
Extreme Markup Languages 2007® Montréal, Québec
August 7-10, 2007

Using XML Compression to Increase Efficiency
of P2P Messaging in JXTA-based Environments
Brian Demmings
Jodrey School of Computer Science, Acadia
University, Wolfville, Canada

Tomasz Müldner
Jodrey School of Computer Science, Acadia

University, Wolfville, Canada

Gregory Leighton
Department of Computer Science, University
of Calgary, Calgary, Canada

Andrew Young
Jodrey School of Computer Science, Acadia

University, Wolfville, Canada

Abstract
P2P [Peer-to-Peer] systems use messaging for communication amongst peers, and
therefore the efficiency of messaging is a key concern for any P2P environment;
particularly environments with a potentially large number of peers. One of popular
representations of a P2P system is JXTA, which uses XML-based messaging. In this
paper, we describe how the use of XML compression can increase efficiency of P2P
messaging in JXTA-based environments. In the proposed solution, message elements
containing XML data are compressed using an XML-aware compressor. Our design can
be used not only for compression but also for other kinds of encodings of XML data, such
as encryption. Experimental results demonstrate that our compression technique results
in a substantial decrease in message transport time along with a corresponding decrease
in the size of messages. Therefore, the application of XML compression for messaging
in JXTA-based P2P environments results in an increase in the efficiency of messaging
and a decrease in network traffic.

Using XML Compression to Increase Efficiency of P2P
Messaging in JXTA-based Environments
Table of Contents
Introduction...1
Related Work and Contributions..2

Contributions..2
JXTA Environment...3

JXTA Messages..3
JXTA Pipes...3

Architecture..4
Encoding Scheme...4

Implementation...4
Pipe Adapter...6

Using Compressed Messages...6
Testing..8

Procedure..8
Trial Data Set..9
Test Protocol...9

Results and Interpretation...10
DSL...11

Analysis..13
Ethernet...14

Conclusions...15
Bibliography...16
The Authors..18

Using XML Compression to Increase
Efficiency of P2P Messaging in JXTA-based
Environments
Brian Demmings, Tomasz Müldner, Gregory Leighton, and Andrew Young

§ Introduction
As the power and affordability of general-purpose computers grew in the mid-1980s [Tanenbaum
2002], researchers increasingly looked for ways to improve the performance of complex computational
tasks. The introduction of computer networking resulted in a new programming paradigm known as
distributed computing, in which the performance of applications is improved by harnessing the computing
power of multiple computers. However, working with distributed architectures has introduced challenges
that directly affect the usability of the system. For instance, response time lags greater than 100
milliseconds in an application can impede a user’s productivity [Seigneur 2003]. Decreasing system
response time in a typical client-server system often involves increasing the server’s computing power as
the number of users grows, and the resulting monetary costs can be prohibitively high.

P2P technology addresses some of these concerns by moving the processing load of the application to the
peer computers connected to the P2P network. The immediate benefit is an improvement of the
application’s ability to scale (with notable exceptions, e.g. early versions of the Gnutella protocol
[Chawathe 2006]), since the presence of each additional user increases the effective computational power
of the overall network. However, there is a cost associated with using P2P: as more computers join the
network, increasing quantities of network bandwidth are required to support these computers [Sen
2004]. The increase is not solely due to an increase in inter-computer signaling traffic, but also the
increased content traffic. Improved scalability allows a large number of users to access more content/
services than in a traditional system. One well-known and widely used P2P framework is called JXTA
[JXTA][Sun JXTA], which was developed by Sun Microsystems, and then released to the open source
community.

XML [Bray 2006] is a de-facto standard for data formats for various applications, including distributed
applications such as JXTA. However, XML-encoded data is verbose, and when sent over networks, it can
significantly increase traffic. As with other P2P systems, JXTA relies on peer messaging, using so-called
pipes that allow both XML data and raw data. In this paper, we investigate the possibility of improving
the performance of JXTA by compressing messages before sending them through pipes (and
decompressing messages at the receiving end of the pipe). Our design supports three methods of creating
these messages:

1. With no compression.
2. Using XML-aware compression.
3. Using standard data compression, such as gzip.

This selective approach allows applications to use knowledge of the structure of data contained in messages
to improve overall compression, and consequently improve application response time. Note that our design
can be also be used for other kinds of XML encodings, such as encryption.

For compressing the XML content of JXTA messages, we use two proven XML-aware compressors. The
first such compressor, called TREECHOP [Leighton 2005][Leighton 2005a][Leighton 2005b] which is
more effective at compressing XML than other XML-aware compressors, such as XGRIND [Tolani
2002], and has been shown to be efficient in WWW communications [Müldner 2005]. TREECHOP-
compressed XML is query-able without decompression, allowing sections of the compressed XML to be
located and extracted without reforming the XML document and then querying. Another advantage of
TREECHOP is that it has been implemented in Java, and so it can be easily interfaced with JXTA-J2SE,
which is also written in Java. The second compressor is XMLPPM [Cheney 2001], which is more space-
efficient than TREECHOP, but it has been implemented in C++. Therefore, to interface this compressor
with our code, we use Java Native Interface (JNI) [Sun 2003]. To compress non-XML data, we use

Copyright © 2007 by the author. Reproduced with permission of the author.

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 1

gzip [Gailley 1991] as it is, on average, less space-efficient but more time-efficient than other XML
compressors.

Any kind of data compression decreases the size of data at the expense of time to compress and decompress
the data. We demonstrate, however, that in some cases the benefit of sending smaller (compressed)
messages outweighs this overhead. Our experimental results support our hypothesis that applying
compression technology results in a marked decrease in the average send-time for messages, a decrease
in the size of messages, and consequently, a decrease in network traffic that improves the scalability of
JXTA-based P2P applications.

This paper is organized as follows. Section “Related Work and Contributions” describes related work and
summarizes our contributions. Section “JXTA Environment” provides a short overview of JXTA, and
Section “Using Compressed Messages” provides a brief discussion of how a user can send (and receive)
a compressed message. Section “Architecture” describes details of our architecture. Section “Testing”
discusses our testing procedure and Section “Results and Interpretation” presents experimental results.
Finally, Section “Conclusions” discusses our conclusions and future work.

§ Related Work and Contributions
Investigations of the performance of JXTA pipes have focused on measuring their speed in a variety of
networking environments. Seigneur, et al. [Seigneur 2003] focused on identifying the overhead of sending
messages of increasing size through pipes in loop-back pipe connections (referred to as “local”
connections) and pipe connections over a Local Area Network (LAN). The authors measured the Round
Trip Time (RTT) required for a message to travel from the sender to the receiver and back again. The
RTTs showed that as the size of the message content increases linearly, so does the time required to send
that message. Their experiments also quantify the performance loss experienced when using secure
(encrypted) pipes, indicating a 100% - 300% increase in RTT time when using secure pipes compared to
using insecure pipes.

Antoniu, et al. [Antoniu 2005] showed that JXTA pipes and JXTA Sockets could achieve performance
levels similar to plain sockets on Fast Ethernet (100BT) networks. Their experiments used the so-called
bidirectional benchmark to measure the time required to send a message and then receive a receipt
acknowledgement from the receiver. Furthermore, JXTA-J2SE [CollabNet] Version 2.2.1 was found to
provide a throughput of 145MB/s over Myrinet Version 2.0.11 [Boden 1995], and 101MB/s over Gigabit
Ethernet. These findings suggest that the JXTA infrastructure is capable of high-performance message
delivery.

Contributions
We present the design, implementation, and test results of a technique that uses XML compression to
increase efficiency of transporting JXTA messages. More specifically, we investigate the results of
applying XML-aware and standard data compression techniques to XML data in JXTA messages. Unlike
other research [Seigneur 2003][Antoniu 2005] which focused on the “out-of-the-box” performance of
pipes, we focus on performance improvements that can be realized at the Application Layer. Specifically,
we present an implementation that transparently applies compression to messages sent through an API
called the CPA [Compression Pipe Adapter].

The internal compression and decompression processes of the CPA are transparent to the user. Using a
CES [Compression Encoding Scheme], the adapter selectively compresses user-selected elements of
JXTA messages before sending them through generic JXTA pipes. This design supports selectivity, which
allows a user to specify those elements of a message that are to be compressed. To illustrate this technique,
consider a system that may send large quantities of very small messages and occasional large messages.
For very small data sizes, it is less likely that compression will decrease the size of the messages, since
the overhead of using a compressor may increase the size of the data on very small data segments. For
such an application, only the message elements with large amounts of data should be compressed. The
principle of selectivity is consistent with the P2P philosophy of giving peers a lot of freedom.

While the focus of this paper is on the application of compression to JXTA messages, the design of the
Encoding Scheme is flexible enough to allow applications to “plug in” virtually any type of “encoding-
and-decoding” mechanism to transform the content of messages. This has immediate applications to
domains such as encryption, allowing applications to selectively encrypt small segments of messages,
avoiding the expensive [Seigneur 2003] use of JXTA secure pipes in cases where data privacy is the only
requirement.

Demmings, Müldner, Leighton, and Young

page 2 Extreme Markup Languages 2007®

Tests of the efficacy of our technique using TREECHOP show a slight 2.4% increase in message send-
time for small (254 byte) XML content, but a pronounced 68.7% decrease in message send-time for larger
(172491 byte) XML content. Similarly, for XMLPPM a 20.4% increase was observed for small message
content but a 65.5% decrease was recorded for large content. Finally, gzip produced a 0.4 - 82.2%
decrease in message send-time. For all but the smallest message content tested, our experiments also
showed a decreased message content size of 15.0 - 89.4% for TREECHOP, 40.9 - 94.1% for XMLPPM
and 24.8 - 88.6% for gzip, thereby reducing network traffic. Note that XMLPPM achieves a higher
compression ratio than both TREECHOP and gzip, but is much slower.

Finally, our approach permits the selection of TREECHOP a query-able XML-conscious compression to
aid in applications where query-ability is desired along with compression.

§ JXTA Environment
JXTA provides a decentralized, implementation-independent framework for the design, implementation
and development of P2P applications. A full overview of the functionality of JXTA is beyond the scope
of this paper; see [JXTA]. We focus on JXTA messages sent through pipes.

JXTA Messages
In JXTA, communication relies on messages to encapsulate data that a peer wishes to send to another peer.
A message is similar to a SOAP envelope [Gudgin 2005]; it contains a payload, the data the user wishes
to send, and a destination, referred to as endpoint [Duigou 2007]. A message consists of one or more
message elements that store the message’s data. There are two categories of content permitted in a message
element: well-formed XML data and application-specific byte/text/string data. The latter type of data may
be associated with a MIME Media Type [Freed 1996].

JXTA Pipes
To ensure that applications and users do not deal directly with network transports JXTA provides a
connection-oriented abstraction known as the pipe. Each pipe is a connection between endpoints in JXTA,
which may span networks that are geographically diverse (e.g. different physical networks) or networks
that are network layer diverse (e.g. different network layers, such as TCP/IP and HTTP). The JXTA
message protocol has provisions for either binary or XML messages [Duigou 2007], and so JXTA
transports are categorized as being either text-based (e.g. SOAP and SMTP) or binary (e.g. TCP/IP
Socket). Text-based transports use the XML message format, while binary transports rely on a predefined
binary message format. JXTA pipes allow applications to send messages from one endpoint to one or
more endpoints, and so they provide either unicast or multicast functionality. As shown in Figure 1, the
user interacts with the underlying JXTA communications using the pipe, rather than creating a transport
specific connection.

Figure 1: JXTA Environment Overview

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 3

There are two directional categorizations of pipes: unidirectional pipes transport messages from a sender
to a receiver, and bidirectional pipes transport messages in both directions. Additionally, there are three
types of JXTA pipes: unicast, unicast-secure and propagate. Unicast pipes are unidirectional, unreliable
and insecure, and so they do not guarantee that the remote party will actually receive a message. Unicast-
secure pipes are similar to unicast pipes, but are reliable and rely on Transport Layer Security (TLS)
[Dierks 2006] to encrypt the content of messages [Gong 2002]. Finally, propagate pipes are unreliable
and insecure, and are used to multicast messages to all peers connected to the pipe.

§ Architecture
In this section, we introduce the architecture that implements the goals of this paper. The primary
component of this architecture is the pipe adapter, which provides an interface to a JXTA pipe allowing
for transparent performance enhancements with minimal application changes. As illustrated in Figure 6,
the sender and receiver rely on pipe adapters to send and receive encoded messages, in the same manner
as peers use JXTA pipes. A high-level view of the pipe adapter is shown in Figure 2.

The detailed architecture of both directions of a pipe adapter is shown in Figure 3. The architecture of the
Encoding Scheme component is discussed in the following section, and details of the implementation of
the pipe adapter are discussed in Section “Pipe Adapter”.

Encoding Scheme
The Encoding Scheme component provides the application-specific encoding and decoding functionality
for a pipe adapter. As discussed, we use this component to support compression, but its design is
sufficiently general to support other encodings, e.g. XML encryption. An Encoding Scheme contains three
embedded components: the Encoder, the Decoder, and the Message Element Producer component; see
Figure 4.

The Encoder component is responsible for encoding the contents of message elements that have been
produced by the MEP. The MEP is an implementation-specific component that allows an application to
select those message elements that are to be encoded. The term selected denotes a message element that
an application has decided to encode; the Encoding Scheme will encode selected message elements, leaving
unselected message elements unaltered. For instance, consider an Encoding Scheme which has an attached
MEP M. If an application creates a message element E and then creates a message element F using M,
then the Encoding Scheme will encode F but not E.

Implementation
Figure 5 shows the overview of our implementation. Abstract class EncodingScheme has three methods;
the encode() and decode() methods, and the getElementProducer() method. Applications use

Figure 2: Pipe Adapter Architecture (High-Level).

Demmings, Müldner, Leighton, and Young

page 4 Extreme Markup Languages 2007®

the first two methods to respectively encode and decode the content of JXTA message elements. The third
method retrieves the MEP attached to the Encoding Scheme, and is described at the end of this section.

Figure 5 also shows the class CompressionEncodingScheme, CES, a concrete extension of the
abstract EncodingScheme class, which provides selective compression of message elements in a
message using either TREECHOP or XMLPPM for XML content, or gzip for generic data. When creating
a CES, the user passes the CompressionType that the CES should use to compress XML content:
TREECHOP, XMLPPM, or gzip; the application chooses the most efficient compressor for its data.

In the CES, the encode() function compresses the content of selected message elements, and adds a
prefix to the name of those message elements; see Table 1.

Table 1: CES: Message Prefixes

Compression Type Prefix
TREECHOP __TREECHOPPEDMESSAGEEL__
XMLPPM __XMLPPMMESSAGEEL__
gzip __GZIPPEDMESSAGEEL__

The decode() function decompresses the content of message elements whose name has been prefixed
with a CES prefix, and removes the prefixes added by the encode process. It is unlikely that the increased
length of the prefixed names will cause overflow issues since tests performed on the JXTA-J2SE 2.3.6
implementation showed that message element names may be greater than 100000 characters in length.

The CES has an attached CMEP [Compression Message Element Producer] that creates compressible
message elements. The CES only compresses message elements produced with the CMEP, which
implements the requirement of selectivity.

Figure 3: Pipe Adapter Architecture (Detailed).

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 5

Pipe Adapter
Pipe adapters encode messages before sending them across a standard JXTA pipe, and decode encoded
messages upon receipt from an inbound pipe (see Figure 6) using an Encoding Scheme which contains
the “rules” used to perform the encoding (e.g. XML compressor/decompressor, Base64 Encoder/Decoder,
etc.).

As illustrated in Figure 6, the user interacts with the pipe adapter rather than directly with the underlying
pipe. Figure 7 illustrates this in terms of a communications “stack”.

The Encoding Scheme contained within a Pipe Adapter contains a MEP [Message Element Producer]
which is used to create message elements (see Section “JXTA Messages”) that can be encoded and decoded
using that Encoding Scheme. A given pipe adapter will only encode or decode messages that have been
created with the MEP from the pipe adapter’s Encoding Scheme.

The architecture of a pipe adapter depends on the directionality of the flow of messages; a pipe adapter
can be Incoming, Outgoing or Bi-Directional. Here we discuss the BIDI-PA [Bi-Directional pipe adapter]
as it illustrates encoding of outbound messages and the decoding of those encoded messages on the
receiving end; see Figure 8.

As with all pipe adapters, a BIDI-PA encapsulates an instance of an Encoding Scheme. Figure 8 illustrates
the use of the Encoding Scheme in both inbound and outbound scenarios. When a sender sends a message
through the BIDI-PA, the pipe adapter uses the Encoding Scheme during the encoding process to encode
outbound messages. When a peer receives an encoded message, the BIDI-PA uses the Encoding Scheme
to decode inbound messages. It is easy to see that by relying on the Encoding Scheme and a JXTA Bi-
Directional pipe, a pipe adapter is able to facilitate encoded, bi-directional communications.

§ Using Compressed Messages
Compressed messages are created and sent with the aid of a CPA, which wraps a standard JXTA pipe. A
CPA contains a CES which in turn provides a CMEP for use in creating compressed message elements.

Let us consider the example of a user wishing to create a Message with a compressed message element
A and an uncompressed message element B. In this scenario, the sender uses the steps in Figure 9 to create
a compressed message and send it.

Figure 4: Encoding Scheme Architecture

Demmings, Müldner, Leighton, and Young

page 6 Extreme Markup Languages 2007®

When the message M is sent, the message element A is detected by the CPA and compressed into Ac, then
both Ac and B are sent as the content of M using the standard JXTA technique [Duigou 2007].

On the receiving side, Ac is uncompressed as A before the receiving user receives it, and B remains
untouched. The receiving user receives M, and, since decompression occurred transparently, is unaware
that A was compressed before transport.

Figure 5: Encoding Scheme Class Overview

Figure 6: Pipe adapter Overview

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 7

§ Testing

Procedure
In testing of the CBPA [Compression Bi-Directional Pipe Adapter], we used Dell D600 laptops with
512MB of RAM, a Pentium M processor running at 1.4 GHz [Dell], and Microsoft Windows XP®. We
used JXTA Version 2.3.7 as the JXTA platform, running on Sun Microsystems’ Java [Gosling 1997] JDK
Version 1.5.0 (build 1.5.0_06-b05), which includes the native gzip compressor used in the CES.

For “local” testing, the computers were on the same 100BT Ethernet switch; for “remote” testing, the
receiving computer was on a 100BT Ethernet switch connected to the Internet through a fire-walled ~25
MBps (~200 Mbps) connection, while the sending computer used a DSL connection with a maximum
upload bandwidth of 640 Kbps.

Each test contains ten data sizes called trial sets. Each trial set contains 500 individual trials of the same
data size, producing 5000 individual trials per test. The first 500 trials were discarded to ensure that the
sender and receiver are in a steady state [Seigneur 2003]. Additionally, the highest and lowest outliers
were discarded from each set, leaving 498 trials, per trial set.

Figure 7: CPA Communications “stack”

Figure 8: Bi-Directional Pipe Adapter

Demmings, Müldner, Leighton, and Young

page 8 Extreme Markup Languages 2007®

To evaluate the performance of the CBPA, we used two JXTA Bi-Directional pipes. The first pipe, called
the Communication pipe served two purposes. Firstly, this pipe transported synchronization messages
used to ensure that both the sender and receiver of the test message were ready to process the trial, and
was created using the standard bi-directional pipe instantiation procedure [Sun 2005]. Secondly, this pipe
transported uncompressed control messages from the sender to the receiver, which provide a baseline
send-time against which the send-time of compressed messages was compared. Control messages were
sent before each compressed message. To encourage successful message exchange, the Communication
pipe is reliable. The second pipe, called the Compressed pipe is fitted with a CBPA. After the control
message is successfully sent to the receiver, the sender sends a compressible copy of the control message
through the CBPA. A single test uses the same control and compressed pipes over its duration.

Trial Data Set
Each test set iterates over a set of seven pre-generated XML files that contain employee records for 1, 50,
100, 250, 500, 750 and 1000 fictitious employee records. Each employees file reaches a maximum depth
of three from the root element to the deepest nested node within an employee record. Figure 10 shows an
example employees document with one employee.

Note that while the individual employee records in each employees document cannot be said to be random
(e.g. first and last names are reused, though not both at the same time), no two employee records are
identical.

Test Protocol
To ensure consistency, each trial relies on the same protocol, illustrated in Figure 11. The protocol uses
a handshaking [DOC 1996] process (grey activities in diagram) to ensure readiness of the sender and
receiver. The sender requests a trial session with the receiver and the receiver records the receipt time with
a 10 millisecond precision [Arnold 2005] using System.currentTimeMillis().

Following the handshaking process, we begin bidirectional benchmarking (row 3 in Figure 11) to record
the transit-time required for the control message compared to the transit-time of the compressed message.
To avoid clock synchronization issues between the sender and receiver, bidirectional bandwidth

Figure 9: Creating and Sending a Compressed Message

1. Create a CPA.

2. Access the CPA’s attached CES.

3. Retrieve the CMEP from the CES.

4. Create a message element A using the CMEP.

5. Store an XML document in A.

6. Create a message element B.

7. Store an XML document in B.

8. User creates a JXTA Message object M and stores A and B in M.

9. The user then sends M through the CPA.

Figure 10: Example employees File.

<employees>
 <employee id="156201">
 <fname>Ryan</fname>
 <lname>McChomsky</lname>
 <age>36</age>
 <jobtitle>Cubical Farmer</jobtitle>
 <phone>977-2271</phone>
 </employee>
</employees>

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 9

benchmarking uses a message-acknowledgement pair to measure message transit-times. The sender sends
the control message containing the uncompressed payload message. When the receiver receives the
control message, it records the receipt time of the control message and sends an acknowledgement. Next,
the sender sends the compressed message. When the receiver receives the compressed message, it
decompresses the compressed content, records the system time, and acknowledges the end of the trial.
Note that we have concerned ourselves with measuring the time of sending a pre-serialized XML document
and have not taken into account the time required for the XML serialization process. By the same token,
we have not measured the time required to reparse the uncompressed XML content on the receiving side.

After each trial, the receiver compares the transit times for both the control and compressed messages,
where the difference indicates the performance of the trial.

§ Results and Interpretation
Each test performed draws from files described in Section “Trial Data Set”. Each consecutive trial set
tests an XML document containing more employees. In this section each of the 498 trials of each trial set
are averaged, and the average trial time is compared to the control time. The resulting value is the
percentage increase or decrease in performance between the control and the compressed trial. Table 2,
Table 3 and Table 4 show the sizes of the uncompressed test data compared to the size of the test data
compressed with gzip and TREECHOP, XMLPPM, respectively. As expected, these tables indicate
substantial space reductions when compression is applied to the employee data, resulting in between 24.8
- 88.6%, 15.0 - 89.4%, and 40.9 - 94.1% reduction in size compared to the original, for gzip, TREECHOP
and XMLPPM, respectively.

Table 2: GZIP: Employee XML Compression Ratio.

XML Data Set Original Size (Bytes) Compressed Size
(Bytes)

% Reduction

1 254 191 24.8%

Figure 11: Trial Protocol

Demmings, Müldner, Leighton, and Young

page 10 Extreme Markup Languages 2007®

XML Data Set Original Size (Bytes) Compressed Size
(Bytes)

% Reduction

2 8720 1532 82.4%
3 17290 2591 85.0%
4 43208 5524 87.2%
5 86370 10253 88.1%
6 129384 14942 88.5%
7 172491 19589 88.6%

Table 3: TREECHOP: Employee XML Compression Ratio.

XML Data Set Original Size (Bytes) Compressed Size
(Bytes)

% Reduction

1 254 216 15.0%
2 8720 1509 82.7%
3 17290 2510 85.5%
4 43208 5270 87.8%
5 86370 9662 88.8%
6 129384 13996 89.2%
7 172491 18322 89.4%

Table 4: XMLPPM: Employee XML Compression Ratio.

XML Data Set Original Size(Bytes) Compressed Size
(Bytes)

% Reduction

1 254 150 40.9%
2 8720 1097 87.4%
3 17290 1688 90.2%
4 43208 3210 92.6%
5 86370 5588 93.5%
6 129384 7913 93.9%
7 172491 10198 94.1%

We recorded the absolute and percent decrease in AMTT [Average Message Transit-Time], (recorded in
milliseconds) and compared it to the AMTT resulting when the same message is sent through a CPA which
uses TREECHOP, gzip and XMLPPM to compress the same message. We performed two kinds of tests:
(1) using a DSL connection and (2) using a Fast Ethernet LAN. We will first discuss the results from the
DSL tests.

DSL
Experiments using DSL, shown in Tables 5, 6 and 7, determined that gzip resulted in 0.25 – 82.2%
decrease in AMTT. Although both XML-aware compressors demonstrated an increase in the AMTT for
the smallest message size (due to their increased compression time-overhead), for all other message sizes
they achieved a marked decrease in AMTT of 31.46 – 68.67%, and 16.18 – 65.54% for TREECHOP and
XMLPPM, respectively. These results very favorably support the hypothesis that compression can
significantly decrease message send-times and, thus, increase application performance and decrease
network traffic levels. Table 5 and Figure 12 illustrate the results of apply gzip compression during the
send process while Table 6 and Figure 13 show the results obtained from using TREECHOP. Finally,
Table 7 and Figure 14 illustrate the results obtained when using XMLPPM as a compressor.

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 11

Table 5: gzip AMTT (ms) Results (DSL)

Set Control (ms) Compressed (ms) Decrease (ms) % Decrease
1 504.65 503.41 1.24 0.25%
2 643.73 390.03 253.69 39.41%
3 786.18 267.74 518.43 65.94%
4 1221.79 394.74 827.05 67.69%
5 1932.57 778.35 1154.23 59.72%
6 2647.72 653.04 1994.68 75.34%
7 3373.92 601.87 2772.05 82.16%

Table 6: TREECHOP AMTT (ms) Results (DSL)

Set Control (ms) Compressed (ms) Decrease (ms) % Decrease
1 504.79 516.91 -12.12 -2.40%
2 642.90 440.66 202.24 31.46%
3 784.69 347.05 437.64 55.77%
4 1214.18 547.09 667.08 54.94%
5 1927.39 1053.87 873.51 45.32%
6 2635.50 1025.99 1609.52 61.07%
7 3352.59 1050.36 2302.23 68.67%

Figure 12: gzip AMTT DSL

Demmings, Müldner, Leighton, and Young

page 12 Extreme Markup Languages 2007®

Figure 13: TREECHOP AMTT DSL

Table 7: XMLPPM AMTT (ms) Results (DSL)

Set Control (ms) Compressed (ms) Decrease (ms) % Decrease
1 506.70 609.73 -103.02 -20.33%
2 643.28 539.20 104.08 16.18%
3 789.34 455.48 333.87 42.30%
4 1225.70 639.18 586.52 47.85%
5 1947.50 1129.63 817.87 42.00%
6 2665.44 1207.68 1457.76 54.69%
7 3811.68 1313.58 2498.10 65.54%

The resulting message transit-time reductions are summarized in Figure 15. These results indicate that
because of its speed advantage gzip proved to be the most effective compressor in this application.
XMLPPM resulted in the lowest transit-time decrease, despite its significant compression advantage in
Table 4.

Analysis
The compression space-advantage of TREECHOP and XMLPPM is partially negated by the fact that,
although they are more effective compressors, they both take longer to compress XML than gzip. This
trend would continue until the compression time overhead becomes smaller than the time required to send
the message over a slow connection. At that point, XML-aware compressors would achieve increasingly
smaller compressed-AMTT values than gzip. XMLPPM resulted in a substantial compression advantage
over TREECHOP; however, this advantage did not translate into smaller AMTT. Thus, the advantage of
using XMLPPM over TREECHOP would only become apparent as network bandwidth decreased.

Gzip demonstrated an 18.24 – 110.26% lower send-time than TREECHOP and 25.36 – 143.59% lower
send-time than XMLPPM. For many applications in low-traffic and high-bandwidth environments,
gzip compression would be a prudent choice due to its compression speed, which translates to smaller
send-times. In general, gzip would produce decreasing performance as the network became congested,
or as overall bandwidth decreased.

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 13

The significant performance advantage exhibited by gzip was not investigated in-depth. However, there
would seem to be two primary reason's leading to this advantage. Firstly, in in the Sun Microsystems'
JDK, gzip is implemented using native-platform code rather than pure Java. Secondly, gzip does not
incur the significant overhead of parsing the XML content of the messages. XMLPPM was implemented
in C++ and executed as native code, but its architecture takes advantage of the structure of the XML
document to achieve compression, so its performance is constrained. Similarly, TREECHOP is a pure-
Java application which also takes advantage of the structure of XML.

To summarize, all DSL trials achieved a significant decrease in the AMTT for all but the smallest message
sizes. Gzip compression achieved the largest decrease, however, in applications where query-ability is a
required feature, TREECHOP would be the logical choice since it provides a greater AMTT reduction
than XMLPPM and its compressed format is query-able.

Ethernet
The results for the Fast Ethernet LAN show that the send-time increased between 0.8% and 3.58% for
gzip, 2.02% and 72.08% for TREECHOP and 21.47% and 135.70% for XMLPPM, depending on the
size of data. These results were expected, because of the speed and low traffic conditions of this network.
The CBPA did achieve a marked reduction in the message size, therefore, as the traffic on the LAN
increases, the use of the CBPA would result in a higher message throughput at high traffic levels; a
hypothesis partially confirmed by the results obtained from the DSL connection tests. These results have
implications on the scalability of applications in a high-traffic LAN environment, which is an important
consideration.

As one would expect, the speed and connection quality of a 100BT Ethernet connection greatly reduces
the efficacy of compressing XML data before sending. Therefore, our results show an all-around
worsening of transit times, as depicted in Figure 16. The main saving-grace of these results is that as
network congestion increased on the Ethernet network, the efficacy of using a CPA would increase in a
similar manner.

In Figure 16 negative decrease values indicate a increase in send time. For example, a -140.0% decrease
indicates that the message send time increased by 140%.

Figure 14: XMLPPM AMTT DSL

Demmings, Müldner, Leighton, and Young

page 14 Extreme Markup Languages 2007®

§ Conclusions
This paper introduced a method for selective compression of JXTA messages. The compression and
decompression processes are transparent to the client, who simply needs to create message elements that
are to be compressed using the CMEP attached to the CES. Therefore, from the user perspective there is
very little change to the messaging paradigm, which improves the ability of designers to integrate this
paradigm with pre-existing and future applications.

Tests of the efficacy of the CBPA on a DSL connection with an upload bandwidth of 640 Kbps indicate
a -2.40 – 68.67% decrease in message send-time for TREECHOP, -20.33 – 65.54% decrease for XMLPPM
and a 0.25 – 82.6% decrease for gzip. Our experiments also showed the decreased size of a message’s
data, by between 24.8 – 88.6%, 15.0 – 89.4% and 40.9 – 94.1% for gzip, TREECHOP and XMLPPM,
respectively.

It should be noted that although gzip performed better in these tests, TREECHOP does offer the
significant advantage of query-ability of the compressed XML, a feature that gzip does not allow. For
applications relying on this capability, the logical choice would be to use TREECHOP. In applications
where peers are connected to an Ethernet network, the observed decrease in message size using a CBPA
would reduce traffic significantly, allowing the application to scale more effectively. In general,
compression would improve the overall performance of the distributed application because high-
bandwidth connections are not necessarily prevalent in an application with geographically disperse JXTA
peers. Thus, the results support our hypothesis that XML data compression techniques can increase the
performance of sending messages over JXTA pipes.

Future work into this area would investigate the efficacy of compression over HTTP connections, firewall
traversal, relay peers and possibly modem connections. This would result in a more complete
understanding as to message-size above which the CPA provides gains.

Additionally, the proposed architecture is ideally suited for applications that use encryption; the
implementation allows selective encryption of the contents of messages and so the overhead of using a
secure pipe as illustrated in [Seigneur 2003] could be offset by only encrypting the select data in messages.
Finally, since compression decreases network traffic, the effect of compression on message delivery
failure-rates over non-reliable pipes would be an important area of study.

Figure 15: Comparison of DSL AMTT % Decreased Transit Time

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 15

Bibliography
[Antoniu 2005] Antoniu, G., Hatcher, P., Jan, M., and Noblet, D. A. 2005. Performance Evaluation of

JXTA Communication Layers. In Proceedings of the Fifth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid ’05) 1, 251-258.

[Arnold 2005] Arnold, M. and Grove, D. 2005. Collecting and exploiting high accuracy call graph profiles
in virtual machines. In Proceedings of the 2005 International Symposium on Code Generation and
Optimization (CGO ’05) 00, 51 - 62.

[Boden 1995] Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N., and
Su, W.-K. 1995. Myrinet: A gigabit-per-second local area network. IEEE Micro 15, 1, 29 - 36.

[Bray 2006] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. 2006. Extensible
markup language (xml) 1.0 (fourth edition). W3c recommendation, World Wide Web Consortium
(W3C). September. Accessed: November 4, 2006.

[Chawathe 2006] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S. 2003. Making
gnutella-like p2p systems scalable. In SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications. ACM Press,
New York, NY, USA, 407-418.

[Cheney 2001] Cheney, J. 2001. Compressing xml with multiplexed hierarchical ppm models. In
Proceedings of the Data Compression Conference (DCC ’01), 0163.

[CollabNet] CollabNet. 2006. JXTA Platform Project. Accessed: April 16, 2007 from http://
www.jxta.org.

[Dell] Dell. Technical specifications: Dell latitude c600/c500 user’s guide. Online: http://
support.dell.com/support/edocs/systems/latc600/en/ug/specs.htm. Accessed: April 15, 2007.

[Dierks 2006] Dierks, T. and Rescorla, E. 2006. The transport layer security (tls) protocol: Version 1.1.
Standards Track RFC4346, The Internet Engineering Task Force. April. Accessed: April 15, 2007.

Figure 16: Comparison of LAN AMTT % Decreased Transit Time

Demmings, Müldner, Leighton, and Young

page 16 Extreme Markup Languages 2007®

[DOC 1996] National Communications System, T. and Division, S. 1996. TELECOMMUNICATIONS:
GLOSSARY OF TELECOMMUNICATION TERMS, Federal Standard 1037-C ed. General Services
Administration, Information Technology Service, National Telecommunications and Information
Administration, U.S. Department of Commerce, Boulder Colorado. Accessed: April 15, 2007 from
http://glossary.its.bldrdoc.gov/fs-1037/.

[Duigou 2007] Duigou, M. and Dengler, T. 2007. JXTA v2.0 Protocols Specification. Sun Microsystems,
Inc. and The Internet Society, https://jxta-spec.dev.java.net/JXTAProtocols.pdf. Accessed: July 05,
2007.

[Freed 1996] Freed, N., Borenstein, N., Moore, K., Klensin, J., and Postel, J. 1996. Multipurpose internet
mail extensions (mime) (parts 1-5). DRAFT-STANDARD 2045,2046,2047,2048,2049, The Internet
Engineering Task Force: Network Working Group, http://tools.ietf.org/html/
rfc2045,rfc2046,rfc2047,rfc2048,rfc2049. November.

[Gailley 1991] Gailley, J.-L. and Adler, M. 1991. gzip. The gzip Homepage, Accessed: April 16, 2007.

[Gong 2002] Gong, L. 2002. Project JXTA: A technology overview. Tech. Rep. 01nov02, Sun
Microsystems, Inc., http://www.jxta.org/. October. Accessed: April 15, 2007.

[Gosling 1997] Gosling, J. and McGilton, H. 1997. The Java language environment. White paper, Sun
Microsystems, Inc., http://java.sun.com/docs/white/langenv/.

[Gudgin 2005] Gudgin, M., Mendelsohn, N., Nottingham, M., and Ruellan, H. 2005. Soap message
transmission optimization mechanism. W3C Recommendation REC-soap12-mtom-20050125,World
Wide Web Consortium (W3C), http://www.w3.org/TR/soap12-mtom/. January.

[JXTA] CollabNet. Project JXTA. Accessed: April 16, 2007.

[Leighton 2005] Leighton, G. 2005. Two New Approaches for Compressing XML. M.Sc. thesis, Jodrey
School of Computer Science, Acadia University.

[Leighton 2005a] Leighton, G., Müldner, T., and Diamond, J. 2005a. Treechop: a tree-based query-able
compressor for xml. In Proceedings of the Ninth Canadian Workshop on Information Theory (CWIT
2005). 115-118.

[Leighton 2005b] Leighton, G., Müldner, T., and Diamond, J. 2005b. Treechop: A tree-based query-able
compressor for xml. Tech. Rep. TR-2005-005, Acadia University, Jodrey School of Computer
Science, Jodrey School Of Computer Science Acadia University Wolfville, NS B4P 2R6 - Canada.
Aug. 2005.

[Müldner 2005] Müldner, T., Leighton, G., and Diamond, J. 2005. Using xml compression for www
communication. In Proceedings of the International Association for Developement of the Information
Society (IADIS) International Conference WWW/Internet 2005(ICWI 2005). IADIS, Lisbon, Portugal,
459-466.

[Seigneur 2003] Seigneur, J.-M., Biegel, G., and Jensen, C. D. 2003. P2P with JXTA-Java pipes. In
PPPJ ’03: Proceedings of the 2nd International Conference on Principles and Practice of
Programming in Java. Computer Science Press, Inc., New York, NY, USA, 207-212.

[Sen 2004] Sen, S. and Wang, J. 2004. Analyzing Peer-to-Peer Traffic Across Large Networks. IEEE/
ACM Transactions on Networking 12, 2, 219-232.

[Sun 2003] Sun. 2003. Java Native Interface Specification. Specification 6.0, Sun Microsystems, Inc.
Accessed: April 16, 2007 from http://java.sun.com/javase/6/docs/technotes/guides/jni/spec/
jniTOC.html.

[Sun 2005] Sun Microsystems, Inc. 2005. JXTA v2.3.x: Java Programmers Guide, 2.3.x ed. Sun
Microsystems, Inc. Accessed: April 16, 2007 from http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf.

[Sun JXTA] Sun Microsystems, Inc. JXTA Technology Sun Microsystems, Inc. Accessed: April 16,
2007 from http://www.sun.com/software/jxta/

[Tanenbaum 2002] Tanenbaum, A. S. and van Steen, M. 2002. Distributed Systems: Principles and
Paradigms, 1 ed. Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, Chapter 1, 2-3.

[Tolani 2002] Tolani, P. M. and Haritsa, J. R. 2002. XGRIND: A Query-Friendly XML Compressor. In
Proceedings of the 18th International Conference on Data Engineering (ICDE 02). ICDE 00, 0225.

Using XML Compression to Increase Efficiency of P2P Messaging in JXTA-based Environments

Extreme Markup Languages 2007® page 17

The Authors
Brian Demmings
Jodrey School of Computer Science, Acadia University, Wolfville, Canada
034776d@acadiau.ca

Brian Demmings is a Masters in Science in Computer Science candidate at Acadia University in
Wolfville, Nova Scotia. His current area of research are filtering compressed XML and storage
systems, however, his interests extend into XML Compression and P2P-based systems.

Tomasz Müldner
Jodrey School of Computer Science, Acadia University, Wolfville, Canada
tomasz.muldner@acadiau.ca

Tomasz Müldner is a professor of computer science at Acadia University in Nova Scotia, one of
Canada’s top undergraduate universities. He has received numerous teaching awards, including the
prestigious Acadia University Alumni Excellence in Teaching Award in 1996. He is the author of
over seventy papers and four books, including ’C++ Programming with Design Patterns Revealed”
and ’C for Java Programmers". Dr. Müldner received his Ph.D. in mathematics from the Polish
Academy of Science in Warsaw, Poland in 1975. His current research includes XML compression
and encryption, P2P systems and algorithm explanation.

Gregory Leighton
Department of Computer Science, University of Calgary, Calgary, Canada
gleighto@cpsc.ucalgary.ca

Gregory Leighton is a Ph.D. student at the University of Calgary. His current research interests
include XML data management and the Semantic Web.

Andrew Young
Jodrey School of Computer Science, Acadia University, Wolfville, Canada
056061y@acadiau.ca

Andrew Young was a form Bachelor of Computer Science with Honours student at Acadia
University. Having graduated in 2006, Andrew is currently working in industry.

Extreme Markup Languages 2007®
Montréal, Québec, August 7-10, 2007

This paper was formatted from XML source via XSL
by Mulberry Technologies, Inc.

Demmings, Müldner, Leighton, and Young

page 18 Extreme Markup Languages 2007®

mailto:034776d@acadiau.ca
mailto:tomasz.muldner@acadiau.ca
mailto:gleighto@cpsc.ucalgary.ca
mailto:056061y@acadiau.ca

