context
instance. A nested process can respond to signals that are raised by other activities executing in the
same context. This form of instantiation is only possible for processes defined as part of a larger
process, such as nested processes and exception processes.

The process definition indicates the instantiating event using the event attribute. All event-triggered
activities must be synch activities. The signal name denotes the event and a composition of event-
triggered activities denotes a composite event. For a given process definition, all event-triggered
activities must respond to different signals.

If the process definition has one such event-triggered activity, the process is instantiated each time
the activity synchronizes on a raised signal.

If the process definition has multiple event-triggered activities that are mutually exclusive, the process
is instantiated each time one of these activities synchronizes on a raised signal. All other event-
triggered activities of that process instance are canceled.

If the process definition has multiple event-triggered activities that are not exclusive, the process is
instantiated each time all of these activities are able to synchronize on a raised signal at the same
time.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 22 / 98

The following table summarizes the relation between the process instantiation types (first column),
the event attribute and event-triggered activities (second column), the inputs of the instantiated
process (third column), and the activities that can be used to instantiate that process (last column).

Instantiation Definition Inputs Instantiating activity

activity no event parameters call, compensate, spawn,
schedule

message event activity=a
action name=a
 receive messageA

messageA Send messageA

message event activity=a b
 exclusive=true
action name=a
 receive messageA
action name=b
 receive messageB

messageA or
messageB

Send messageA or
messageB

message event activity=a b

exclusive=false
action name=a
 receive messageA
action name=b
 receive messageB

messageA and
messageB

Send messageA and
messageB

signal event activity=a
synch name=a
 signalA condA

signalA Raise signalA

signal event activity=a b
 exclusive=true
synch name=a
 signalA condA
synch name=b
 signalB condB

signalA or signalB Raise signalA or signalB

signal event activity=a b

exclusive=false
synch name=a
 signalA condA
synch name=b
 signalB condB

signalA and signalB Raise signalA and signalB

Table 4 Process instantiation types

The event-triggered activity may depend on the values of properties defined in the process context in
order to identify the input message or raised signal. In order to execute these activities, a BPML
implementation may create a process instance in the ready state. It can cancel and discard the
process instance if it has determined that the process will not be instantiated (that is, transition to the
active state). If the BPML implementation provides monitoring for executing process instances, it
should not show process instances when they are in the ready state.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 23 / 98

Process definitions should use instantiation type message, unless they are defined to interact with
other activities executing in the same context, or are only instantiated by processes defined in the
same package. Using message exchange allows processes to be defined, deployed and managed
independently. It also provides greater flexibility and improved change management.

4.2 Nested Processes
A nested process is a process definition that is localized to a given context. Nested processes are
used as activities in the composition of larger processes, to localize the process definition to the
context in which it is used, and to constrain the instantiation and availability of the process to a
particular context.

A nested process is instantiated in the context in which it is defined. The nested process may access
properties defined in that context, instantiate other processes defined in that context, use signals to
interact with other activities defined in that context, and utilize the exception processes and fault
handler defined by the context.

A nested process is considered an activity in the activity set. Its lifetime is demarcated by the parent
activity or process that contains that activity set. The parent activity does not complete until it
completes executing all activity instances from the activity set, and that includes any nested process
instantiated in that context. The parent activity terminates all such activity instances when it aborts,
and aborts if any activity instance aborts with a fault.

A nested process with instantiation type message constrains the instantiation of that process to a
particular context. The nested process cannot be instantiated until the context instance exists, or after
the parent activity/process completes or aborts. Since multiple context instances may exist, the input
message must be correlated to the proper context instance.

This form of instantiation is commonly used to implement an operation that can be performed multiple
times in a particular state, but only in that particular state of the parent process. The state is
demarcated by the parent activity of the nested process definition.

A top-level process is a process definition that is not localized to any particular context. A top-level
process is defined at the package level and does not share its context with any other top-level
process. A top-level process can be instantiated at any time.

If the top-level process has instantiation type activity, call and spawn activities from other process
definitions may reference it. If the process has instantiation type message, the process is instantiated
in response to an input message that may be received at any time. A top-level process cannot have
instantiation type signal.

It is an error if multiple top-level process definitions have an event-triggered activity that responds to
the same input message. They may receive an input message of the same type but distinguish by
performing different operations or by using correlation.

An exception process is a special type of nested process. When an exception process is instantiated,
it causes the parent activity to abort. Whereas a nested process can be instantiated multiple times in
a context instance, only one exception process can be instantiated in a given context instance.
Exception processes are covered in 9.1 Exception.

A compensation process is a special type of nested process. A compensation process is instantiated
after the completion of the parent process instance in order to compensate for any activities it
performed. A compensation process can be instantiated only if the parent process instance has
completed, and can be instantiated only a single time. Compensation processes are covered in 9.4
Compensation.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 24 / 98

4.3 Process Definition
A process definition is a composition of the following attributes:

Attribute Description
name The process name.

documentation Documentation. (Optional)

identity One or more identity names. (Optional)

persistent The persistence attribute. (Optional)

event The instantiation event. (Optional)

parameters Zero or more input parameters. (Optional)

activity set An activity set.

compensation The compensation process. (Optional)

The name attribute provides a name that can be used to reference the process definition. The name
attribute must be specified. A context definition must not contain two process definitions with the
same name. It is an error if two process definitions with the same name exist in the package.

The identity attribute provides the name of one or more identity definitions. An identity definition
provides the name of one or more properties that identify the process instance. The process context
must define all properties named in all identity definitions, and each property definition must reference
the top-level property definition used in the identity definition.

The persistent attribute specifies whether or not a process instance created from this process
definition is persistent. The process instance is persistent if this attribute is specified with the value
true and not persistent if this attribute is specified with the value false. If the persistent attribute is
unspecified, the process instance is persistent if the parent process is persistent, or if instantiated
from a persistent process. Persistent processes are covered in 10.2 Persistent Processes.

The event attribute provides the instantiation event. It names one or more event-triggered activities
and indicates whether or not these activities are mutually exclusive. The event-triggered activities
must be the first activities in the process definition’s activity list. They must all be action activities that
respond to an input message that is received unsolicited, or must all be synch activities.

If the event attribute names action activities, the process has instantiation type message. If the event
attribute names synch activities, the process has instantiation type signal. Otherwise, the process has
instantiation type activity. A top-level process cannot have instantiation type signal.

The parameters attribute provides the names of all input and output parameters. It may be specified
only if the process has instantiation type activity. If this attribute is unspecified, the process has no
input or output parameters.

The activity set attribute provides the activity set that is executed by the process. After instantiation,
the process instance executes activities from the activity set list in sequential order, excluding
cancelled event-triggered activities. The context defined by this activity set is also referred to as the
process context.

The compensation attribute provides the compensation process. If this attribute is specified, the
persistent attribute must not be specified with the value false. Compensation processes are covered
in 9.4 Compensation.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 25 / 98

The syntax for a process definition is given as:
<process
 name = NCName
 identity = list of QName
 persistent = boolean : false>
 Content: (documentation?, (event | parameters?),
 context?, {any activity}+, compensation?)
</process>

<event
 activity = list of NCName
 exclusive = boolean : false/>

The fully qualified process name is constructed by combining the name attribute with the
targetNamespace attribute of the package.

If the event element is absent, the process has instantiation type activity.

4.4 Parameters
A parameter construct consists of the following attributes:

Attribute Description
name The parameter name.

direction Input, output.

required True if required, false if optional. (Input only)

code The fault code. (Output only, optional)

The name attribute provides the name of the parameter. It must have the same name as a property
defined in the process context. The property definition provides the parameter type.

The direction attribute specifies whether the parameter is an input parameter or an output parameter.

• input – When the process is instantiated, an input value for that parameter is assigned to the
named property.

• output – When the process completes or aborts, the value of the named property instance is
used as the output value for that parameter.

The required attribute indicates whether an input parameter is required or optional. The attribute must
be specified for an input parameter and must not be specified for an output parameter. If the value of
the required attribute is true, an input value for that parameter must be provided when instantiating
the process. If the value is false, an input value for that parameter may be provided.

The code attribute provides the fault code. This attribute may be specified for an output parameter
and must not be specified for an input parameter. If this attribute is unspecified, an output value for
that parameter is provided only if the process completes or aborts without a fault. If this attribute is
specified, an output value for that parameter is provided only if the process aborts with that fault code.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 26 / 98

A process can define an input parameter with the same name as an output parameter, but must not
define two input parameters with the same name. A process can define two output parameters with
the same name if they use different values for the code attribute, or if one parameter specifies the
code attribute and the other does not.

The syntax for a process parameter definition is given as:
<parameters>
 Content: (input*, output*)
</parameters>

<input
 name = QName
 required = boolean : true/>

<output
 name = QName
 code = QName/>

4.5 Process Identity
Process identity serves as a means to identify a specific process instance from a collection of
process instantiated from the same definition. It also identifies related process instances in a
collection of process instantiated from different definitions.

The process identifier is a unique identifier that exists in every process instance to distinguish it from
any other process instance. The process identifier is accessed from the implicit property inst:identifier.
The process identifier is universally unique across space and time. BPML implementations are
encouraged to generate process identifiers that conform to the UUID scheme.

Process identity allows multiple process instances to use the same identity value. The identity value
can serve as a thread across multiple processes instantiated from different definitions. The identity
value may also relate the process instance to a particular entity, for example, an order and the related
invoice. Process identity is often used when correlating input messages to the process instance (see
the action activity).

The process identity definition names one or more properties that together define the range of identity
values. The property definitions must define a simple type property. Two identities are equivalent if,
for all properties named in the identity definition, the value of a property in one identity is equal to the
value of a property with the same name in the other identity.

The process identity definition exists at the package level. A process definition may reference one or
more identity definition from the identity attribute. The process context must define all properties
named in all identity definitions. Each of these property definitions must reference the top-level
property definition used in the identity definition using the reference attribute.

A nested process has the same identity as the parent process, but may define an additional identity.
Exception processes and compensation processes have the same identity as the parent process.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 27 / 98

An identity definition consists of the following attributes:

Attribute Description
name The identity name.

properties One or more properties.

documentation Documentation. (Optional)

The name attribute provides the identity name that is used to reference the identity definition. It is an
error if two identity definitions with the same name exist in the package.

The properties attribute provides the names of one or more properties. The identity is a combination
of all the named properties. This attribute must reference properties that are defined at the package
level. All properties must be defined with a simple type.

The syntax for the identity definition is given as:
<identity
 name = NCName
 property = list of QName>
 Content: (documentation?)
</identity>

The fully qualified identity name is constructed by combining the name attribute with the
targetNamespace attribute of the package.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 28 / 98

5 Contexts
Contexts define an environment for the execution of related activities. Activities that execute within
the same context use the context to exchange information and coordinate their execution. An activity
can access and modify the value of properties defined within that context, instantiate a nested
process, raise and synchronize signals, and so forth.

The context definition specifies common behavior for all activities executing within that context. It
defines how exceptional conditions and faults are handled, provides atomic semantics for accessing
properties and exchanging messages, and so forth.

A context definition contains local definitions for entities that are accessible only from that context.
These local definitions are not accessible outside the context. Activities that are defined for execution
within that context can reference the local definitions and instantiate new instances of these
definitions. Local definitions include properties, nested processes and signals, among others.

The hierarchical composition of activities creates a relationship between contexts. When a context
definition encapsulates another context definition, we refer to the encapsulating definition as the
parent context and to the encapsulated definition as the child context. The child context shares all the
definitions of the parent context and, recursively, any of its parent contexts. It can also add local
definitions of its own. The child context does not share any of its local definitions with the parent
context and, by definition, with any sibling context.

The context in which an activity is defined is called its current context. The current context is a
composition of the context that contains the activity definition and all parent contexts. When we say
that an activity executes in a specific context, that statement is valid whether we refer to the specific
context that contains the activity definition or to any of its parent contexts.

The hierarchical composition of contexts allows complex activities to establish a secure environment
for the execution of activities. A local property definition allows these activities to access and modify
the property value without affecting or being affected by activities executing in other contexts. These
activities are still able to access and modify the value of any property defined within a parent context.

A process definition includes one context definition that is shared by all activities that execute as part
of that process. We refer to it as the process context. Nested processes and exception processes
are defined within the context of a parent process. That context serves as the parent for the nested
and exception process context. This allows the nested process to access properties and to interact
with other activities that are defined within the parent process. A compensation process is part of the
parent process context.

The process context of a top-level process definition is called the root context since it is not a child of
any other parent context.

A context instance provides an environment for the execution of activity instances that is distinct from
any other instance of the same context. An executing activity must be able to reference properties
that are not shared with any instance of the same activity that executes in a different context instance.

A context instance is instantiated from a context definition. Activities are created and executed within
an instance of the context in which they are defined. A child context instance is always created within
an instance of the parent context. Through its current context, an activity can access properties and
other instances that were created in any parent context instance.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 29 / 98

Context instances that are created from the same context definition are distinct and do not share any
instances that were created from local definitions. Thus, a property instance or nested process
instance that is created in one context instance is distinct from one that is created in a different
context instance. Specifically, two top-level process instances can not share any property, activity or
nested process instance.

5.1 Local Definitions
A context definition can include any number of local definitions, any of which may be instantiated
within an instance of that context. The BPML specification defines six types of local definitions:

• Exception – Defining an exception process as local to a context ensures that the process will
only respond to events from an instance of that context, and that any such event would interrupt
all activities executing in that context instance. Exception processes are covered in 9.1
Exception.

• Process – Defining a process as local to a context ensures that the process can be instantiated
only within an instance of that context. Such a process is called a nested process. Nested
processes are covered in 4.2 Nested Processes.

Nested processes are used to restrict the availability of a process to a particular context. They
also allow the process to access properties defined within that context and interact with other
activities executing within the same context. A local process definition will hide another process
definition with the same name that exists in a parent context or is defined at the package level.

• Property – Defining a property as local to a context ensures that the value of that property
instance can only be accessed and modified from activities executing in an instance of that
context. Properties are covered in 6 Properties.

Local property definitions are used to restrict access to a property. This access is limited to
activities that execute within that context instance. Local property definitions allow different
contexts to refer to different properties that have the same name.

• Schedule – Defining a schedule as local to a context ensures that the schedule will fire time
events while activities are executing within an instance of that context. Schedules are covered in
8 Schedules.

Local schedule definitions are used to invoke processes while performing other work in that
context. A local schedule definition can also place a time constraint on the execution of activities
in that context by throwing a fault.

• Signal – Defining a signal as local to a context ensures that the signal can be raised and
synchronized only by activities executing within that context. Signals are covered in 7 Signals.

A signal is used to synchronize between activities executing within the same context and does
not cross the boundary of that context.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 30 / 98

5.2 Activities and Processes
A complex activity instantiates a context when it attempts to execute activities from its activity set.
Most complex activities have a single activity set and instantiate the context immediately. The choice
activity waits for an event-triggered activity to complete before instantiating a new context instance
and executing the associated activity set.

While the activity instance is in the active state, it allows the instantiation of nested processes and
exception processes in response to an input message or to a raised signal. Schedules instantiated in
the context instance are allowed to fire time events. The activity instance can discard the context
instance when it completes and transitions to the completed state or when it aborts and transitions to
the aborted state.

A complex activity must not continue executing activities from its activity set if one of those activities
aborts with a fault. The complex activity can recover from the situation by responding to the fault
through one of its fault handlers. These fault handlers respond to faults generated by activities that
are part of the activity set and are defined as part of the context definition.

When a fault occurs while executing an activity from the activity set, we say that a fault is thrown in
the context. The related fault code is assigned to the inst:fault property in the context instance. That
property is implicitly defined for every context definition. When the fault is thrown, all activity instances
executing in that context instance are terminated if they cannot complete quickly. If a fault handler is
associated with the applicable fault code, activities specified by that fault handler execute next. Faults
and fault handlers are covered in 9.2 Faults.

An exception process is instantiated in response to an input message or raised signal. When an
exception process is instantiated, all other activity instances executing within that context instance are
terminated if they cannot complete quickly. A context instance can instantiate only one exception
process. Exception processes are covered in 9.1 Exception.

The process context is instantiated with the process instance. The process context instance is
retained after completion of the process instance to allow instantiation of the compensation process.
The process context can be discarded if no compensation process is defined, if the process instance
aborts, after execution of the compensation process, or when it is no longer possible to instantiate the
compensation process. Compensation processes are covered in 9.4 Compensation.

The process context instance can be retained for an indefinite period of time. A BPML implementation
may provide mechanisms for performing queries on historical data that require access to the property
values of completed process instances. The means by which such mechanisms are defined is
covered in the BPQL specification.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 31 / 98

5.3 Context Definition
A context definition consists of the following attributes:

Attribute Description
atomic True for an atomic context.

exception Zero or more exception processes.

processes Zero or more process definitions.

properties Zero or more property definitions.

schedule Zero or more schedule definitions.

signals Zero or more signal definitions.

faults Zero or more fault handlers.

The atomic attribute indicates whether or not the context is atomic. The atomic attribute must be
unspecified if a parent context specifies the atomic attribute with the value true. Atomic activities are
covered in 10.1 Atomic Activity.

All local definitions have a name by which they can be referenced. A context definition must not
contain two local definitions of the same type that have the same name.

The syntax for a context definition is given as:
<context
 atomic = boolean : false>
 Content: ((exception | process | property |
 schedule | signal)*, faults?)
</context>

The syntax of the faults element is given in 9.2 Faults.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 32 / 98

6 Properties
A property definition declares a property name, associates a type to that name, and provides an
optional initial value. A property instance holds the property value. The property name is used to
reference the property instance and the property type defines the range of values that it can hold.
A property instance can exist only within a context instance. The context definition contains property
definitions for all property instances that are created within an instance of that context. A context
instance cannot have two property instances with the same name. Two property instances with the
same name are distinct if they belong to different context instances.

A property instance is created in the context that contains the property definition. The property
instance is created when one of the following happens:

• The property definition specifies an initial value – when the context instance is created.

• The property definition specified the reference attribute and a property instance with the same
definition exists in a parent context instance – when the context instance is created. The property
instance will have the same value as the referenced property instance.

• A value is first assigned to that property from any activity that executes within that context
instance or within a child context.

The value of the property instance is modified when a new value is assigned to an existing property
instance. An activity can access the value of a property instance only if the property instance exists. If
the property instance does not exist, the activity throws the bpml:noSuchInstance fault.

6.1 Property Types
A property may have one of the following XML types:

• Simple type – The property type is one of the simple types defined by XML Schema or a type
derived from it. The property value is an atomic value of that type or a derived type and may be
empty.

• Complex type – The property type is a complex type defined by an XML Schema definition. The
property value is a complex value of that type or of a derived type. The property value may be
empty only if the complex type definition allows an empty sequence.

• Element – The property type is an element defined by an XML Schema declaration. The property
value is an element of that type or of a derived type and must not be empty.

If the property definition specifies an initial, the XML content of the initial value must match the
production rules defined by the property type.

6.2 Fixed and Implicit
The value of a fixed property instance cannot be modified. Once a fixed property instance is created,
its value remains constant. If a fixed property definition does not specify an initial value, a value can
be assigned to that property once to create a new property instance.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 33 / 98

Fixed properties should be used to represent values that do not change during the lifetime of a
process instance. They can be used for static values, to correlate input messages, to hold the
location of the service implemented by the process, and so forth. Properties that are used for process
identity must be fixed.

The process instance changes the values of implicit property instances. They are not defined
explicitly and it is an error to define a property with the same name as an implicit property. Implicit
properties are used to hold the process instance identifier (inst:identifier) and start time
(inst:startTime), the iteration count (inst:iteration) and branch number (inst:branch) of a complex
activity, the fault code (inst:fault), and so forth. Implicit properties are listed in Appendix A: Implicit
Properties.

It is an error to assign a value to a fixed property or an implicit property. An activity that attempts to
assign a value to a fixed property or an implicit property will throw the bpml:readOnly fault. A BPML
implementation should detect such activities and flag the processes definition as erroneous.

6.3 Expressions
Expressions are used to establish values dynamically and may be derived from the values of one or
more properties. They are used when assigning a value to a property, mapping an output value to an
output message, and so forth. Conditions are expressions that result in a Boolean value. They are
used for branching and iteration.

A BPML implementation must support the use of XPath 1.0 expressions. A BPML implementation
may also support additional expression languages, such as XSTL and XQuery. While expression
languages may differ in their capabilities and syntax, they all must access property instances in the
same manner.

Evaluating an expression does not by itself cause a change to the value of any property. The
expression may access any property instance that exists in the context, including fixed and implicit
properties. If the expression attempts to access a property instance that does not exist, it throws the
bpml:noSuchInstance fault. A BPML implementation may detect such an expression and flag the
process definition as erroneous.

For XPath, XQuery and XSLT expressions, the value of the property instance is accessed from a
variable with the same name. The qualified name is preceded with a dollar sign, for example,
$tns:myValue to access the value of the property instance with the local name myValue and
namespace name that is mapped to the prefix tns.

Typically the context node for evaluating an expression has the empty value. One exception is the
source attribute (see the assign activity), which sets the context node to the value of a single property
instance and allows only fixed property instances to be referenced from the expression.

All expressions are evaluated in an atomic manner, as if the values of all property instances used in
the expression are established at the same point in time. When multiple expressions are evaluated at
once by a single activity, such as is the case with the conditions of the switch activity, this rule is
further extended to cover them all.

The BPML specification supports the following type conversions:

• All type conversions that are covered in the XML Schema and XPath 1.0 specifications

• An element derived from a simple type can be converted to an atomic value

• An atomic value can be converted to an element derived from a simple type

• An element derived from a complex type can be converted to that complex type

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 34 / 98

• A complex type can be converted to an element derived from that complex type, if there are no
additional restrictions in the element definition

• A sequence of elements can be converted to a complex type that has a matching content model

A BPML implementation may support additional type conversions, such as defined in XPath 2.0 and
XQuery 1.0. Expression can be used to perform complex conversions, for example, to extract an
atomic value from the attribute of an element or to transform the value of one element into another
element of an unrelated type.

A type error occurs if a type conversion is not possible between a value used in the expression and
an operand or function that operates on that value, or if a type conversion is not possible between the
result of the expression and the expected result type. Static type checking uses type information to
identify such expressions and flag the process definition as erroneous. It is possible that static type
checking would not detect the type errors and an attempt to evaluate the expression would throw the
bpml:typeMismatch fault.

6.4 Property Definition
A property definition consists of the following attributes:

Attribute Description
name The property name.

type The property type.

value The initial value. (Optional)

fixed True if fixed.

documentation Documentation. (Optional)

The name attribute provides the property name. A context definition must not contain two property
definitions with the same name. It is an error if two property definitions with the same name exist in
the package.

The type attribute specifies the property type. The BPML specification supports referencing an XML
schema type definition or element declaration.

The value attribute provides the initial value for the property. If specified, the property is instantiated
with that initial value.

The syntax for a property definition is given as:
<property
 name = NCName
 type = QName
 element = QName
 fixed = boolean>
 Content: (documentation?, value?)
</property>

The fully qualified property name is constructed by combining the name attribute with the
targetNamespace attribute of the package.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 35 / 98

A property definition must use one of the following attributes to specify the property type:

• type – References an XML Schema simple type or complex type definition using its qualified
name

• element – References an XML Schema element declaration using its qualified name

If the fixed attribute is absent, the default value is false.

Referenced Definition
A reference property definition consists of the following attributes:

Attribute Description
reference The referenced definition name.

value The initial value. (Optional)

fixed True if fixed. (Optional)

documentation Documentation. (Optional)

The reference attribute provides the name of another property definition. Only a context property
definition may use this attribute. It must reference a property definition that exists in a parent context
or at the package level. The property definition is said to be the same as the referenced property
definition.

If the fixed attribute is unspecified, it has the same value as specified in the referenced definition.

If the initial attribute is unspecified, it has the same value as specified in the referenced definition, if
specified there.

The syntax for a reference property definition is given as:
<property
 ref = QName
 fixed = boolean>
 Content: (documentation?, value?)
</property>

Initial Value
The value element can be used to specify an initial value for an XML type property definition.

The syntax for the value element is given as:
<value>
 Content: {mixed}
</value>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 36 / 98

Service Reference
The service element can be used to specify an initial value that references a service definition. The
service element is defined in the namespace http://www.bpmi.org/2002/BPML/instance.

The syntax for the service element is given as:
<service
 name = QName
 location = URI/>

The name attribute identifies the service definition by its qualified name.

The location attribute identifies the location of a document that contains the service definition. The
document may contain any number of service definitions but must contain the named service
definition. If the location attribute is absent, a BPML implementation must use other mechanisms to
obtain the service definition.

The initial value indicates that the service definition is required in order to instantiate the process. For
example, when the process requires the service definition in order to locate the service, or to
communicate the service endpoint to other processes.

The following example illustrates a property definition at the package level, a context property
definition referencing it, another property defined in that context and an assignment that
establishes the value of that property.

<property name="timeToPerform" type=”xsd:duration”>

 <value>PT24H</value>

</property>

<process name=”calculateEndTime”>

 <context>

 <property ref=”tns:timeToPerform”/>

 <property name=”endTime” type=”xsd:dateTime”/>

 </context>

 <assign property=”endTime”

 xpath=”$tns:timeToPerform + func:currentDateTime()”/>

</process>

Example 1 Package-level and local property definitions

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 37 / 98

7 Signals
Signals are used to coordinate the execution of activities executing in the same context. For example,
to synchronize the start of one activity with the completion of another activity. Signals are also used to
reflect conditions that arise from the execution of activities, and to allow other activities executing in
that context to detect and react to these conditions. A signal does not cross the boundary of the
context in which it is defined.

The raise activity “raises” the signal by creating a new instance of the signal. The synch activity
“synchronizes” on the signal by waiting for the signal to be raised, and then “lowers” the signal by
discarding one signal instance. The raise and synch activities can exchange information by passing
values through the signal instance.

Signal Instance
The raise activity raises a signal by creating a new instance of that signal. The signal instance is
created in an instance of the context that contains its definition. The raise activity can raise a signal
defined in a parent context, but not a signal defined in a child or sibling context.

The signal is “raised” in a context if one or more instance of that signal exist in that context instance.
The signal is “lowered” when no instances of that signal exist. The signal’s raise count is the number
of single instances that exist in the context instance.

The signal definition indicates whether the signal is single-raise or multi-raise. A context instance may
have at most one instance of a single-raised signal, but can have zero or more instances of a multi-
raise signal. If the signal is single-raise and is already raised in the context, the raise activity throws
the bpml:signalRaised fault. If the raise activity must wait until the signal is lowered and then raise it, it
should specify the fault attribute with the value false.

The synch activity synchronizes on a signal by looking for a matching signal instance in the current
context. When it finds a matching signal instance, it discards it and completes. The synch activity can
match and discard one signal instance each time it is executed.

If the synch activity determines that the signal will not be raised in the context, it throws the
bpml:noSuchSignal fault. If the synch activity anticipates that the signal may not be raised and wants
to abort without a fault, it should specify the fault attribute with the value false.

The synch activity determines that the signal will not be raised if the signal’s source count is zero. The
signal’s source count is the number of sources that may raise the signal before the current activity
instance completes. The source count is zero if the signal is only raised by the next activity in a
sequence, since that activity will not execute until after the current activity completes. The source
count is calculated from all activities that are executing or may execute in parallel with the current
activity.

Each signal instance holds one value. The signal source can use that value to pass information to the
synchronizing activity. The raise activity maps output values to the signal value, and the synch activity
assigns these values to properties in its current context.

The synch activity can match a particular signal instance using a synchronization condition. The
synchronization condition may reference properties that are mapped from the signal. It can also
determine the status of another signal by inspecting its raise count and source count.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 38 / 98

The synch activity executes by retrieving all instances of the signal in the order in which they were
created (raised). It evaluates the synchronization condition against each instance until it finds a
match. If the signal is not raised or no match is found, it waits for the signal to be raised and
evaluates the synchronization condition against the new instance. It completes only once a match is
found, and discards the matching signal instance.

If the signal definition specifies an initial value, the signal starts in the raised state. When the context
is instantiated, it creates one instance of the signal using the initial value.

When the spawn activity instantiates a new process, it implicitly defines a signal. The signal source is
the process instance, and the signal is raised when the process instance completes or aborts. The
signal is defined in the process context of the spawn activity and has the same name as the spawned
process. The signal is multi-raise since the process may be instantiated multiple times. It is an error to
define a signal with the same name in that context.

If the signal source is a property, the signal is raised when a value is assigned to the property and the
condition evaluates to true. The signal value is set from the property value.

Signal Definition
A signal definition is a composition of the following attributes:

Attribute Description
name The signal name.

documentation Documentation. (Optional)

type The value type. (Optional)

multi Multi- or single-raise.

source The signal source as a property. (Optional)

value Initial value. (Optional)

The name attribute provides a name that can be used to reference the signal. A context definition
must not contain two signal definitions with the same name.

The type attribute specifies the signal value type. If specified, every signal instance will hold a value
of that type. Otherwise, every signal instance will hold the empty value.

The multi attribute specifies whether the signal is multi-raise or single-raise. If the value of this
attribute is false, the context instance may contain at most one instance of that signal.

The source attribute specifies a property that serves as the signal source. The signal is raised when a
value is assigned to that property and the condition evaluates to true. The source attribute must name
a property definition that exists in the same context or a parent context, and must not name an implicit
or a fixed property. The signal value type is the same as the property type. A signal definition must
not specify the source attribute in combination with the type or value attributes.

The value attribute provides an initial value for the signal. If specified, each context instance creates
one signal instance using that initial value. If the value attribute is specified and the type attribute is
unspecified it must contain an empty value.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 39 / 98

The syntax for a signal definition is given as:
<signal
 name = NCName
 type = QName
 element = QName
 multi = boolean : false>
 Content: (documentation?, (value | source)?)
</signal>

<source
 property = QName>
 Content: (condition?)
</source>

The type and element attributes are the same as for the properties element. Only one of these
attributes may be used. If both attributes are absent, all signal instances will contain an empty value.

The value element specifies an initial value. The syntax for this element is the same as for the
properties element.

The syntax for the condition element is the same as for the switch activity. If the condition element is
absent, the condition always evaluates to true.

Signals are often used to synchronize between parallel activities. In that capacity, the raise activity
signifies the completion of an activity, and the synch activity signifies a synchronization barrier that
waits for the completion of that activity.
This classical example involves four dependent activities. Activity B is dependent on the
completion of activity A, but is not dependent on activities C or D. Activity D is dependent on the
completion of both activity A and activity C, but not dependent on activity B. Activity A and C are
not dependent on any other activity.
There are several ways to model this example using signals. Activity A may be the source of a
signal that both activities B and D synchronize on. Activity C may be the source of a signal that
only activity D synchronizes on. Activities A, B, C and D are started in parallel and use signals to
ensure a proper order of execution.
In this example we have chosen to use two parallel sequences. One sequences activity A followed
by activity B. The other sequences activity C followed by activity D. The signal is raised from one
sequence and synchronized from the other.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 40 / 98

<all>

 <context>

 <signal name=”tns:completedA”/>

 </context>

 <sequence>

 <call process=”activityA”/>

 <raise signal=”tns:completedA”/>

 <call process=”activityB”/>

 </sequence>

 <sequence>

 <call process=”activityC”/>

 <synch signal=”tns:completedA”/>

 </call process=”activityD”/>

 </sequence>

</all>

Example 2 Using signals to synchronize activities executing in parallel

This example illustrates an activity that obtains multiple quotes from different suppliers. For
efficiency, the activity requests all the quotes simultaneously. It does so by spawning multiple
instances of the same process.
Before proceeding to select the cheapest supplier, the activity must wait for all executing process
instances to complete. It does so by synchronizing on a signal that is raised each time one of the
spawned process instances completes.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 41 / 98

<foreach select=”$tns:suppliers/supplier”>

 <spawn process=”tns:requestQuote”>

 <output parameter=”tns:supplier”>

 <source property=”inst:current”/>

 </output>

 <output parameter=”tns:orer”>

 <source property=”tns:order”/>

 </output>

 </spawn>

</foreach>

<assign property=”tns:count”

 xpath=”func:countInstances(’tns:requestQuote’)”/>

<while>

 <condition>$inst:iteration <= $tns:count</condition>

 <synch signal=”tns:requestQuote”/>

</while>

Example 3 Using signals to detect completion of an asynchronous process

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 42 / 98

8 Schedules
A schedule represents a series of time events. The schedule fires at the specified time events. If the
time event is calculated from property instances, the time event can be changed by assigning new
values to these properties. The schedule can be modified, cancelled or made to fire another time
event.

At the specified time event the schedule fires by invoking a process. The schedule can also represent
a time constraint by throwing a fault that causes the related activity or process to abort.

Schedule Instance
A schedule instance is created from a schedule definition. The schedule instance keeps track of the
next time event and fires at the specified time instant. If the time event is in the past, the schedule
instance fires when it is instantiated. If the time event is unspecified, the schedule instance does not
fire.

The schedule instance calculates the next time event using the values of the duration, instant and
repeat properties. The duration and instant properties are mutually exclusive. The schedule definition
supports three attributes that provide the name of these properties.

The schedule instance calculates the next time event in the following manner:

• The value of the instant property provides the next time event. If the value is not of type
xsd:dateTime or convertible to that type, the next time event is unspecified.

• The value of the duration property is added to the time instant at which the schedule was
instantiated. The result provides the next time event. If the value is not of type xsd:duration or
convertible to that type, the next time event is unspecified.

• The value of the repeat property is added to the current time instant. The result provides the next
time event. If the value is not of type xsd:duration or convertible to that type, the next time event is
unspecified.

When a new schedule instance is created it calculates the next time event using the duration or
instant properties. The schedule instance re-calculates the next time event when a new value is
assigned to either property.

When the schedule instance fires, it calculates a new time event using the current value of the repeat
property. If the time event is unspecified the schedule will not fire again, unless an assignment of the
duration or instant properties causes it to calculate a new time event.

A schedule defined at the package level is instantiated using the initial values specified in the
definition of these properties. A schedule defined within a context is instantiated using values from
instances of these properties, and tracks changes to their values.

A schedule defined within a context is instantiated when the parent activity instance transitions to the
active state. It will use the duration property to calculate the next time event relative to the activity’s
start time.

If the schedule definition names a process, the schedule instance fires by invoking an instance of the
named process. If the invoked process instance aborts with a fault, a schedule instance defined
within a context will throw that fault in the context, causing the parent activity to abort.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 43 / 98

A schedule instance may only invoke one process instance at any given time. If the schedule is fired
while the invoked process instance is still executing, it skips that invocation but calculates the next
time event. Multiple schedule instances that reference the same process may invoke multiple
instances of that process in parallel.

If the schedule definition specifies a fault code, the schedule instance fires by throwing that fault in
the context, causing the parent activity to abort. Such a schedule is used to express a time constraint
on the completion of the parent activity.

Schedule Definition
A schedule definition is a composition of the following attributes:

Attribute Description
name The schedule name.

documentation Documentation. (Optional)

process The name of a process.

code A fault code.

duration The name of the duration property.

instant The name of the instant property.

repeat The name of the repeat property. (Optional)

other Other mechanism.

The name attribute provides a name that can be used to reference the schedule definition. A context
definition must not contain two schedule definitions with the same name. It is an error if two schedule
definitions with the same name exist in the package.

The process attribute provides the name of a process. A schedule defined at the package level must
name a process definition that exists in the package. A schedule defined within a context must name
a process definition that exists in the same context, a parent context or the package. The named
process definition must have instantiation type activity and must not specify any required input
parameters.

The code attribute specifies a fault code. The code attribute is mutually exclusive with the process
attribute. A schedule defined within a context must specify either attribute. A schedule defined at the
package level must specify the process attribute.

The instant, duration and repeat attributes provide the name of the instant, duration and repeat
properties, respectively. The instant and duration attributes are mutually exclusive. The repeat
attribute is optional and may be used with both instant and duration attributes.

A schedule defined at the package level must name property definitions that exist in the package. A
schedule defined within a context must name property definitions that exist in the same context or a
parent context.

A schedule definition may use some other mechanism to specify a series of time events. For
example, it may specify a particular time instant, a recurrence rule, or reference a calendar. Such
mechanisms may be specified outside the BPML specification. A schedule definition that uses the
other attribute must not use the instant, duration or repeat attributes.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 44 / 98

The syntax for a schedule definition is given as:
<schedule
 name = NCName
 process = QName
 code = QName
 duration = QName
 instant = QName
 repeat = QName>
 Content: (documentation?, {extension element}?)
</schedule>

Extension elements can be used to specify a series of time instants using a mechanism defined in
some other specification. Extensions elements are defined in a namespace other than the BPML
namespace.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 45 / 98

9 Exceptions
A process must be able to detect exceptional conditions, whether they are communicated by other
processes using messages, signified by signals, or are the result of activities that fail to complete.
The process reacts to these exceptional conditions using exception processes and fault handlers. If
the process elects to back-out from a completed activity or select an alternative path for execution, it
may need to utilize compensation processes.

9.1 Exception Processes
Exceptional events may occur that do not allow activities and processes to complete successfully. An
exceptional event could be triggered from an input message, asking the process to terminate all work
and complete immediately, or from a source that raises a signal to signify the exceptional condition.

Exception processes react to exceptional events that are signified by an input message or raised
signal. An exception process is similar to a nested process but may be instantiated only once within a
context instance and only in response to an input message or a raised signal. When the exception
process is instantiated, all other activities executing in that context are terminated.

An exception process interrupts the execution of a parent activity and causes it to abort. The activity
defines all the exception processes that interrupt it in a child context. Interruption can only occur while
the activity instance is in the active state. Exception processes are not instantiated while their parent
activity is in any other state.

When the activity instance is interrupted, it transitions to the aborting state and terminates all activities
executing in its child context before responding to the exceptional event. This transition prohibits the
instantiation of two exception processes in the same context instance. Activities that cannot terminate
are allowed to complete or abort. Termination of activities is covered in 9.3 Terminating Activities.

Once all activities that are executing in the context instances complete or abort, the exception
process can proceed to deal with the exception by executing activities from its activity set. The
exception process’s event-triggered activities are allowed to receive an input message during
instantiation, but must not perform any other work until after all other activities in the parent context
are terminated.

When the exception process instance completes, the parent activity can transition to the aborted
state. If the exception process aborts with a fault, that fault is thrown in the context and may cause a
fault handler to execute next.

An exception process instance is not terminated by throwing the bpml:terminate fault in its context. If
a parent context responds to an exception while an exception process is executing in a child context,
it must wait for the later to complete or abort. If the exception process performs activities of significant
duration, it should perform them asynchronously by spawning another process.

An exception process definition is similar to a nested process definition, with the following differences:

• Exception processes do not support instantiation type activity, and cannot be instantiated from
the call and spawn activities. The parameters attribute is not supported.

• Since only one exception process may be instantiated in a context instance, it has the same
identity as the parent process. The identity attribute is not supported.

• Exception processes cannot be compensated. The compensation attribute is not supported.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 46 / 98

• An exception process instance is persistent if the parent process instance is persistent. The
persistent attribute is not supported.

An exception process is defined using the exception element. The syntax for the exception element is
given as:

<exception
 name = NCName>
 Content: (documentation?, event, context?, {any activity}+)
</exception>

9.2 Faults and Fault Handlers
A fault indicates an erroneous condition that prevents an activity from completing successfully or
from recovering from another fault. Every executing activity or process instance must either complete,
abort or abort with a fault. An activity aborts with a fault to indicate that it cannot deal with the
erroneous condition and to prevent the execution of downstream activities that may depend on it. The
activity aborts without a fault if it is able to deal with the erroneous condition using one of its fault
handlers.

If a simple activity aborts, it aborts with a fault. The delay and empty activities never abort. The fault
activity always aborts with a fault. The assign, raise, spawn and synch activities may abort with a fault
due to a type mismatch, erroneous expression, no signal source, and so forth.

The call and compensate activities may abort with a fault for the same reason. In addition, if the
invoked process aborts with a fault, they will abort with the same fault. If the action activity performs a
synchronous operation that receives a fault message, it aborts with a fault that identifies that fault
message.

Complex activities can recover from a fault by executing a fault handler. If the fault handler
completes successfully, the activity aborts without a fault. Otherwise, the activity aborts with a fault.
Fault handlers execute after exception processes. This allows the parent activity to abort without a
fault, even when the exception process aborts with a fault.

When an activity aborts with a fault, that fault is associated with the context instance in which the
activity executed. We say that the fault is thrown in that context. This behavior applies to simple and
complex activities alike. It also applies to any nested processes or exception processes instantiated in
that context, and to every schedule instantiated in that context.

The fault code is assigned to the implicit property inst:fault. This property is implicitly defined as part
of every context definition. It is an error to define a property with this name, or to assign a value to this
property. A context instance can respond to only one fault. As such, the inst:fault property can be
assigned once in a given context instance. If a second fault occurs it will not change the value of the
inst:fault property.

The fault code is a qualified name that is used to identify the fault, allowing the process to react
differently to each fault using specific fault handlers. Fault codes are not explicitly defined. The BPML
specification defines some fault codes and indicates which activities throw these faults and for what
reason. Process definitions will add additional fault codes to indicate erroneous conditions that are
specific to their behavior.

When a fault is thrown in a context instance, the parent activity transitions to the aborting state and
terminates all activities executing in its child context. Activities that cannot terminate are allowed to
complete or abort. Termination of activities is covered in 9.3 Terminating Activities.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 47 / 98

Once all activities executing in the context instances complete or abort, a fault handler is executed.
Fault handlers are part of a context definition, and execute in the context instance in which the fault
was thrown. After executing the fault handler, the parent activity transitions to the aborted state.

A fault handler specifies a set of fault codes and an activity list that is executed if the thrown fault is
identified by that set. The context can define multiple fault handlers but must not define two fault
handlers that respond to the same fault code. For convenience, the context may define one fault
handler that responds to all fault codes that are not specified in any other fault handler.

The fault handler executes all activities from its activity list in sequential order. If any of these activities
aborts with a fault, the parent activity aborts with the same fault code. Otherwise, the parent activity
aborts without a fault.

If no fault handler responds to the fault, the parent activity aborts with that fault. A process definition
should include suitable fault handlers if it must perform any activities or invoke any compensation
processes before aborting.

Fault Handler
The fault handler construct is a composition of the following attributes:

Attribute Description
name The handler name. (Optional)

code One or more fault codes. (Optional)

documentation Documentation. (Optional)

activities One or more activities. (Ordered)

The name attribute provides a name that can be used to reference the fault handler. A context
definition must not contain two fault handlers with the same name. If the name attribute is
unspecified, the fault handler should be referenced by its ordinal position.

The code attribute specifies one or more fault codes. A context definition must not contain two fault
handlers that specify the same fault code. A context definition may contain one fault handler that does
not specify any fault codes.

The activities attribute provides a list of activities to execute.

A context definition groups all its fault handlers under a single faults element. The syntax for the faults
element is given as:

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 48 / 98

<faults>
 Content: ((case+, default?) | default)
</faults>

<case
 name = NCName
 code = list of QName>
 Content: (documentation?, {any activity}+)
</case>

<default
 name = NCName>
 Content: (documentation?, {any activity}+)
</default>

The case element is used for a fault handler that specifies one or more fault codes. The default
element is used for the one fault handler that does not specify any fault codes.

9.3 Terminating Activities
An activity can terminate without repercussion only when it is in the ready state. The activity is in fact
canceled. If the activity is in any other state and it is not possible to terminate the activity, it must be
allowed to complete or abort. An activity instance terminates by transitioning to the aborting state, and
from there to the aborted state.

The assign, empty, fault and spawn activities take an insignificant amount of time to complete and are
never terminated. The delay activity terminates immediately.

The action activity is in the active state when it performs or invokes an operation, and is allowed to
complete or abort. Operations require only a short amount of time to complete and terminating an in-
progress operation is disruptive. The action activity is in the ready state when it is waiting to receive
the first input message of the operation. In this state it terminates immediately.

The synch activity is in the ready state when it is waiting for a signal to be raised. The raise activity is
in the ready state when it is waiting for a single-raise signal to be synchronized. When in this state,
they terminate immediately.

The call and compensate activities must terminate the invoked process instance before they can
terminate. They do so by throwing the bpml:terminate fault in the context of the invoked process
instance.

Complex activities can terminate when they are in the ready or active state. In the active state they
execute activities that are defined in a child context and terminate by throwing the bpml:terminate
fault in that context instance. As a result the complex activity transitions to the aborting state and
terminates or completes all executing activities. The complex activity then executes an event handler,
and finally transitions to the aborted state.

The choice activity is in the ready state when it is waiting for an event and in the active state while
executing an event-triggered activity. Event-triggered activities that are in the ready state can
terminate. If an event-triggered activity is already in the active state, it completes and the choice
activity then transitions to the aborted state.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 49 / 98

A process terminates in the same manner as a complex activity. Complex activities nested within
other complex activities and nested processes are terminated recursively by throwing the
bpml:terminate fault in their context instance. The bpml:terminate fault is not thrown in the context of
an exception process (see 9.1 Exception).

Throwing the bpml:terminate fault in a context instance causes the context instance to execute a fault
handler. The fault handler should perform any activities that are required for recovery before the
parent activity aborts. The fault handler may throw a fault with a different code. If the parent activity is
also terminated, the bpml:terminate fault is thrown in the parent context first and the fault handler’s
fault is ignored.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 50 / 98

9.4 Compensation
When a process encounters an exceptional condition that prevents it from completing it should back-
out from what it was doing before aborting. If the process acquired resources required in order to
complete, it should release these resources and make them available to other processes. If the
process has executed a reversible activity, it should back-out by reversing that activity.

In order to back-out after executing activities, the process must revert the effects of these activities.
We refer to the act of reverting the effects of a completed activity as compensation. The process
should compensate for completed activities before it aborts or when it selects an alternative path for
completion.

A compensation process is a process defined as part of a parent process for the purpose of reverting
the effects of the parent process. In other words, the compensation process has the logic to undo
what the parent process has done. When the parent process is used in a larger composition that
must back-out, its compensation process is invoked to carry out that logic.

A process definition can define one compensation process. The compensation process can be
instantiated only after the parent process instance completes. If the parent process fails to complete,
it should use fault handlers to recover and back-out. From the fault handler it can invoke the
compensation processes of any processes that it had instantiated.

The compensation process context is a child of the parent process context. Although the
compensation process executes when the parent process instance is in the completed state, it may
access and modify the value of property instances in that context, and can instantiate nested
processes defined there.

The compensation process should use the same instantiation type as the parent process, allowing
both processes to be instantiated from the same source. It should also use the same correlation as
the parent process.

Once the parent process instance transitions to the completed state the compensation process starts
responding to input messages or raised signals. The compensation process may be instantiated only
once for a given parent process instance. A BPML implementation may create a compensation
process instance and put it in the ready state waiting to respond to an instantiation event.

The call and spawn activities cannot reference a compensation process. Instead, the compensate
activity invokes a compensation process that has instantiation type activity by referencing the name of
its parent process. It can reference a process instance that was instantiated using the call and spawn
activities, or a nested process that was instantiated in the same process instance.

The compensate activity ignores process instances that are in the aborted state, but throws the
bpml:compensation fault if the named process instance is in the active state. It also ignores any
process instance for which a compensation process was already instantiated.

The compensate activity is often used in fault handlers to compensate for processes that have
completed before the parent activity was asked to abort. It is used in a compensation process to
compensate for processes that were instantiated by the parent process during its execution.

A compensation process may specify a time limit on compensation. After the specified time limit, the
compensation process cannot be instantiated. The time limit is derived from the value of properties
defined in the parent process.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 51 / 98

A compensation process definition is similar to a nested process definition, with the following
differences:

• It adds the instant and duration attributes

• Since only one compensation process may be instantiated from a process instance, it has the
same identity as the parent process. The identity attribute is not supported.

• Compensation processes cannot be compensated. The compensation attribute is not supported.

• A compensation process instance is persistent if the parent process instance is persistent. The
persistent attribute is not supported.

The instant and duration attributes are optional and mutually exclusive. They provide the name of a
property that must be defined in the parent process context. The value of that property is used to
establish the time instant after which the compensation process cannot be instantiated.

That time instant may be one of the following:

• The time instant provided by the instant attribute.

• The time instant at which the parent process instance has completed plus the time duration
provided by the duration attribute.

• Indefinite if both attributes are unspecified.

• Indefinite if the named property has not been instantiated or if it has an empty value.

A compensation process is defined using the compensation element.

The syntax for the compensation element is given as:
<compensation
 name = NCName
 duration = QName
 instant = QName>
 Content: (documentation?, (event | parameters?),
 context?, {any activity}+)
</compensation>

The following example illustrates the use of exceptions, fault handlers and compensation to
implement a two-step order process.
The process starts in response to an order request that provides the order details and the
expected time to complete. The operation is synchronous and returns the order identifier that is
used for correlating subsequent messages received or sent by this process.
The process performs two steps by invoking the processes ‘chargeCustomer‘ and ‘shipProduct,‘
and then sends a notification message upon completion.
The process can be aborted at any point by sending a cancellation request that will instantiate the
exception process ‘cancelRequest‘.
If the process does not complete within the specified time limit, the fault ‘tns:timeout‘ will cause it
to abort.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 52 / 98

If a fault occurs that prevents it from completing, the process sends a suitable notification
message before aborting. The notification is not required if the process aborts due to a
cancellation request or timeout, since the user is aware of these conditions.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 53 / 98

Since the process may have completed ‘chargeCustomer‘ and/or ‘shipProduct‘ when a fault or
exception occur, it compensates for them by invoking their compensation process (one issues a
refund, the other cancels the shipment).
Once the process has completed, it is possible to compensate for the process by sending a
cancellation request. This is the same operation as before, but occurs in a different context. In this
state the order has already shipped and the process waits for the order to be returned before
issuing a refund.

<identity name=”order” property=”tns:orderID”/>

<property name=”orderID” type=”tns:orderID”/>

<process name=”twoStepOrder”

 identity=”tns:order”>

 <event activity=”receiveOrder”/>

 <context>

 <property ref=”tns:orderID” fixed=”true”/>

 <property name=”details” element=”tns:orderDetailsType”/>

 <property name=”tns:timeLimit” type=”xsd:duration”/>

 <schedule name=”timeToComplete” code=”tns:timeout”

 duration=”tns:timeLimit”/>

 <exception name=”cancelRequest” >

 <event activity=”receiveCancelRequest”/>

 <action name=”receiveCancelRequest”

 portType=”orderService” operation=”cancelRequest”

 correlate=”tns:orderID”>

 <input element=”tns:orderID”

 property=”tns:orderID”/>

 </action>

 <assign name=”statusCanceled” property=”status”>

 <value>canceled</value>

 </assign>

 <compensate process=”tns:activityA tns:activityB”/>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 54 / 98

 </exception>

 <faults>

 <case code=”tns:timeout”>

 <assign property=”status”>

 <value>timeout</value>

 </assign>

 <compensate process=”tns:activityA tns:activityB”/>

 </case>

 <default>

 <assign name=”statusAborted” property=”status”>

 <value>aborted</value>

 </assign>

 <action name=”notifyError”

 portType=”orderService” operation=”notifyError”>

 <output element=”tns:orderID”>

 <source property=”tns:orderID”/>

 </output>

 <output element=”tns:reason”>

 <source property=”inst:fault”/>

 </output>

 </action>

 <compensate process=”tns:activityA tns:activityB”/>

 </default>

 </faults>

 </context>

 <action name=”receiveOrder”

 portType=”orderService” operation=”order”>

 <input element=”tns:details”

 property=”tns:orderDetails”/>

 <input element=”tns:timeToComplete”

 property=”tns:timeLimit”/>

 <output element=”tns:orderID”>

 <source property=”tns:orderID”/>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 55 / 98

 </output>

 <assign property=”tns:orderID”

 xpath=”func:newIdentifier('tns:orderID')”/>

 </action>

 <assign name=”statusStarted” property=”status”>

 <value>started</value>

 </assign>

 <call process=”tns:chargeCustomer”>

 <output parameter=”tns:details”>

 <source property=”tns:details”/>

 </output>

 </call>

 <call process=”tns:shipProduct”>

 <output parameter=”tns:details”>

 <source property=”tns:details”/>

 </output>

 </call>

 <assign name=”statusComplete” property=”status”>

 <value>complete</value>

 </assign>

 <action name=”notifyComplete”

 portType=”orderService” operation=”notifyCompletion”>

 <output element=”tns:orderID”>

 <source property=”tns:orderID”/>

 </output>

 </action>

 <compensation name=”cancelRequest”>

 <event activity=”receiveCancelRequest”/>

 <action name=”receiveCancelRequest”

 portType=”orderService” operation=”cancelRequest”

 correlate=”tns:orderID”>

 <input element=”tns:orderID”

 property=”tns:orderID”/>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 56 / 98

 </action>

 <call process=”tns:receiveReturn”>

 <output parameter=”tns:details”>

 <source property=”tns:details”/>

 </output>

 </call>

 <compensate process=”tns:chargeCustomer”/>

 <assign name=”statusReturned” property=”status”>

 <value>returned</value>

 </assign>

 </compensation>

</process>

Example 4 Using exceptions, fault handlers and compensations to implement a two-step order

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 57 / 98

10 Transactions
This section explores the relation between atomic activities, persistent processes and transaction
protocols.

It defines the behavior of an atomic activity that executes as a single unit of work, and how two atomic
activities that interact through message exchange execute in the context of an atomic transaction that
applies atomic behavior to both activities.

It defines the behavior of persistent processes and how a BPML implementation provides a failure
resilient environment for the execution of such processes.

Last, it explores the relationship between the BPML specification and existing transaction protocols
such as BTP and WS-Transactions.

10.1 Atomic Activity
An atomic activity is an activity that executes as a single unit of work. An atomic activity ensures that
other activities will not see partial results while the activity is executing, only the result of its execution
once it completes. Should the activity abort, any partial work is discarded.

Consider an action activity that assigns values to two properties from a single input message. If an
error occurs while attempting to assign a value to the second property, the activity must abort. A fault
handler can recover from the error and elect to execute a different set of activities. These activities
may expect that the second property holds a previous value, or if the property is fixed holds no value.
The action activity must behave in an atomic manner: it must either assign a value to both properties
and complete, or abort without assigning a value to either property.

Most simple activities are atomic activities. The exceptions are the call and compensate activities and
the action activity when it specifies the activities attribute. The process definition depends on the
atomic behavior and does not deal with the possibility that an atomic activity may institute partial
changes and abort, leaving the process instance in an inconsistent state.

Complex activities are not atomic by default. While atomic behavior is desirable in many situations, it
is not practical in all situations. Atomic behavior would prevent two complex activities from executing
in parallel and sharing information through properties, or from coordinating their work through
messages and signals.

The only way in which two atomic complex activities may interact is by executing in the same atomic
context. Otherwise, one atomic activity may abort while the other one may complete. Having gained
information from the aborting activity through the interaction, the completed activity has seen the
partial results of its execution. We can no longer say that the aborted activity is atomic.

The fact that two atomic activities may interact only when executing in the same atomic context
places a limitation on the utility of atomic activities. It prevents one activity from completing before all
other activities it interacts with have completed, or from completing even though some activities have
aborted. Complex processes, especially those executing over a long period of time and interacting
with multiple participants, should not be defined as atomic activities.

Atomic activities should be defined to execute over a relatively short period of time. An activity that
may not complete in a short time frame should not be defined as an atomic activity. In particular
activities that involve request/response interactions with users or over low-latency protocols such as
SMTP.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 58 / 98

Long-lived processes can and often are composed of multiple atomic activities, and the ability to
model some complex activities as atomic simplifies the definition of these processes.

Behavior
A complex activity is defined as atomic by defining the context of its activity set as atomic. We say
that the complex activity is atomic and that its activities execute in an atomic context. The atomic
activity ensures that all activities from the activity set execute as one unit of work. All child contexts of
the atomic context are also atomic and must not specify the atomic attribute with the value false.

An atomic activity must ensure that property assignments are not reflected outside the atomic context
until the activity completes, and that the assignments do not take place if the activity aborts. If any
activity executing in the atomic context assigns a value to a property defined in a non-atomic context,
no activity executing outside the atomic context is allowed to access that value until the atomic
activity completes or aborts. The assignment takes place only if the atomic activity completes.

The atomic activity may need to assign the value of a property when it aborts, for example, to indicate
the reason for its failure. It does so using the property attribute of the fault activity. If that fault activity
is the last activity executed by the atomic activity, an assignment to the named property would take
place when the atomic activity aborts.

The process instance keeps track of all activity instances and makes their status available through
instance functions. This allows one activity to determine the status of another activity instance.
Instance functions executing in a non-atomic context cannot determine the status of an activity
executing in an atomic context until the parent atomic activity completes. Instance functions can
determine the status of the atomic activity itself. Instance functions are covered in 12.2 Instances.

If the atomic activity performs an asynchronous operation that sends an output message, the output
message may be received after the atomic activity completes or aborts. To prevent inconsistencies,
the output message is sent only if the atomic activity completes, and is not sent if it aborts. The
atomic activity must not expect to receive an input message in response to an output message that
was sent in this manner.

If the atomic activity performs an asynchronous operation that receives an input message and aborts,
it provides no indication whether or not the message was received. To prevent inconsistency, the
input message is not considered received until the atomic activity completes. If the atomic activity
aborts, the input message may be received by another activity.

If the atomic activity performs a synchronous operation that sends an input message and receives an
output message, it may introduce a dependency with an activity executing in a different process. To
prevent inconsistency, both activities must complete or abort together. They should use a
communication protocol that allows this form of coordination. Such communication protocols are
discussed in 10.3 Transactions.

If the atomic activity raises a signal that is defined in a non-atomic context, the signal instance is not
available to any activity executing outside the atomic context until the atomic activity completes, and
is discarded if the atomic activity aborts. If the atomic activity synchronizes on a signal that is raised in
a non-atomic context, the signal instance is discarded only if the atomic activity completes. Activities
executing outside the atomic context must wait for the atomic activity to complete before they can
synchronize on that signal.

If the atomic activity invokes a process using the call or compensate activities, or using a schedule,
the atomic behavior is extended to include the invoked process instance, whether or not that process
is defined as an atomic activity. If the atomic activity instantiates a process using the spawn activity
and that process is not defined in the atomic context, the process is instantiated only when the atomic
activity completes and is not instantiated if the atomic activity aborts.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 59 / 98

10.2 Persistent Processes
An activity that executes over a long period of time must execute in a failure resilient environment. If a
system failure occurs, the activity must be allowed to continue executing from a consistent state.

Consider a process that orders a product, submits payment and waits for the product to arrive when a
system failure occurs. If the process is discarded, we have no recollection that the product was
ordered and payment was made. Attempting to execute a new process instance will result in two
orders, two payments and two shipments. After system failure, the process should proceed from the
same point it was before the failure – waiting for the shipment of the product.

A persistent process is failure resilient. Persistence is defined as the ability to recall a process
instance for an indefinite amount of time after the process has completed or aborted, and the ability to
recall a consistent process instance after system failure.

A consistent process instance is defined as the state of the process instance that exists after the
execution of atomic activities. The process instance must recall all atomic activities that have
completed or aborted. The process instance must not reflect the partial execution of any atomic
activity. The activity behaves as if it aborted, but the process instance has no recollection that it ever
executed.

A BPML implementation provides a failure resilient environment for the execution of processes by
implementing backward and forward recovery. Forward recovery is the ability to recall a process
instance after system failure, bring it to a consistent state and then continuing executing it. Backward
recovery is the ability to abort and discard an atomic activity that did not complete or abort before
system failure occurred.

Business intelligence and performance analysis require access to both current and historical data.
Aggregate queries are performed over process instances that have executed over a significant period
of time that can range in months or years, and often the majority of these process instances are no
longer active.

A persistent process instance may be retained for an indefinite period of time, to allow such queries to
access its properties. The definition of such queries and the means for specifying the desired period
of time are covered in the BPQL specification.

Behavior
A process instance is persistent if the process definition specifies the persistent attribute with the
value true. A process instance is not persistent if the process definition specifies the persistent
attribute with the value false. A process definition must not define a compensation process and
specify the persistent attribute with the value false. A process instance is also persistent if some other
mechanism indicates that it is persistent.

A nested process instance is persistent if it is instantiated in a persistent process instance and does
not specify the persistent attribute with the value false. Exception and compensation process
instances are persistent if the parent process instance is persistent.

A process instance is persistent if instantiated from a persistent process instance using the call or
spawn activities or using a schedule, and it does not specify the persistent attribute with the value
false.

The call and compensate activities are not atomic. They continue executing after recovery. If a
system failure occurs while the call activity invokes a non-persistent process instance, the activity will
invoke the process instance again after recovery.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 60 / 98

An action activity that specifies the activities attribute is not atomic. After recovery it must abort with
the fault bpml:terminate.

A persistent process instance is retained after the process completes if the process definition
specifies a compensation process. The process instance may be discarded after the compensation
process has completed or aborted, or when the compensation process can no longer be instantiated,
for example, after the specified time limit, or when the calling process instance is discarded.

10.3 Transactions
Transaction protocols allow two processes that interact through message exchange to coordinate the
completion of their activities. Transaction protocols are used when two processes must assure that
their activities complete or abort together. We cover two types of transactions and related protocols:
atomic transactions and open nested transactions.

Atomic Transactions
Atomic transactions allow two systems to execute atomic activities in a shared atomic context, such
that both activities complete or abort together. The atomic transaction provides the context that spans
the execution of the two atomic activities. The outcome of the transaction is a combination of the
outcome of all activities that execute as part of its context. The outcome of the transaction is success
if all activities are able to complete. The outcome is failure if any activity is not able to complete or if
the state of that activity cannot be determined.

Atomic transactions are realized through transaction protocols that allow two systems to coordinate
the execution of activities and communicate the outcome of the transaction, and through transaction
managers that maintain the transaction context and track the outcome of the transaction.

The transaction context is created before executing the first activity in the transaction. The transaction
context is communicated as part of the message exchange to indicate to activities that they must
execute as part of that transaction.

An atomic activity that executes in a transaction context does not complete until the transaction
outcome is determined. It will remain in the completing state, awaiting a resolution of the transaction
outcome. The activity transitions to the completed state only if the outcome of the transaction is
success. It aborts with the fault bpml:rollback if the outcome of the transaction is failure.

If the outcome of the transaction is failure, all of its activities are asked to abort. An atomic activity that
aborts forces the transaction outcome to become failure. If the outcome of the transaction is success,
than all activities executing in that transaction are able to complete.

An atomic activity demarcates the boundary of participation in the transaction context. The activity
requires a transaction context in order to communicate it as part of messages exchanged with other
services. An atomic activity instance cannot participate in two unrelated transaction contexts.

If the activity starts by performing a synchronous operation that responds to an input message, it
obtains the transaction context from the input message. If the activity is an action that executes in a
non-atomic context, it will behave as an atomic activity in this situation.

To execute activities as part of the same transaction, two systems must use a common transaction
protocol. A single transaction may involve the use of multiple transaction protocols, but any two
systems interacting with each other must agree to use the same protocol.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 61 / 98

The BPML specification does not mandate the use of any particular transaction protocol. A BPML
implementation should support existing atomic transaction protocols such as BTP, OTS, WS-
Transaction and X/Open XA. The BPML specification was designed to leverage these transaction
protocols.

Open Nested Transactions
Non-atomic activities that need to coordinate with each other use open nested transactions. While
atomic transactions are the domain of short-lived transactions, open nested transactions are suitable
for short- and long-lived transactions. An open nested transaction can involve activities that perform
request/response interactions using asynchronous operations, and activities that execute over a long
period of time.

An open nested transaction may involve the execution or one or more open nested and atomic
transactions. Transactions can be nested within each other to any arbitrary level. A non-atomic
activity cannot participate in two unrelated transaction. However, it can execute atomic and non-
atomic activities in unrelated transaction contexts, allowing transactions to be interleaved.

Non-atomic activities communicate the transaction context and transaction outcome in a similar
manner to atomic activities. To participate in an open nested transaction, the non-atomic activity must
execute as a persistent process instance or as an activity in the context of one. A process instance
that does not specify the persistent attribute becomes persistent if it participates in an open nested
transaction.

The BPML specification does not mandate the use of any particular transaction protocol. A BPML
implementation should support existing transaction protocols such as BTP and WS-Transaction. The
BPML specification was designed to leverage these transaction protocols.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 62 / 98

11 Activity Types
This section defines all the activity types that are a normative part of the BPML specification.

11.1 Action
The action activity performs or invokes a single operation that involves the exchange of input and
output messages.

The action activity is a composition of the activity attributes and the following attributes:

Attribute Description
operation The operation name.

input Zero or more mappings from the input message to properties.

output Zero or more mappings from output values to the output message. (Ordered)

locator The locator. (Optional)

correlate One or more correlation properties. (Optional)

activities One or more activities. (Optional, Ordered)

The action activity is a simple activity. It performs or invokes a single operation and completes after
the operation completes, or aborts if the operation fails.

The operation attribute provides the name of the operation. The activity does not define the operation.
Rather it provides the context for execution. The semantics of the activity depend on the definition of
the operation, and the manner in which the operation is used (see semantics).

The activity passes values in the output message by mapping output values to the message. The
output attribute is an ordered collection of zero or more mappings. Each mapping produces one
output value. The activity throws the bpml:typeMismatch fault if an output value does not match the
type declared by its mapping. The result of all mappings is an ordered sequence of elements. The
activity throws the bpml:typeMismatch fault if it cannot map the result to the output message.

The activity can map values from the input message to properties in the current context. The input
attribute is a collection of zero or more mappings. The source value is an ordered sequence of
elements derived from the message contents. Each mapping produces one input value that is
assigned to a property defined in the current context. Information that is not mapped is lost.

It is an error if two mappings exist for the same property, if the property cannot be assigned in the
current context, or if the input value and property are of incompatible types. The activity throws the
bpml:typeMismatch fault if it cannot map the input value to the property.

When using WSDL 1.1, the abstract message definition specifies the message content model. If the
message definition consists of a single message part of a complex type, the message content model
is the same as the complex type content model. If the message definition consists of zero or more
message parts, the message content model is an ordered sequence of elements as given in the
message definition.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 63 / 98

The locator attributes provides the location of a service. When the activity invokes an operation it
must provide the location of the service that performs that operation. The use of the locator attribute
identifies whether the activity performs or invokes the operation.

The correlate attribute provides an association between the input message and the context instance
in which the activity is executed. The correlation refers to properties mapped from the input message.
It identifies the context instance in which the activity is performed by matching property instances with
the same name and value. A correlation is only required if the activity responds to an input message
and the input message may be received in multiple context instances.

The activities attribute provides a means for performing activities in response to an input message
and before sending an output message. This attribute may be used when the activity responds to an
input message by performing or invoking a synchronous operation.

If the activity responds to an input message, it remains in the ready state until the input message is
received and transitions to the active state in order to receive the message.

If the activity encounters a communication error when attempting to send an output message or
receive an input message, it throws the bpml:communication fault.

The syntax for the action element is given as:
<action
 name = NCName
 portType = QName
 operation = NCName
 correlate = list of QName
 locate = QName
 role = QName
 {extension attribute}>
 Content: (documentation?, (input | output)*, {any activity}*)
</action>

When the activity responds to an input message, the input elements should precede the output
elements. When the activity initiates the operation with an output message, the output elements
should precede the input elements.

When using WSDL 1.1, operations are referenced using the portType and operation attributes. Both
attributes must be used in order to reference the operation definition. Using these attributes indicates
that the operation definition adheres to the semantics defined in the WSDL specification.

Extension attributes can be used to reference operations defined in other languages. Extensions
attributes are defined in a namespace other than the BPML namespace.

Semantics
An operation is asynchronous when it involves a single input or output message. The operation
completes after it receives the input message, or sends the output message. When sending a
message, the operation does not wait for an indication that the message has been received by its
destination.

An operation is synchronous when it involves both an input and an output messages. The operation
completes only after it sends an output message and receives an input message, or after it receives
an input message and sends an output message.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 64 / 98

The activity initiates an operation when it begins by sending an output message. The activity
responds to an operation when it begins by receiving an input message.

The activity performs an operation when it is not aware of the source of the input message and/or the
destination of the output message. The operation definition specifies the input message (or
messages) that the activity receives as its input, and the output message (or messages) that the
activity sends as its output.

The activity invokes an operation when it identifies the service that is the source of the input message
and/or the destination of the output message. The operation definition specifies the input message (or
messages) that the activity sends as its output, and the output message (or messages) that the
activity receives as its input.

Input
The input construct is a composition of the following attributes:

Attribute Description
property The property name.

element An element name. (Optional)

select A selection expression. (Optional)

The property attribute provides the name of a property. The input value is assigned to that property. It
must name a property that can be assigned in the current context. It is an error for an activity to map
two input values to the same property. The activity throws the bpml:typeMismatch fault if it cannot
map the input value to the property.

The input construct operates on a source value that is either a sequence of elements or an atomic
value. If the element and select attributes are unspecified, the input value is the same as the source
value.

The element attribute provides the name of an element declaration. If specified, the source value
must be a sequence of elements and the input value is the named element from that sequence. The
activity throws the bpml:typeMismatch exception if the source value is not a sequence of elements,
the sequence does not contain the named element, or the sequence contains multiple instances of
the named element.

The select attribute provides a selection expression. The result of the expression is the input value. If
specified alone, the selection expression is evaluated on the source value. If specified in combination
with the element attribute, the selection expression is evaluated on that single element. The
expression must not reference any properties.

The syntax for the input element is given as:
<input
 property = QName
 element = QName
 xpath = XPath/>

The select attribute is an XPath expression. It must not reference any properties.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 65 / 98

Output
The output construct is a composition of the following attributes:

Attribute Description
type The output value type.

values A collection of one or more source properties and static values. (Optional)

expression An expression to evaluate. (Optional)

The type attribute provides the type of the output value. The activity throws the bpml:typeMismatch
fault if the output value does not match the declared type.

The values attribute is a collection of one or more source properties and static values. If the collection
has more than one item, each item must provide a sequence of elements and the output value is a
combination of these sequences.

The expression attribute provides the result of an expression. The expression is evaluated in the
current context and may reference multiple properties.

The values and expression attributes are mutually exclusive. If neither attribute is used, the output
value is an empty value.

The syntax for the output element is given as:
<output
 type = QName
 element = QName
 xpath = XPath>
 Content: (((source | value)+ | {extension element})?)
</output>

The output value type is identified using one of the following attributes:

• type – Identifies an XML Schema simple or complex type definition using its qualified name

• element – Identifies an XML Schema element declaration using its qualified name

One of these attributes must be used.

The output value is defined using the following attributes and elements:

• value – A static value.

• source – A source property.

• xpath – An XPath expression.

• extension – An expression in any other language.

The xpath attribute and extension element are mutually exclusive and cannot be used together. They
must not be used in combination with the value and source elements.

The definition of these elements is the same as for the assign activity.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 66 / 98

Locator
In order to invoke an operation the activity must locate a service that is able to perform that operation.
The locate attribute provides the name of a property, and the property’s value provides the location of
the service. Typically, it is a URI that identifies the service endpoint.

If the property value is of type inst:service or convertible to that type, it references a service definition
that may specify multiple endpoints and protocol bindings. The manner in which a BPML
implementation selects a particular endpoint and protocol binding is undefined.

A service definition indicates which operations are supported by the service. The activity throws the
bpml:serviceType fault if it detects that the invoked operation is not support by the specified service.

The activity throws the bpml:noSuchInstance fault if the property instance does not exist or has an
empty value. It throws the bpml:typeMismatch fault if it cannot convert the property instance value to
a service location.

Correlation
A correlation associates an input message to the instance of the activity. A correlation is required only
if the activity responds to an input message and that input message may be received by multiple
context instances

A correlation is not required when a top-level process is instantiated in response to an input
message. In this case multiple context instances will not exist. A correlation is used when an
instantiated process receives an input message. It is also used when a nested process is instantiated
in response to an input message and the correlation is required to identify the instance of the parent
process.

When using WSDL 1.1, the correlation attribute may be used when performing a one-way or request-
response operation, and when invoking a notification or solicit-response operation. It must not be
used in any other case.

The correlation establishes a relation between an input message and the context instance of the
activity. It does so by matching the value of properties that are mapped from the input message to
property instances with the same name and value in the current context.

The correlation attribute names one or more properties that are used for correlation. It is possible for
the properties to be defined in different contexts, for the value of property instances to change
between operations, and for the properties to be read-only.

The correlation attribute must name a property that is mapped from an input value using an input
construct. When a property is listed in the correlation attribute, the input value is not assigned to the
property. The value is only used to identify a context instance that has a property instance with the
same name and value.

Correlations can be used to distinguish between context instances of the same context definition, as
well as context instances of different context definitions. When two activity instances respond to an
input message of the same type, it is not a conflict if the message can be associated with at most one
of these activity instances.

Activities
The activities attribute allows the action activity to execute one or more activities after receiving an
input message and before sending an output message as part of a synchronous operation.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 67 / 98

When using a WSDL 1.1, the activities attribute may be used when performing a request-response
operation and when invoking a solicit-response operation. It must not be used in any other case.

After the input message is received, input values are assigned to properties in the current context.
Next, activities from the activity list are executed in sequential order. After executing all activities from
the activity list, the output message is sent.

These activities may access the input values from the assigned properties, and may assign values to
properties that are then mapped to the output message.

If any activity in the activity list aborts with a fault, the action activity identifies a suitable output
message based on the fault code, sends the output message and aborts with the same fault.

The following example illustrates a simple process that receives an order request and processes
the order, replying with an acceptance of the order followed by an invoice. The process can be
canceled by the customer before the invoice is submitted. For brevity, other messages and
activities are not shown here.
We define the service type for this example that supports two operations: receiving an order
request from the customer, and receiving a request to cancel the pending order. These operations
are performed by the example process given here.
The order message identifies the order using the order identifier that is assigned to a property with
that name. The order identifier is used to correlate the cancellation request to that particular
process instance.
We define the service type for the customer that supports two operations: receiving an
acceptance message and receiving an invoice message. These operations are invoked against
the customer service. The customer service is identified by a property that is assigned from the
order request message. The order is identified by mapping the order identifier value to the two
output messages.
This example does not show the activities that are used to construct the value of the
‘invoiceDetails‘ property.

<wsdl:message name=”requestMessage”>

 <wsdl:part name=”orderID” element=”type:orderID”/>

 <wsdl:part name=”sender” element=”type:senderService”/>

 <wsdl:part name=”details” element=”type:orderDetails”/>

</wsdl:message>

<wsdl:message name=”cancelMessage”>

 <wsdl:part name=”orderID” element=”type:orderID”/>

</wsdl:message>

<wsdl:portType name=”exampleServiceType”>

 <wsdl:operation name=”request”>

 <wsdl:input message=”srv:requestMessage”/>

 </wsdl:operation>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 68 / 98

 <wsdl:operation name=”cancel”>

 <wsdl:input message=”srv:cancelMessage”/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:message name=”acceptMessage”>

 <wsdl:part name=”orderID” element=”type:orderID”/>

</wsdl:message>

<wsdl:message name=”invoiceMessage”>

 <wsdl:part name=”orderID” element=”type:orderID”/>

 <wsdl:part name=”details” element=”type:invoiceDetails”/>

</wsdl:message>

<wsdl:portType name=”customerServiceType”>

 <wsdl:operation name=”accept”>

 <wsdl:input message=”srv:acceptMessage”/>

 </wsdl:operation>

 <wsdl:operation name=”invoice”>

 <wsdl:input message=”srv:invoiceMessage”/>

 </wsdl:operation>

</wsdl:portType>

<bpml:process name=”example”>

 <bpml:event activity=”receiveRequest”/>

 <bpml:context>

 <bpml:property name=”orderID” type=”type:identifier”/>

 <bpml:property name=”customerService” type=”inst:service”/>

 <bpml:property name=”orderDetails” element=”type:orderDetails”/>

 <bpml:property name=”invoiceDetails” element=”type:invoiceDetails”/>

 </bpml:context>

 <bpml:action name=”receiveRequest”

 portType=”srv:exampleServiceType” operation=”request”>

 <bpml:input element=”type:orderID”

 property=”bp:orderID”/>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 69 / 98

 <bpml:input element=”type:senderService”

 property=”bp:customerService”/>

 <bpml:input element=”type:orderDetails”

 property=”bp:orderDetails”/>

 </bpml:action>

 <bpml:sequence>

 <bpml:context>

 <bpml:exception name=”cancel”>

 <bpml:event activity=”receiveCancelRequest”/>

 <bpml:action name=”receiveCancelRequest”

 portType=”srv:exampleServiceType”

 operation=”cancel” correlate=”bp:orderID”>

 <bpml:input element=”type:orderID”

 property=”bp:orderID”/>

 </bpml:action>

 </bpml:exception>

 </bpml:context>

 <bpml:action name=”sendAcceptance”

 portType=”srv:customerServiceType” operation=”accept”

 locate=”bp:customerService”>

 <bpml:output element=”type:orderID”>

 <bpml:source property=”bp:orderID”/>

 </bpml:output>

 </bpml:action>

 . . .

 </bpml:sequence>

 <bpml:action name=”sendInvoice”

 portType=”srv:customerServiceType” operation=”invoice”

 locate=”bp:customerService”>

 <bpml:output element=”type:orderID”>

 <bpml:source property=”bp:orderID”/>

 </bpml:output>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 70 / 98

 <bpml:output element=”type:invoiceDetails”>

 <bpml:source property=”bp:invoiceDetails”/>

 </bpml:output>

 </bpml:action>

</bpml:process>

Example 5 Sending and receiving messages

11.2 All
The all activity executes activities in parallel.

The all activity is a composition of the activity attributes and the following attributes:

Attribute Description
activity set An activity set.

The all activity is a complex activity. It contains a single activity set and executes it exactly once. It
executes all activities from the activity set in parallel.

The syntax for the all element is given as:
<all
 name = NCName>
 Content: (documentation?, context?, {any activity}+)
</all>

11.3 Assign
The assign activity assigns a new value to a property.

The assign activity is a composition of the activity attributes and the following attributes:

Attribute Description
property The property name.

values A collection of one or more source properties and static values. (Optional)

expression An expression to evaluate. (Optional)

The assign activity is a simple activity. It assigns a new value to a property in the current context.

The property attribute provides the name of the property. It must reference a property that can be
assigned in the current context.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 71 / 98

The values attribute is a collection of one or more source properties and static values. If the collection
has more than one item, each item must provide a sequence of elements and the assigned value is a
combination of these sequences.

The expression attribute provides the result of an expression. The expression is evaluated in the
current context and may reference multiple properties.

The values and expression attributes are mutually exclusive. If neither attribute is used, the property
is assigned an empty value.

The syntax for the assign element is given as:
<assign
 name = NCName
 property = QName
 xpath = XPath
 {extension attribute}>
 Content: (documentation?, ((source | value)+ |
 {extension element})?)
</assign>

The value is defined using the following attributes and elements:

• value – A static value.

• source – A source property.

• xpath – An XPath expression.

• extension – An expression in any other language.

The value and source element can be used in combination to create a sequence of elements. Only
one element may be used if the result of that element is an atomic value. The definition of the value
element is the same as for a property definition

The xpath attribute and extension element are mutually exclusive and cannot be used together. They
must not be used in combination with the value and source elements.

Extension elements are used to support other expression languages. Extension elements are defined
in a namespace other than the BPML namespace. If an extension element is used, the manner in
which the expression is evaluated is dependent on the specification that covers that particular
extension element.

Source Attribute
The source attribute extracts a value from a single property instance.

The source attribute is a composition of the following attributes:

Attribute Description
property The source property.

expression An expression to evaluate. (Optional)

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 72 / 98

The property attribute provides the name of the property. It must reference a property in the current
context.

The expression attribute provides the result of an expression. The expression is evaluated on the
value of the property instance. The expression may only reference fixed properties with an existing
value.

The syntax for the source element is given as:
<source
 property = QName
 xpath = XPath>
 Content: ({extension element})?)
</source>

The xpath attribute provides an XPath expression that is evaluated with the value of the property
instance as the context node.

Alternatively, an extension element can be used to support other expression languages. Extension
elements are defined in a namespace other than the BPML namespace. If an extension element is
used, the manner in which the expression is evaluated is dependent on the specification that covers
that particular extension element.

11.4 Call
The call activity instantiates a process and waits for it to complete.

The call activity is a composition of the activity attributes and the following attributes:

Attribute Description
process The process being instantiated.

input Zero or more mappings from output parameters to properties.

output Zero or more mappings from output values to input parameters.

The call activity is a simple activity. It instantiates a process and waits for it to complete. The process
is instantiated in the same context in which it is defined. It may be different from the context in which
the call activity is executed.

The process attribute names the called process. The process definition must have instantiation type
activity. The process definition must exist in the current context. Starting with the current context and
traversing up to the root context, the first process definition with that name is instantiated. Otherwise,
a top-level process definition with that name is instantiated.

The activity passes parameter values to the process by mapping output values to input parameters.
The process definition specifies the name and type of all input parameters. The output attribute is a
collection of zero or more mappings. An output value must be mapped for every input parameter that
is defined as required. An output value may be mapped to any input parameter that is defined as
optional.

It is an error for two mappings to exist for the same input parameter. It is also an error if the output
value and input parameter are of incompatible types. The activity throws the bpml:typeMismatch fault
if it fails to map the output value to the input parameter.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 73 / 98

The process instance constructs output parameters that are passed back to the activity. The process
definition specifies the name and type of all output parameters. The input attribute is a collection of
zero or more mappings. An output parameter is mapped to a property defined in the current context.
If an output parameter is not mapped, the value of that output parameter is lost.

It is an error if for two mappings to exist for the same property. It is also an error if the property cannot
be assigned in the current context, or if the value of the output parameter and property are of
incompatible types. The activity throws the bpml:typeMismatch fault if it fails to assign the value of the
output parameter to the property.

The activity creates an association between the two processes:

• If the called process instance aborts with a fault, the activity throws the same fault.

• If the called process defined a compensation process, the calling process can use the
compensate activity with the process name to invoke the compensation process.

• In order for the activity to terminate, the called process instance is terminated first.

• Activities of the calling process instance may reference the called process instance using one of
the instance functions defined in 12.2 Instances.

• For information about atomic contexts and persistent processes refer to 10 Transactions.

The syntax for the call element is given as:
<call
 name = NCName
 process = QName>
 Content: (documentation?, output*, input*)
</call>

Input
The input construct is a composition of the following attributes:

Attribute Description
parameter The output parameter.

property A property name.

The parameter attribute provides the name of the output parameter. It must reference the name of an
output parameter from the called process definition.

The property attribute provides the name of a property. The value of the output parameter is assigned
to that property. It must reference a property that can be assigned in the current context.

The output parameter and property must have the same or compatible types. The activity throws the
bpml:typeMismatch fault if the output parameter cannot be assigned to the property.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 74 / 98

The syntax for the input element is given as:
<input
 property = QName
 parameter = QName/>

If the parameter attribute is absent, it has the same value as the property attribute.

Output
The output construct is a composition of the following attributes:

Attribute Description
parameter The input parameter.

values A collection of one or more source properties and static values. (Optional)

expression An expression to evaluate. (Optional)

The parameter attribute provides the name of the input parameter. It must reference the name of an
input parameter from the called process definition. The activity throws the bpml:typeMismatch fault if
it cannot map the output value to the input parameter.

The values attribute is a collection of one or more source properties and static values. If the collection
has more than one item, each item must provide a sequence of elements and the assigned value is a
combination of these sequences.

The expression attribute provides the result of an expression. The expression is evaluated in the
current context and may reference multiple properties.

The values and expression attributes are mutually exclusive. If neither attribute is used, the output
value is an empty value.

The syntax for the output element is given as:
<output
 parameter = QName
 xpath = XPath>
 Content: (((source | value)+ | {extension element})?)
</output>

The output value is defined using the following attributes and elements:

• value – A static value.

• source – A source property.

• xpath – An XPath expression.

• extension – An expression in any other language.

The xpath attribute and extension element are mutually exclusive and cannot be used together. They
must not be used in combination with the value and source elements.

The definition of these elements is the same as for the assign activity.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 75 / 98

11.5 Choice
The choice activity executes one of multiple activity sets in response to a triggered event.

The choice activity is a composition of the activity attributes and the following attributes:

Attribute Description
event handlers Two or more event handlers. (Ordered)

The choice activity is a complex activity. It contains two or more event handlers that associate an
event with an activity set. The choice activity executes a single activity set. It executes all activities
from that activity sets in sequential order.

The event handlers attribute is a collection of two or more event handlers. An event handler
associates an event with an activity set that is executed when the event occurs. An event is defined
by an event-triggered activity that completes when the event is triggered.

The choice activity waits for the first event-triggered activity to complete. Only one event-triggered
activity is allowed to complete. The choice activity starts in the ready state. Once an event-triggered
activity transitions to the active state, the choice activity also transitions to the active state and all
other event-triggered activities are terminated. Their associated activity sets will not execute.

Two event-triggered activities are not allowed to reach the active state together. The choice activity
does not specify order of precedence for its event-triggered activities.

Event handlers are mutually exclusive and the choice activity must not have two event-triggered
activities that respond to the same event.

An event handler construct is a composition of the following attributes:

Attribute Description
documentation Documentation. (Optional)

activity The event-triggered activity.

activity set An activity set.

Three event-triggered activity types are supported:

• action – An action activity that responds to an input message. The event is triggered if the input
message is received. The action activity may generate an output message in response to the
input message.

• synch – A synch activity that responds to a raised signal. The event is triggered if the signal is
raised and is matched by the synchronization condition.

• delay – A delay activity that represents the passage of time. The event is triggered when the time
instant is reached.

The event-triggered activity is executed in the current context of the choice activity. If a fault occurs
while executing an event-triggered activity, the choice activity aborts with the same fault.

The branch number is the ordinal position of the selected event handler, starting with one for the first
event handler in the set. The branch number is assigned to the property inst:branch in the context of
the activity set.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 76 / 98

The syntax for the choice element is given as:
<choice
 name = NCName>
 Content: (documentation?, event{2,*})
</choice>

<event>
 Content: (documentation?, (action | synch | delay),
 context?, {any activity}+)
</event>

In this example we use the choice activity to determine the status of order based on the response
message and assign it the appropriate status code.
After sending the order we wait for a message indicating that the order was accepted, or a
message indicating the order was rejected.
If the supplier has not responded within the specified time frame, we identify the order has not
been processed and assign it the status code ‘noResponse‘.

<action portType=”tns:supplier” operation=”submitOrder”/>

<choice>

 <event>

 <action portType=”tns:supplier” operation=”orderAccepted”/>

 <assign property=”tns:status”>

 <value>accepted</value>

 </assign>

 </event>

 <event>

 <action portType=”tns:supplier” operation=”orderRejected”/>

 <assign property=”tns:status”>

 <value>rejected</value>

 </assign>

 </event>

 <event>

 <delay duration=”tns:maxResponseTime”/>

 <assign property=”tns:status”>

 <value>noResponse</value>

 </assign>

 </event>

</choice>

Example 6 Waiting for one of two input messages or a time-out

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 77 / 98

11.6 Compensate
The compensate activity performs compensation for the named processes.

The compensate activity is a composition of the activity attributes and the following attributes:

Attribute Description
process The process names.

output Zero or more mapping from output values to input parameters.

The compensate activity is a simple activity. It invoked the compensation process of the named
process instances.

The process attribute provides the names of one or more processes.

The activity obtains all instances of the named processes that were instantiated in the same process
instance as the compensate activity, or instantiated from the same process instance using the call
and spawn activities. The activity does not obtain any instance of a process that was instantiated from
a nested process instance.

All process instances must be in the completed or aborted state and must define a compensation
process with instantiation type activity. The activity throws the bpml:compensation fault if any process
instance does not meet these requirements.

The activity ignores any process instance if it is in the aborted state, if its compensation process was
instantiated, or if its compensation process cannot be instantiated or anymore.

The activity passes parameter values to the compensation process by mapping output values to input
parameters. The process definition specifies the name and type of all input parameters. The output
attribute is a collection of zero or more mappings. An output value must be mapped for every input
parameter that is defined as required by any compensation process. An output value may be mapped
to any input parameter that is defined as optional.

It is an error for two mappings to exist for the same input parameter. It is also an error if the output
value and input parameter are of incompatible types. The activity throws the bpml:typeMismatch fault
if it fails to map the output value to the input parameter.

The activity invokes compensation processes sequentially, in reverse to the chronological order in
which their associated process instances have completed. It waits for each compensation process
instance to complete before proceeding to the next compensation process.

The activity creates an association between the two processes:

• If any compensation process instance aborts with a fault, the activity throws the same fault.

• In order for the activity to terminate, the invoked compensation process instance is terminated
first.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 78 / 98

The syntax for the compensate element is given as:
<compensate
 name = NCName
 process = list of QName>
 Content: (documentation?, output*)
</compensate>

The syntax for the output element is the same as for the call activity.

This example uses the compensate activity to perform compensation for multiple nested activities.
The process ‘compound‘ completes after executing the nested processes ‘activityX‘ and
‘activityY‘. If it aborts instead of completing, it recovers by compensating for either ‘activityX‘ or
‘activityY‘.
The compensation process for ‘compound‘ compensates for both ‘activityX‘ and ‘activityY‘ in the
proper order.

<process name=”compound”>

 <context>

 <process name=”activityX”>

 . . .

 <compensation name=”compensateX”>

 . . .

 </compensation>

 </process>

 <process name=”activityY”>

 . . .

 <compensation name=”compensateY”>

 . . .

 </compensation>

 </process>

 <faults>

 <default>

 <compensate process=”tns:activityX tns:activityY”/>

 </default>

 </faults>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 79 / 98

 </context>

 <spawn name=”tns:activityX”/>

 <spawn name=”tns:activityY”/>

 <compensation name=”compensateCompound”>

 . . .

 <compensate process=”tns:activityX tns:activityY”/>

 </compensation>

</process>

Example 7 Using the compensate activity to compensate for nested processes

11.7 Delay
The delay activity expresses the passage of time.

The delay activity is a composition of the activity attributes and the following attributes:

Attribute Description
duration The name of the duration property.

instant The name of the instant property.

The delay activity is a simple activity. The delay activity remains in the ready state until the specified
time instant, at which point it completes.

The time instant at which the activity completes is specified using one of the following attributes:

• instant – The attribute provides the name of a property. The value of the property is the time
instant. If the value is not of type xsd:dateTime or convertible to that type, the activity completes
immediately.

• duration – The attribute provides the name of a property. The value of the property is added to
the current time instant. If the value is not of type xsd:duration or convertible to that type, the
activity completes immediately..

The syntax for the delay element is given as:
<delay
 name = NCName
 duration = QName
 instant = QName>
 Content: (documentation?)
</delay>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 80 / 98

11.8 Empty
The empty activity does nothing.

The empty activity is a simple activity. It can be used in places where an activity is expected, but no
work is required.

The syntax for the empty element is given as:
<empty
 name = NCName/>
 Content: (documentation?)
</empty>

11.9 Fault
The fault activity throws a fault in the current context.

The fault activity is a composition of the activity attributes and the following attributes:

Attribute Description
code The fault code. (Optional)

property The fault property. (Optional)

The fault activity is a simple activity. It throws a fault in the current context and completes
immediately.

The code attribute specifies the fault code. The value of the code attribute is assigned to the property
inst:fault. If this attribute is unspecified the existing value of the inst:fault property is used. The code
attribute may be unspecified when the fault activity appears in a fault handler and must be specified in
all other cases.

The property attribute specifies a property that is modified when the parent atomic activity aborts. The
property attribute is used when the fault activity appears in an atomic context and the property is
defined in a non-atomic context. Atomic activities are defined in 10.1 Atomic Activity.

The syntax for the fault element is given as:
<fault
 name = NCName
 code = QName
 property = QName>
 Content: (documentation?)
</fault>

11.10 Foreach
The foreach activity repeats the activity set once for each item in the item list.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 81 / 98

The foreach activity is a composition of the activity attributes and the following attributes:

Attribute Description
select A selection expression.

activity set An activity set.

The foreach activity is a complex activity. It contains a single activity set that is executed zero or more
times. It executes all activities from the activity set in sequential order.

The activity evaluates a selection expression in the current context. The result of the expression is a
sequence of zero or more items. The activity iterates once for each item in the sequence.

For each iteration, the activity set is executed in a new context instance. The value of the item for that
iteration is assigned to the property inst:current in that context.

The property inst:current is implicitly defined in the context of the activity set. It has the type
xsd:anyType. It is an error to define a property with the same name, or to assign a value to that
property. That property is not accessible from a parent or sibling context.

The iteration count starts at one and is incremented once after each iteration. The iteration count is
assigned to the property inst:iteration in the context of the activity set.

The syntax for the foreach element is given as:
<foreach
 name = NCName
 select = XPath>
 Content: (documentation?, context?, {any activity}+)
</foreach>

The select attribute is an XPath expression.

11.11 Raise
The raise activity raises a signal.

The raise activity is a composition of the activity attributes and the following attributes:

Attribute Description
signal The signal name.

output Zero or more mappings from output values to the signal value. (Ordered)

fault Fault or wait.

The raise activity is a simple activity. It raises a signal but does not wait for the signal to be
synchronized and completes immediately.

The signal attribute provides the signal name. The signal definition must exist in the current context.
Starting with the current context and traversing up to the root context, the first signal definition with
that name is used.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 82 / 98

The activity passes information in the signal instance by mapping output values to the signal value.
The output attribute is an ordered collection of zero or more mappings. Each mapping produces one
output value. The activity throws the bpml:typeMismatch fault if an output value does not match the
type declared by its mapping. The definition of the output construct is the same as for the action
activity. The result of all mappings is an ordered sequence of elements. The activity throws the
bpml:typeMismatch fault if it cannot map the result to the signal value.

If the signal is defined as single-raised and is already raised in the context, the activity can wait for
the signal to be lowered or abort with a fault. If the value of the fault attribute is true, the activity
throws the bpml:signalRaised fault. Otherwise, it waits until it can raise the signal and complete.

The syntax for the raise element is given as:
<raise
 name = NCName
 signal = QName
 fault = boolean : true>
 Content: (documentation?, output*)
</raise>

The syntax for the output element is the same as for the action activity.

11.12 Sequence
The sequence activity executes activities in sequential order.

The sequence activity is a composition of the activity attributes and the following attributes:

Attribute Description
activity set An activity set.

The sequence activity is a complex activity. It contains a signal activity set and executes it exactly
once. It executes all activities from the activity set in sequential order.

The syntax for the sequence element is given as:
<sequence
 name = NCName>
 Content: (documentation?, context?, {any activity}+)
</sequence>

11.13 Spawn
The spawn activity instantiates a process without waiting for it to complete.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 83 / 98

The spawn activity is a composition of the activity attributes and the following attributes:

Attribute Description
process The process name.

output Zero or more mappings from output values to input parameters.

The spawn activity is a simple activity. It instantiates a process but does not wait for the process to
perform any activity. The process is instantiated in the same context in which it is defined. It may be
different from the context in which the spawn activity is executed.

The process attribute names the spawned process. The process definition must have instantiation
type activity. The process definition must exist in the current context. Starting with the current context
and traversing up to the root context, the first process definition with that name is instantiated.
Otherwise, a top-level process definition with that name is instantiated.

The activity passes parameter values to the process by mapping output values to input parameters.
The process definition specifies the name and type of all input parameters. The output attribute is a
collection of zero or more mappings. An output value must be mapped for every input parameter that
is defined as required. An output value may be mapped to any input parameter that is defined as
optional.

It is an error for two mappings to exist for the same input parameter. It is also an error if the output
value and input parameter are of incompatible types. The activity throws the bpml:typeMismatch fault
if it fails to map the output value to the input parameter.

The activity creates an association between the two processes:

• A signal is implicitly defined in the spawning process context. The signal has the same name as
the spawned process. The signal is raised when the process instance completes or aborts.

• If the spawned process defines a compensation process, the spawning process can use the
compensate activity with the process name to invoke the compensation process.

• Activities of the spawning process instance may reference the spawned process instance using
one of the instance functions defined in 12.2 Instances.

• For information about atomic contexts and persistent processes refer to 10 Transactions.

The syntax for the spawn element is given as:
<spawn
 name = NCName
 process = QName>
 Content: (documentation?, output*)
</spawn>

The syntax for the output element is the same as for the call activity.

11.14 Switch
The switch activity executes one of multiple activity sets based on the truth value of a condition.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 84 / 98

The switch activity is a composition of the activity attributes and the following attributes:

Attribute Description
cases One or more conditional cases. (Ordered)

The switch activity is a complex activity. It contains one or more activity sets and executes a single
activity set based on the truth value of a condition. It executes all activities from that activity sets in
sequential order.

The activity selects the first conditional case with a condition that evaluates to true. After selecting a
single conditional case, the associated activity set is executed in a new context instance. If no
condition evaluates to true, it completes immediately.

The conditional case construct is a composition of the following attributes:

Attribute Description
name The conditional case name. (Optional)

documentation Documentation. (Optional)

condition The condition to evaluate.

activity set An activity set.

The condition attribute specifies a condition to evaluate. The condition is evaluated in the current
context. The order in which conditions are evaluated is not specified, only the order in which one
activity set is selected. It is an error to depend on a particular order of evaluation.

The branch number is the ordinal position of the selected conditional case, starting with one for the
first conditional case in the set. The branch number is assigned to the property inst:branch in the
context of the activity set.

The syntax for the switch element is given as:
<switch
 name = NCName>
 Content: (documentation?, case+, default?)
</switch>

<case
 name = NCName>
 Content: (documentation?, condition,
 context?, {any activity}+)
</case>

<default
 name = NCName>
 Content: (documentation?, context?, {any activity}+)
</default>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 85 / 98

The default element is used for the default case. The default case is always the last conditional case
and its condition always evaluates to true.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 86 / 98

Condition
The condition attribute is an expression that evaluates to a Boolean value.

The syntax for the condition element is given as:
<condition
 {extension attribute}>
 Content: {expression}
</condition>

An XPath expression is given in the content of the condition element.

Extension attributes are used to support other expression languages. Extension attributes are defined
in a namespace other than the BPML namespace. If extension attributes are used, the manner in
which the expression is evaluated is dependent on the specification that covers these extension
attributes.

The switch activity is used to determine whether an order should be approved based on the total
value of the order.
If the total value is over 5,000, the approval must be performed by a manager. This task is
performed by the ‘managerApproval‘ process.
If the total value is over 500, only credit authorization is required. This task is performed by the
‘creditAuthorization‘ process.
All orders below 500 are always approved.

<switch>

 <case>

 <condition>$tns:totalValue > 5000</condition>

 <call process=”tns:managerApproval”>

 <input property=”tns:approved” parameter=”tns:approved”/>

 </call>

 </case>

 <case>

 <condition>$tns:totalValuel > 500</condition>

 <call process=”tns:creditAuthorization”>

 <input property=”tns:approved” parameter=”tns:authorized”/>

 </call>

 </case>

 <default>

 <assign property=”tns:approved”>

 <value>true</value>

 </assign>

 </default>

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 87 / 98

</switch>

Example 8 Determining whether an order should be approved based on its total value

11.15 Synch
The synch activity synchronizes on a signal.

The synch activity is a composition of the activity attributes and the following attributes:

Attribute Description
signal The signal name.

condition The condition to evaluate. (Optional)

fault Fault or terminate.

input Zero or more mappings from signal value to properties.

The synch activity is a simple activity. It waits in the ready state until it finds a matching signal
instance, discards it and completes.

The activity executes by retrieving all instances of the signal in the order in which they were created
(raised). It evaluates the synchronization condition against each signal instance until it finds a match.
If no match is found, the activity waits for the signal to be raised again. It evaluates the
synchronization condition against each new signal instance, until a match is found.

The signal attribute provides the signal name. The signal definition must exist in the current context.
Starting with the current context and traversing up to the root context, the first signal definition with
that name is used.

The activity can map values from the signal value to properties in the current context. The input
attribute is a collection of zero or more mappings. Each mapping produces one input value that is
assigned to a property defined in the current context. Information that is not mapped is lost.

It is an error if two mappings exist for the same property, if the property cannot be assigned in the
current context, or if the input value and property are of incompatible types. The activity throws the
bpml:typeMismatch fault if it cannot map the input value to the property.

The condition attribute provides the synchronization condition. The synchronization condition is
evaluated for each signal instance using properties mapped from the message. The condition may
access other properties defined in the current context. A match is found if the condition evaluates to
true. If the condition attribute is unspecified, the condition always evaluates to true.

If the activity detects that a signal will not be raised in the current context, it can terminate or throw a
fault. If the value of the fault attribute is true, the activity throws the bpml:noSignalSource fault.
Otherwise, it aborts without a fault.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 88 / 98

The syntax for the synch element is given as:
<synch
 name = NCName
 signal = QName
 fault = boolean : true>
 Content: (documentation?, condition?, input*)
</synch>

If the condition element is absent, the condition always evaluates to true. The syntax for the condition
element is the same as for the switch activity.

The syntax for the input element is the same as for the action activity.

11.16 Until
The until activity repeats the activity set once or more based on the truth value of a condition.

The until activity is a composition of the activity attributes and the following attributes:

Attribute Description
condition The condition to evaluate.

activity set An activity set.

The until activity is a complex activity. It contains a single activity set that is executed one or more
times. It executes all activities from the activity set in sequential order.

The activity starts by performing the first iteration. For each iteration, the activity set is executed in a
new context instance. After each iteration, the condition is evaluated in the current context. If the
condition evaluates to true, the activity completes. Otherwise, it performs another iteration.

The iteration count starts at one and is incremented once after each iteration. The iteration count is
assigned to the property inst:iteration in the context of the activity set. It can also be referenced from
the condition.

The syntax for the until element is given as:
<until
 name = NCName>
 Content: (documentation?, condition,
 context?, {any activity}+)
</until>

The syntax for the condition element is the same as for the switch activity.

The until activity and inst:iteration property are used to repeat a task until successful completion,
but no more than a specified number of times (5). We know the task performed successfully when
the output parameter ‘completed‘ has the value true.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 89 / 98

<process name=”performWorkAndRetry” >

 <parameters>

 <input name=”tns:details” use=”required”/>

 <output name=”tns:success”/>

 </parameters>

 <context>

 <property name=”success” type=”xsd:boolean”/>

 <property name=”details” element=”tns:workDetails”/>

 </context>

 <until>

 <condition>$tns:success and $inst:iteration <= 5</condition>

 <call process=”tns:acquireResources”>

 <output parameter=”tns:details”>

 <source property=”tns:details”>

 </output>

 </call>

 <call process=”tns:performWork”>

 <output parameter=”tns:details”>

 <source property=”tns:details”>

 </output>

 <input property=”tns:success” parameter=”tns:completed”/>

 </call>

 </until>

</process>

Example 9 Repeating a task until completion, but no more than a specified number of times

11.17 While
The while activity repeats the activity set zero or more times based on the truth value of a condition.

The while activity is a composition of the activity attributes and the following attributes:

Attribute Description
condition The condition to evaluate.

activity set An activity set.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 90 / 98

The while activity is a complex activity. It contains a single activity set that is executed zero or more
times. It executes all activities from the activity set in sequential order.

Before each iteration, the condition is evaluated in the current context. If the condition evaluates to
false, the activity completes. Otherwise, the activity set is executed in a new context instance.

The iteration count starts at one and is incremented once after each iteration. The iteration count is
assigned to the property inst:iteration in the context of the activity set. It can also be referenced from
the condition.

The syntax for the while element is given as:
<while
 name = NCName>
 Content: (documentation?, condition,
 context?, {any activity}+)
</while>

The syntax for the condition element is the same as for the switch activity.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 91 / 98

12 Functions
The BPML specification defines a number of functions that are required for the definition of
executable processes. A process definition may use any of these functions in its expressions.

Functions are defined in the namespace http://www.bpmi.org/2002/BPML/function.

Each function's signature is presented in this form:
returnType funcName(paramType paramName, ...)

The type name of the return value is specified before the function name. If the function has no return
value, the type name is omitted. If the function may return an empty value, the type name is followed
by a question mark. If the function may return a sequence, the type name is followed by an asterisk.

The function name is followed by a parenthesized list of parameters. Two or more parameters are
separated by commas. Each parameter identifies the type name and parameter name. The
parameter name has no significance other than referencing that parameter in the definition of the
function.

The parameter type name indicates that the function accepts an argument of that type or a
compatible type in that position. If the function accepts an empty value for a given parameter, the type
name is followed by a question mark. If the function accepts a sequence, the type name is followed
by an asterisk.

All type name refer to types of XPath values. A type may be a specific atomic type, an attribute, a
sequence, and so forth. The following type names are used:

• ‘node’ indicates any XML node

• ‘item’ indicates any item

• ‘QName’ indicates a fully qualified name consisting of a namespace name and a local name

• a qualified name indicates any atomic type of the named type, or a derived type

Some functions take an argument that provides the name of a definition. The parameter type is either
a ‘QName‘ or an ‘item‘. If the argument type is not a ‘QName’, its string value provides the qualified
name. The fully qualified name is determined as follows.

The string value may take the form “prefix:local-part”, or it may take the form “local-part” in which
case the namespace prefix is the empty string. The value of the namespace name is determined by
searching the namespace nodes of the element containing the function. There must be at least one
such namespace node whose namespace prefix matches the namespace prefix from the string value.
If no such namespace node exists, the function throws the bpml:noSuchInstance fault.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 92 / 98

12.1 Generic
xsd:dateTime currentTime()
xsd:dateTime currentDate ()
xsd:dateTime currentDateTime()

Returns the current date/time instant.

When invoked multiple times in the same expression, these functions return the same time
instant. When multiple expressions are evaluated at once by a single activity, such as is the
case with the conditions of the switch activity, this rule is further extended to cover them all.

item newIdentifier(QName type)
item newIdentifier(item type)

Returns a new value for use in an identifier of the specified type.

The type parameter provides the type name. It references one of the simple types defined by
XML Schema or a type derived from it. The function returns a new identifier that is most suitable
for use with a property of that type.

This function should not return the same value twice when called with the same type name, or
attempt to minimize the frequency with which multiple values are returned.

xsd:dateTime? getNextInstant (QName schedule)
xsd:dateTime? getNextInstant (item schedule)

Returns the next time event associated with the named schedule instance, or the empty value if
the next time event is unspecified.

The schedule parameter provides the schedule name. If the schedule is not defined in the same
context, a parent context or at the package level, the function throws the bpml:noSuchInstance
fault.

xsd:boolean getSourceCount(QName signal)
xsd:boolean getSourceCount(item signal)

Returns the signal source count as a Boolean value. The source count is true if the signal may
be raised before the current activity instance completes, false otherwise.

The signal parameter provides the signal name. If the signal is not defined in the same context
or a parent context, the function throws the bpml:noSuchInstance fault.

xsd:integer getRaiseCount(QName signal)
xsd:integer getRaiseCount(item signal)

Returns the signal raise count. The raise count is the number of instances of that signal that
exist in the context instance.

The signal parameter provides the signal name. If the signal is not defined in the same context
or a parent context, the function throws the bpml:noSuchInstance fault.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 93 / 98

12.2 Instances
Each process instance keeps track of all activity instances that were instantiated during is execution.
Instance functions are used to retrieve state information about these instances, for example, to
determine if a nested process completed or aborted, or to obtain the start time of an activity.

An instance is only accessible from the process context of that process in which it was instantiated.
An instance that was instantiated in a nested process is not accessible from a context of the parent
context. The following instances are accessible:

• Any simple or complex activity instantiated in the process, if the activity definition specifies the
name attribute.

• Any nested process or exception process instantiated in the process.

• Any process instantiated from the process using the call and spawn activities.

• The process itself.

Instance functions ignore any instances that are in the ready state.

xsd:integer countInstances(QName name)
xsd:integer countInstances(item name)

Returns a count of all named instances.

This is the only instance function that does not return a sequence.

xsd:dateTime* getStartTime(QName name)
xsd:dateTime* getStartTime(item name)

Returns the start time of all named instances.

The start time of an instance is the time instant at which it transitioned to the active state.

xsd:dateTime* getEndTime(QName name)
xsd:dateTime* getEndTime(item name)

Returns the end time of all named instances.

The end time of an instance is the time instant at which it transitioned to the completed or
aborted state. A value is returned only for an instance that is in the completed or aborted state.

xsd:duration* getDuration(QName name)
xsd:duration* getDuration(item name)

Returns the execution duration of all named instances.

The execution duration of an instance is the difference between its end time and start time, or if
the instance is still executing, the difference between the current time and its start time.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 94 / 98

inst:state* getState(QName name)
inst:state* getState(item name)

Returns the state of all named instances.

The state of an instance is one of: active, completing, completed, aborting or aborted.

xsd:QName* getAbortFault(QName name)
xsd:QName* getAbortFault(item name)

Returns the abort fault code of all named instances.

A value is returned only for an instance that aborted with a fault.

inst:state * getCompensationState(QName name)
inst:state * getCompensationState(item name)

Returns the compensation state of all named instances.

The compensation state of a process instance is the state of its compensation process instance.
The state is one of: active, completing, completed, aborting or aborted. If the compensation
process was not instantiated, its state is not returned.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 95 / 98

Appendix A: Implicit Properties
Implicit properties are defined in the namespace http://www.bpmi.org/2002/BPML/instance.

Name Type Description

branch xsd:positiveInteger The ordinal number of the activity set selected by the choice or
switch activity.

current xsd:anyType The value of the item for the current iteration of the foreach
activity.

endTime xsd:dateTime The time instant at which the process instance completed or
aborted.

fault xsd:QName The fault code associated with the context instance.

identifier inst:instance The process instance identifier.

iteration xsd:positiveInteger The current iteration number of the foreach, until or while activity.

startTime xsd:dateTime The time instant at which the process instance started executing.

state inst:state The process instance state. One of: active, completing,
completed, aborting or aborted.

Table 5 Implicit properties

The properties endTime, identifier, startTime and state are implicitly defined in every process context.
With the exception of endTime, they are all instantiated when the process instance transitions to the
active state.

The property fault is implicitly defined in every context and is instantiated when a fault is thrown in the
context.

The properties branch, current and iteration are implicitly defined in the context of the activity set of
some complex activities. The table above indicates which property is defined by which complex
activity.

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 96 / 98

Appendix B: References

B.1. Normative
RFC-2119
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

URI
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF
RFC 2396, August 1998
http://www.ietf.org/rfc/rfc2396.txt

WSCI 1.0
Web Services Choreography Interface (WSCI) 1.0, BEA, Intalio, Sun, SAP et al, June 2002
http://www.intalio.com/wsci/

WSDL 1.1
Web Services Description Language (WSDL) 1.1, W3C Note, March 2001
http://www.w3.org/TR/wsdl.html

XML 1.0
Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, October 2000
http://www.w3.org/TR/REC-xml

XML-Namespaces
Namespaces in XML, Tim Bray et al., eds., W3C, January 1999
http://www.w3.org/TR/REC-xml-names

XML-Schema
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah
Mendelsohn, W3C, May 2001
http://www.w3.org/TR/xmlschema-1//

XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, May 2001
http://www.w3.org/TR/xmlschema-2/

XPath
XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, November 1999
http://www.w3.org/TR/xpath

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 97 / 98

B.2. Non-Normative
Activity Service
Additional Structuring Mechanism for the OTS specification, OMG, June 1999
http://www.omg.org

J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail/95.jsp

BPMN
Business Process Modeling Notation, BPMI, 2002
http://bpmi-notation-wg.netfirms.com

BPQL
Business Process Query Language, BPMI
http://www.bpmi.org

BTP
Business Transaction Protocol, OASIS, May 2002
http://www.oasis-open.org/committees/business-transactions/

Dublin Core Meta Data
Dublin Core Metadata Element Set, Dublin Core Metadata Initiative
http://dublincore.org/documents/dces/

OMG OTS
Transaction Service, OMG, November 1997
http://www.omg.org

Open Nested Transactions
Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard
Weikum, Hans-J. Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF
RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft
http://www.w3.org/TR/rdf-schema/

SOAP 1.2
SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft
http://www.w3.org/TR/soap12-part1/

SOAP Version 1.2 Part 2: Adjuncts, W3C Working Draft
http://www.w3.org/TR/soap12-part2/

UUID and GUID
UUIDs and GUIDs, Network Working Draft, February 1998
http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt

WS-Transactions

Business Process Modeling Language November 13, 2002

Copyright © 2002, BPMI.org. All Rights Reserved. 98 / 98

Web Services Transactions, IBM/Microsoft, August 2002
http://www-106.ibm.com/developerworks/library/ws-transpec/

XHTML
XHTML[tm] 1.0: The Extensible HyperText Markup Language, W3C Working Draft
http://www.w3.org/TR/xhtml1/

XPath 2.0
XML Path Language (XPath) 2.0, W3C Working Draft
http://www.w3.org/TR/xpath20

XQuery 1.0
XQuery 1.0: An XML Query Language, W3C Working Draft
http://www.w3.org/TR/xquery/

XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Working Draft
http://www.w3.org/TR/xquery-operators/

XLST 1.0
XSL Transformations (XSLT) Version 1.0, W3C, November 1999
http://www.w3.org/TR/xslt

